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I.1. Introduction.

I.1.1.

PRINCALS is an acronym for PRINcipal Components analysis
by means of Alternating Least Squares. In this User's
Guide the term PRINCALS refers to the computer program
with that name. It is a program with a number of options,
with the effect that PRINCALS includes quite a family of
solutions. One of them is the solution for PCA (Principal
Components Analysis): this solution requires that all
variables are treated as numerical. Another option re-
quires that all variables are treated as multiple nominal:
the PRINCALS solution then becomes the same as a HOMALS
solution. There are specialized computer programs for PCA
and HOMALS, and the user is advised to use those special-
ized programs if the interest is in a PCA or HOMALS sol-

ution only.

I.1.2.

PRINCALS can be introduced in different ways. In this
User's Guide PRINCALS is introduced as an extension of PCA.
A PCA computer program can handle numerical variables only;
PRINCALS 1liberates such a program in the sense that
PRINCALS also can handle ordinal variables and nominal
variables, as well.

I.1.3.

This guide is non-technical: it is meant to be a practical
outline which may help users to organize input and to
understand output. There will be 1little attention for
mathematical derivations. In particular, the rationale of
the computer algorithms will not be discussed. A more
sophisticated discussion of PRINCALS is given in Gifi
(1981a, p. 163-196).

I.1.4.
The notation in this User's Guide is in agreement with the




notation used in Gifi (198la).

1.2. Terminology.

I1.2.1. Data matrix.

The input for PRINCALS is a data matrix H, with n rows for
objects, and m columns for variables. Objects are the
units of observation, such as individual schoolchildren,
or hospitals in The Netherlands, or countries in Europe.
Variables refer to what is observed (schoolchildren: age,
performance level, occupation of father - hospitals:
number of beds, available specialistic treatments - coun-
tries: type of governement, number of inhabitants). Vari-
ables sort objects into categories. Countries with the
same type of governement are in the same category. When a
continuous variable 1is measured, such as age, measurements
will be rounded-off to 'number of years'. In practice,
therefore, this variable also sorts objects by a limited
number of age categories.

I.2.2. Quantification.

PRINCALS quantifies the data matrix H, by assigning numeri-
cal values to the different categories of each variable.
This produces a quantified data matrix Q (with n rows and
m columns, just like H). PRINCALS also gives a quantifica-
tion to objects in the form of a column of n object scores
x. PRINCALS may give a number of different solutions for
Q and x - they are called dimensions. We therefore need an
index s to indicate the solutions Qg and X for each dimen-
sion, where s runs from 1 to p (p is the total number of
dimensions).

The criterion for quantification of H is that Xg should
have 1large correlations with each of the variables in
Q. - a solution is "good" to the extent that this cri-
terion is satisfied.
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I.2.3. Treatment of variables.

PRINCALS quantifies variables in such a way that columns
of Qs have zero mean and unit variance (standard scores).
Apart from that, there are four ways how variables can be
quantified:

(1) numerical

(ii) ordinal

(iii) single nominal

(iv) multiple nominal

(1) Numerical. This assumes that the observed variable h.
already has numerical values for its categories. In the
PRINCALS guantification of 11 these numerical values
are respected in the sense that only a transformation
on interval scale is permitted. But since we also re-
quire qj to be standardized, there is only one possible
solution for the quantified variable q In fact, if
all variables are treated as numerical, PRINCALS gives
the same solution as classical PCA.

(ii) Ordinal. Ordinal quantification means that the cate-
gories of the quantified variable qJ have the same
order as those of the observed variable h More pre-
cisely: if h_. and h are the two observed values for

9]
objects g and 1, quantlfled as qg and qij’ then
if hgj = hij’ then qg = qu
i . > h.., t .2 g
if th hlJ hen qu qu

(iii) Single nominal. Now the only restriction on the
quantification becomes
if h . = h.., then N T
gi = Mjr 995 = 9ij .
In words: objects in the same category for hj obtain
the same quantification.

The three possibilities above have in common that h
has the same guantification on all dimensions. The J'th
column of QS is the same, irrespective of s. The three
possibilities vary in the amount of restriction imposed




on the quantification. Numerical quantification is very
much restricted. Ordinal quantification gives more free-
dom, nominal quantification has the least amount of

restriction.

(iv) Multiple nominal. This type of quantification differs
from single nominal in that the quantification of h
can be different for each dimension: the h'th column of
Ql will not be the same as the h'th column of QZ’ etc.

I.2.4. PRINCALS options for treatment of variables.

PRINCALS has five options for treatment of variables. The
first four options imply that all variables are treated
in the same way: all of them numerical, or all of them

ordinal, or all of them single nominal, or all of them
multiple nominal. The fifth option is the mixed treatment:
the user then has to specify for each separate variable
how it must be treated.

PRINCALS does not yet include the possibility to treat
variables as "multiple ordinal". This would mean that the
quantification of hj could be different at each dimension
while obeying the ordinal restrictions. It follows that
the ordinal option, described above, can be called the
"single ordinal" treatment of variables. PRINCALS also has
no option for "multiple numerical". However, the reason
why this option is not available is quite different: the
numerical restriction makes it impossible to quantify a
variable in different ways. There is no freedom for it.




I.3. Remarks on treatment of variables.

1.3.1. Introduction.

This section contains some miscellaneous remarks about the

organization, by the user, of PRINCALS input.

I1.3.2. Binary variables.

A variable is said to be binary if it has only two cat-
egories. In this case it does not matter whether the vari-
able is defined as nominal, ordinal, or numerical. What-
ever quantification of the two categories 1is taken, it
will automatically satisfy the requirement for numerical
variables. (If all variables are binary, a different type
of analyéis will probably be better.)

1.3.3. The researcher must define.
Variables are not nominal, ordinal, or numerical on the

basis of mysterious intrinsic properties, but because the

researcher defines them as such.

Two extreme examples clarify this point.

(i) Suppose a variable sorts objects into age-groups. Age
can very well be treated as a numerical variable. How-
ever, the reseacher may decide to treat age as ordinal.
E.g., suppose one has a study on "driving safety", in
wich one of the variables is "driver's age". It may
very well be so that "safety" is related to age only
for people younger then 25, and that above that age it
does not matter how old the driver is. Ordinal treat-
ment of age then would be more realistic than numerical
treatment. Or, it may even be true that for people
younger than 25, safety has positive relation with age;
whereas for people older than 60 safety has negative
relation with age. In that case age might better be
treated as a nominal variable.

(ii) A variable that sorts persons by "political prefer-
ence" looks as if it is essentially nominal. But the
researcher may be interested in a "left-right" dimen-
sion, and on that basis might order political parties



from left to right, and might require that quantifica-
tion of parties to respect that order. The researcher
might even have reasons to assume interval properties
for the apriori quantification of parties (e.g., based
on earlier research), and then might require that "poli-
tical preference" is quantified as a numerical variable.

1.3.4. Number of categories.

Very often the number of Categories is a natural one. Poli-
tical preference is an example: if there are k political
parties, then political preference is a variable with k
categories. On the other hand, there is no natural way to
classify persons into age groups: we can form as many
categories as we want.

A rule of thumb is that there should be no more than 12
categories (each of them with not too small marginal fre-
quency). For a variable like "age", this implies that one
should round-off in such a way that about 12 reasonably
well filled categories remain. For a variable like "poli-
tical preference", if there are very many political par-
ties, it implies that the researcher should consider whe-
ther some parties can be "taken together".

I.3.5. Merging of categories.

Researchers often worry whether some categories can be
taken together, or merged. Essentially, their problem then
is whether or not such categories will obtain the same
quantification or not.

Instead of deciding on an apriori basis, one might decide
after the analysis: if categories obtain the same, or very
similar quantification, they may as well be merged, with-
out affecting final results.

I.3.6. Ordinal variables.

It often happens that categories can be ordered on an a
priori basis. An example is that objects are classified on
an attitude scale in categories ranging from "in favor of
something" to "against something", with "don't know" as an




intermediate category. But it may very well happen that
the category "don't know" defies the interpretation of
being midway between "in favor" and "against". A nominal
interpretation of the variable then might be more attract-
ive. Also, it may happen that responses to an attitude
scale are related to other variables not so much from "in
favor" to "against", but from "extreme attitude" (either
much in favor or much against) to "not outspoken attitude".
A nominal treatment of the variable then might reveal
better what is going on.

I1.3.7. Judicious choice.

Examples above show that it is the researcher's responsi-
bility/to decide how variables must be treated. It some-
times might be useful to try out different possibilities
(ordinal treatment of the attitude scale, versus nominal
treatment; numerical treatment of age versus ordinal treat
ment, etc.).



N W e )

WwWaN=N—

W NN~

I.4. Some algebraic relations in PRINCALS.

I.4.1. Numerical illustration.

Table I.4.1. illustrates numerical relations implicit in a
PRINCALS solution. The data in the table are the Guttman-
Bell data (further discussed in section I1II.1). Table
I.4.1. gives the original data matrix H with the gquan-
tified data matrix Q for the first dimension of a two-
dimensional single ordinal analysis. The algebraic rela-
tions described in this section, however, are valid for
any type of analysis: numerical, single ordinal, single
nominal or multiple nominal.

(i) The column a gives correlations between object scores
X and the m columns of Q.

(ii) The average of the squared correlations is the eigen-
value ¢ = Za%/m (3=1,..,m).

(iii) The column of object scores x is a weighted sum of
the columns of Q, with weights equal to the values
given in a, divided by m¢. So we may write x= 2q. aj/m¢

(iv) The table also gives the matrix ¢ (with the same for-
mat as H and Q: n rows, m columns). Entries in ¥ are
averaged object scores X, averaged over the objects
which are in the same category of a variable. E.g., in

Table 1.4 1: First dimension of a two-dimensional single

ordinal solution

Q a
22 -1.525 -1.550 -2.186 .632 o7

2 2 .342 584 -.325 632 B17 - . 986
2 3 -1.525 -1.55¢  -.325 -1.881 -2.183 l 1965
.992 584 789 632 1. —_ 11337
$3 992 1.¢8s .789 .632 1.957 Caas
2 2 .381 584 .789  -1.581 817 Tigan

.342 594 .789 .632 817 \L

b4 p 4
1.490 1.498  1.261 -.307 .982 1.261
-.373  -l6g0 738 -.397 .082 -§.259
1.498  1.498 .730 .767 1.728 1.720
1.425 688 -1.825  -1397 -1lp25 ¢ _L" 1%
-1.025  -1.199  -1.g25  -.3g7 -1 goe -1.199
-.185  -1336  -.33¢ 767 .882 -9.185
-.373  -.338  -.336  -.3g7 .882 -9.487
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variable 1 there are two objects 1n category 1 (objects
1 and 3) with object scores 1.2609 and 1.7197. The av-
erage is (1.2609 + 1.7197)/2=1.490, which is the value
given to category 1 in the first column of Y.

1.4.2. PRINCALS output.
Results above are in the following way related to PRINCALS
output.

(i) For numerical, ordinal and single nominal variables:
the elements to be used in Q are given under the hea-
ding category quantifications.

(ii) Values of a are given under the heading component
loadings.

(iii) Values of a§ are found under the heading single fit.

(iv) Values to be used in ¥ appear under the heading mul-
tiple category coérdinates.

(v) PRINCALS also gives single category codrdinates. They
are equal to the category quantifications, multiplied
by the corresponding value of aj (first column of Q
multiplied by a;, second column of Q multiplied by a,,
etc.) As a consequence, if Q were replaced by a matrix
of single coordinates, object scores x can be found as
the sum of the columns of this revised matrix, divided
by mé.

(vi) PRINCALS gives these objectscores, with normalization
N (i.e. ins =n). Objectscores for different dimensions
are uncorrelated.

For multiple nominal variables PRINCALS output is differ-

ent. First of all, it is characteristic of the quantifica-

tion of multiple nominal variables that categories are
quantified proportional to the average object score of
objects in the corresponding category. In the terminology
of table I.4.1.: a column §j will be equal to qjaj: single
category codrdinates are identical to multiple category
codrdinates. PRINCALS gives these category codrdinates
under the heading category quantifications. One should be
aware, though, of the difference with category quantifica-
tion for single variables. For single variables the cat-
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egory quantification gives values to be used in Q (columns
of Q have unit variance), whereas for multiple nominal
variables the category quantification gives values to be
used in ¥ (columns of ¥ have variance equal to a2) Second-
ly, for multiple nominal variables PRINCALS does not give
component loadings a.. Squared component Jloadings are
found under the heading multiple fit. The positive square
root of multiple fit corresponds to the correlation between
object scores and quantified variable.

1.4.3. Sign of component loadings.

Table I.4.1. shows all component loadings with negative
sign: all correlations between x and columns of Q are
negative. Interpretation of results would be more simple
if these correlations were positive. This can be achieved
as follows: reverse the sign of x (replace x by -x), and
reverse the sign of all aj (replace a by -a). Or, one may
want to reverse the sign of some aj: this can be done by
also reversing the sign of the category quantification of
variable hj'

I.4.4 Single versus multiple.

Figure I.4.1. gives a schematic illustration of the differ-
ence between single versus multiple treatment of variables.
With all variables single, the quantified data matrix Q is
the same for each dimension. Successive dimensions differ
only in the solution for a and x. With all variables
multiple nominal, the quantified data matrix will be dif-
ferent for each dimension: Ql will be different from QZ’
etc. In the mixed case (e.g., some variables multiple nom-
inal, other variables single), columns of Q will remain
the same for single variables, but become dlfferent for
multiple variables.
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I.5. Comparison of PRINCALS solutions.

I.5.1. All variables numerical.

This solution always is single: Q is the same at each
dimension. In fact, Q just replaces H by columns of stan-
dard scores (zero mean, unit variance), and PRINCALS gives

the same solution as classical PCA.

I1.5.2. All variables multiple nominal.

This solution is the same as a HOMALS solution. We shall
not discuss this solution further (consult Gifi A., HOMALS
User's Guide 1981b).

I.5.3. Nested versus not-nested.
The PCA solution and the HOMALS solution are nested. It
means that the first (p-i) dimensions of a p-dimensional

solution are the same as the dimensions of a (p~i) dimen-
sional solution. E.g., if p=4, the first dimension will be
the same as the solution with p=1, the first two dimen-
sions will be the same as the solution with p=2, the first
three dimensions will be the same as with p=3.

PRINCALS solutions with single ordinal and single nominal
variables (or with mixed variables) are not nested. The
first two dimensions of a p-dimensional solution are not
identical to the solution with p=2. The first two dimen-
sions will be different, depending on the value of p.
Users educated in the tradition of factor analysis might
surmise that these differences are a matter of "rotation';

they are not.

I1.5.4. Two phases.
For the options single ordinal, single nominal, and mixed,

PRINCALS proceeds in two phases.

(i) If all variables are single, in the first phase the
numerical PCA solution is calculated. This solution is
used as the initial configuration in the second phase
which identifies the proper PRINCALS solution asked for.

(ii) In the mixed case, with some variables single and
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others multiple nominal, the first phase identifies a
solution in which all single variables are treated as
numerical, and all multiple nominal variables as
multiple nominal. Again, this solution serves as the
initial configuration for the second phase. Results of
the first phase are printed on request. The user might
find it interesting to compare these results with the
final results. This comparison might be useful in par-
ticular for single variables (the comparison shows to
what extent ordinal or nominal treatment improves upon
numerical treatment).

I1.5.5. One-dimensional single nominal.

Just for completeness: the one-dimensional solution with
all vafiables single nominal is the same as the one-dimen-
sional solution with all variables multiple nominal (and
therefore is the same as one-dimensional HOMALS). As fig-

Figure I.4.1: Schematic representation of treatment with
all variables single, or all variables multiple, and the
mixed case

Figure I.4.la: Al]l variables single

o




Figure I1.4.1b: All variables multiple nominal
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Figure I.4.1c: Mixed
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ure 1.4.1 shows, the difference between single and
multiple becomes relevant only for solutions with two or

more dimensions.

I1.5.6. Multiple nominal variables.

When a variable is treated as multiple nominal, it obtains
different gquantifications at each dimension. The user
should not make the error to think of these different
quantifications as if it is the '"same" variable hj' E.g.,
suppose that hj gives categories of "occupational status".
The solution in the first dimension shows relations be-
tween "occupational status" and other variables. But the
solution in the second dimension identifies a different
sort of ."occupational status": one should not interpret
those different quantifications as if they are just "occu-
pational status". In fact, these different quantifications
may be very lowly correlated.

This problem is related to that of "component loadings".
Component loadings are defined as the correlation between
x, and Us- For single variables g is the same, whatever
s. For multiple nominal wvariables qjs is different, de-
pending on s. Component loadings for multiple nominal va-
riables therefore should be calculated as the correlations
between qjs and all Xl’XZ""Xp' PRINCALS does not give

such correlations.

I.5.7. Number of solutions.
I1.5.7.1. Maximum number of solutions.

If all variables are single, the maximum number of possible
dimensions equals m (number of variables). If all variables
are treated as multiple nominal (so that PRINCALS gives a
HOMALS solution), the maximum number of dimensions equals
ij-m, (j=1,..,m), where kj is the number of categories of
variable hj' In the mixed case with some variables single
and other variables multiple nominal, we may agree, with-
out loss of generality, that the first my variables are

treated as multiple nominal and the last m, as single

2
(m1+m2 =m). Then the maximum number of dimensions equals

ij—m1+m2 (j:1,..,m1).
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1.5.7.2. How many dimensions should ve taxken?

As a rough and general rule of thumb one could say that in
the case with single variables only, one should retain
only the first p dimensions for which the eigenvalue 1is
larger than 1/m. This is the same rule of thumb as the one
used in classical PCA. If a dimension has eigenvalue
smaller than 1/m, it explains less variance than an indi-
vidual variable; such a dimension has little or no gener-
alizability.

In the numerical case (PCA solution) one can just retain
the first p dimensions for which eigenvalues are larger
than 1/m, and drop the m-p dimensions with eigenvalues
smaller than 1/m. But with large m, the number of dimen-
sions retained (p) will probably be too large. With single
ordinal or single nominal variables, where the solution is
not nested, a different approach is necesarry.

One might start with p=3, and (if the smallest eigenvalue
of the p=3 solution is smaller than 1/m) go back to p=2.
I1f for any choice of p the sum of the eigenvalues is close
to (m-1)/m there is no need to try a solution with p+1
dimensions. If for some choice of p the sum is smaller
than (m-1)/m, whereas the smallest eigenvalue still is
far above 1/m, an increase of p might be considered.

If there are multiple nominal variables, no easy rule of
thumb can be given. It remains true that if an eigenvalue
is smaller than the reciprocal of the maximum number of
dimensions (see above), the corresponding dimension has
little generalizability and could better be dropped - this
criterion alone, however, almost certainly will produce
more dimensions than 1s acceptable. After all, remember
that multiple nominal treatment of variables gives the
greatest amount of freedom for optimal scaling, so that
even with a set of uncorrelated random variables one will
obtain a number of eigenvalues larger than the reciprocal
of the maximum number.

In general we advice to keep p small - better too little
dimensions than too much. Alsc we advice not to increase
the number of dimensions beyond the point where their

substantive interpretation becomes guess work.
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I.5.7.3. Rotations.

In classical PCA there are common routines, such as
VARIMAX, for rotation of the solution. If all variables
are single, such rotations procedures remain feasible.
Still, we do not recommend to apply rotation procedures
routinely. It is true that there may be cases where some
choice of rotation is helpful. But optimal quantification
very often gives results with good interpretability, so
that rotation is superfluous. In addition, when there also
are multiple nominal variables, rotation problems become
rather complicated. It is beyond the scope of this User's
Guide to discuss such problems.
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I.6. Loss and fit.

I.6.1. Introduction.

"Loss" and "fit" are measures of how bad or good a sol-
ution is. Large loss implies that the solution is bad;
good fit implies that the solution is good. Loss and fit
are complementary measures: good fit implies small loss,
and large loss implies bad fit. In chapter 7 these con-
cepts will be further illustrated in graphs - the fol-
lowing sections of this chapter are restricted to alge-

braic definitions.

I.6.2. single fit.
PRINCALS gives measures for single fit of single variables.

Per dimension (index: s) and per variable (index: j) single
fit is defined as a%s (the squared component loading).
PRINCALS also gives single fit averaged over variables per
dimension (Za%s/m, with j=1,..,m and s fixed). If all vari-
ables are single, this average is equal to the eigenvalue
¢ . PRINCALS further gives "row sum single fit" for each
single variable; it equals Za?s (s=1,..,p, with j fixed),
and PRINCALS gives the mean of these row sums, equal to
ZZa%S/m=Z¢S if all variables are single. In that case this
mean also is equal to "total fit".

Single fit a%s can be interpreted as the "explained vari-
ance" of qj at dimension s. Row sum single fit Zags corre~

sponds to the "total explained variance' of qj.

I1.6.3. Multiple fit.
Multiple fit, per variable and per dimension, is defined

as Z&%s/n (the variance of a column of ¥). This measure of
multiple fit never can be smaller than the corresponding
measure of single fit a?s. The reason 1is that
Z(xs—ﬁjs)z/n=1—z§§s/n stands for spread of object scores
around their category means. This spread is always smaller
than spread around other values than group means, such as
Z(XS-quajs)z/n=1—a§s. It follows that 3y, /nzai,.
Another standard output is the average multiple fit per
dimension (Ziijs/mn;j=1,..Jn; s fixed). If all variables



are multiple nominal, this value will be equal to the ei-
genvalue ®,. PRINCALS further gives row sum multiple fit:
multiple fit per variable summed over the p dimensions.
The mean of row sum multiple fit also is given. If all
variables are multiple nominal this mean will be equal to
the sum of the eigenvalues (and therefore also be equal to
"total fit").

1.6.4. Overall measures of fit and loss.

For all variables and dimensions together, the goodness of
the solution is indicated in ‘'total fit'. 'Total fit' is
equal to the sum Z¢s, of the eigenvalues.

'Total fit' also can be defined as the average row sum fit,
where we. should take row sum single fit for single vari-
ables, and row sum multiple fit for multiple variables.
'Total loss' is defined as p-~ Z¢S.

'Total multiple loss' is defined as p-(mean row sum mul-
tiple fit).

'Total single loss' is defined as ('total loss')-(multi-
ple loss!').




- 21 -

I.7. Plots.

1.7.1. Objects unlabeled.
The plot of objects, unlabeled, graphs object scores x

1
2 with Xy in the horizontal direction and X, in the
vertical direction. Comparable plots for other combina-

and X

tions of object scores are not provided by PRINCALS. The
user who wants such plots should employ standard plot rou-
tines. The plot of object scores can be useful for detec-
ting outliers, or for detecting typical subclouds of ob-
jects. The plot also may reveal some special pattern. An
illustration is given in section III.2.

1.7.2. Component loadings.

For single variables PRINCALS gives a plot of component
loadings for the first two dimensions. If a mixed case in-
cludes multiple nominal variables, such variables are

Figure I.7.1: Guttman-Bell data, single ordinal solution,

component loadings
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plotted in the origin - one should interpret this as that
they are omitted from the plot. The plot of component
loadings is illustrated in figure 1.7.1. for the Guttman-
Bell data with all variables treated as single ordinal
(compare 1III.1.). The plot becomes more convincing by
drawing arrows in it, as has been done in figure I1.7.1..
The squared length of the arrow for qj corresponds to the
row sum single fit of qj (amount of "explained variance").
To the extent that two arrows are long (with length ap-
proximating unity), the cosine of the angle between them
reflects the value of the correlation coefficient between
the two corresponding quantified variables. E.g., figure
I.7.1. shows that the angle between the arrow for 95 and
d, is almost 900, reflecting the correlation r34=.121. On
12=.977, and
the angle between the corresponding arrows is very small.

the other hand, q, and q, have correlation r

However, when arrows are short, the angle between them
will be an inadequate representation of the correlation
between the corresponding quantified variables. In the
example of figure I1.7.1. all arrows are relatively long.
This shows that the first two dimensions explain most of
the variance of all quantified variables. In addition, the
first dimension of the solution (object scores xl) has
negative correlation with all quantified variables (all
arrows point to the left). This shows that, on the whole,
objects with large positive value for their object score,
will have low value in all quantified variables.

However, the last statement will be more true for quanti-
fied variables 9y.9,, Or gg (with large projections on the
horizontal axis) than for variables d3 Oor q,.

The plot further shows that the second dimension of the
solution is correlated mainly with quantified variables a5
and Qg in opposite direction. It means that objects with
high score in X, will have high score in d4 and low score
in dy- The second dimension (x2) therefore reveals a con-
trast between quantified variables 45 and d,r Whereas this
second dimension has little relation with variables d,
and g, -
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I.7.3. Multiple nominal variables.
If all variables are multiple nominal -
PRINCALS solution is identical to the HOMALS solution

so that the
- a

plot of component loadings is not given.
In the mixed case with some variables multiple nominal and

the others single, multiple variables are omitted from the
plot of component loadings (they are plotted in the origin).
Compare section I.5.7: PRINCALS does not compute the cor-
relations (component loadings) between qjs (the s'th quan-
tification of a multiple nominal variable hj) and all

object scores xl,..,xp’
I1.7.4. Objects labeled by variable.

The plot of objects labeled by variable hj shows the same
object points as the plot with objects unlabeled. However,

Figure I.7.2: Guttman-Bell data, single ordinal solution,
object scores labeled by variable 1
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this time the object points are labeled by the corre-
sponding categories of hj' Figure 1.7.2 shows such a plot
for the Guttman-Bell data, single ordinal treatment of
variables, with objects labeled by the four categories
of variable hl.

The PRINCALS plot only shows the points for the objects.
In figure I.7.2., however, we have added the four points
corresponding to the "multiple category coordinates".
These "multiple catedgory points" are the means (centers of
gravity) of the objects within a category. E.g., the
multiple category point for category 1 is half way between
the two points for the two objects in category 1.

Also, the one object in category 3 coincides with the
multiple category points for category 3.

Multiple fit can be visualized in the figure by the spread
of the multiple category points. More precisely, multiple
fit equals the average squared distance (weighted by mar-
ginal frequency) between multiple category points and the
origin. Multiple loss can be visualized as the average
squared distance between object points and their corre-
sponding multiple category points (the dotted lines in
figure I.7.2). The figure further illustrates that multiple
fit for the second dimension is relatively bad, owing to
the fact that the two objects in category 1 are far apart
in the vertical direction.

Figure I.7.3 repeats figure I.7.2 with the points corres-
ponding to the "single category coordinates" added. These
single category points are located on a straight 1line
through the origin. This line has the same slope as the
arrow for variable q; in the plot of component loadings.
Single fit is visualized by the average squared distance
of the single coordinate points to the origin: the farther
these category points (on the line) are apart, the better
the fit. Single loss appears in the figure as the average
squared distance between object points and their corre-
sponding single category point. The difference between
multiple loss and single loss is visualized in the figure
as the average squared distance between multiple category
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Figure 1.7.3: Guttman-Bell data, single ordinal solution,

object scores labeled by variable 1, single
and multiple category coordinates of vari-
able 1
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points and corresponding single category points.

In other words, multiple fit would be eqgual to single fit
if the multiple category points themselves were located
on a straight line through the origin. This will always
be true for a binary variable (with only two categories)-
one may verify this for wvariable h4 of the Guttman-Bell
data in III.1l.. In figure I.7.3. single fit for variable
1 is equal to .991 which is very close to the maximum
value of unity. Suppose that single fit were equal to its
maximum value. We then would have found that the dotted
lines in figure I.7.3 are orthogonal to the line on which
the single category points are located. In other words,
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category points are the projections of the multiple cate-
gory points. Figure 1.7.3 deviates from the ideal in that
the dotted lines are not parallel, but approximates the
ideal in that the projections on the line of the multiple
category points are very close to the single category
points.

The user might also make a graph of object points combined

Figure I.7.4: Guttman-Bell data, single ordinal solution,

object scores and component loadings (drawn
as lines through the origin)
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with the "arrows" specified by the component loadings.

Such a combined graph is shown in figure I1.7.4.. In this

figure the arrows of figure 1.7.1. are drawn as lines

through the origin. Object points are labeled by object
number. The graph can be interpreted in two ways.

(1) Select some individual object. The projection of the
corresponding object point on the directions repre-
senting variables, approximate the values of this ob-
ject on the quantified variables.

Example. Take object 1. Its values on quantified vari-
ables are (see table 1.4.1):

(-1.525, -1.550, -2.186, .632, .017).

Figure I.7.4. shows that object 1 in fact has negative
prdjection on the lines for variables 1,2,3; positive
projection on the line for variable 4; and almost zero
projection on the line for variable 5.

(ii) select some variable. Projections of object points on

the line for this variable approximate the quantifica-
tion of the categories of this variable. Example. Table
I.4.1. shows the following gquantification for variable
3: (=-2.186 -.325 -.325 .709 .709 .709 ;709).
Figure I.7.4. shows in fact that object 1 has very large
negative projection on the line for variable 3; objects
2 and 3 have small negative projection; and objects
4,5,6,7 have positive projection. The interpretations
suggested in (i) and (ii) above are approximately valid,
depending on the values of single fit per variable. If
for all variables single fit in the first two dimensions
were eéual to the maximum value of unity, the interpre-
tations would be perfectly valid.
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I.8. Miscellenaous subjects.

I1.8.1. Passive and active variables.

PRINCALS has the option to designate some variables as
"active" and others as '"passive'". The PRINCALS solution
depends only on active variables; passive variables are
ignored. However, one may ask for a plot of object scores
labeled by the categories of a passive variable. E.g., if
"sex" is a passive variable, such a plot might (or might
not) show that males and females are well separated and
have different means. Although the PRINCALS solution as
such ignores a sex difference, results may show that
PRINCALS dimensions are related to sex.

1.8.2. Missing data.
PRINCALS handles missing data in the sense that they have
no effect on the final solution. It is important to note,

however, that if there are missing data, the interpreta-
tion of PRINCALS results given in the previous sections is
no longer strictly wvalid. 1In particular, component
loadings no longer can be strictly interpreted as correla-
tions between X and qjs' The reason is that normalization
requirements are somewhat violated, due to different num-
bers of objects per variable. When there are not too many
missing data, the effect will be limited, and the inter-
pretation given in previous sections will hold true in an
approximate way. But with many missing data, especially if
they are not distributed randomly over variables, results
may become more difficult to interpret.

The user has two other possibilities for missing data. The
first one is to treat missing data for variable hj as if
they form a separate category. The user then must adapt
the input: missing data should now be recorded as a new
category. This approach obviously implies that the user
believes that the objects with missing data on variable hj
are in some sense "similar". In addition, this approach
assumes that for ordinal treatment of a variable the cat-
egory '"missing" must be positioned somewhere in the order
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of the other categories.

For numerical treatment, the category "missing" must even
be given some numerical value. In general, therefore, the
possibility to treat "missing" as a separate category will
make sense only for nominal (single or multiple) treatment
of a variable.

The second possibility is to define missing data on vari-
able h. as a separate category for each object with mis-
sing data. This implies that the number of categories of
variable hj is increased by as many new categories as
there are objects with missing data. Again, this possibi-
lity makes sense only if hj is treated as nominal. Also,
if there are many missing data, this possibility implies
the risk that the PRINCALS solution becomes dominated by
objects with missing data. The general advice, therefore,
is to treat missing data as really '"missing": they then
do not affect measures of stress (fit and loss), but the
user takes the risk that the correlational interpretation
of results becomes somewhat distorted.
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II. The PRINCALS program.

IT.1. Some general remarks.

PRINCALS is a portable ANS Fortran IV program, which works
satisfactorily on IBM and CDC computers.

The IBM version has dynamical storage by means of an As-
sembler routine. For other installations this routine is
replaced by a static Fortran array allocation routine. The
main structure of the PRINCALS program is:

initialization
quantificationé&
orthogonalization
no
convergence? —|
yes
output ¢ |

The term quantification is self-evident. The term ortho-
gonalization concerns computation of object scores. These
scores have to be orthogonal (i.e., independent) for each
dimension. The term initialization means quantification
(numerical for single variables and multiple nominal for
multiple nominal variables) followed by orthogonalization.
The execution time of PRINCALS is approximately linear
with the number of objects and quadratic with the number
of dimensions. We have tried to reach a maximum of effi-
ciency by optimizing the program by means of an Assembler
timing routine. The optimization is done using the Fortran
X compiler, by rewriting comparitivily slow parts of the
program.

e




a.

- 31 -

I1.2. The input data.

The data are supposed to be on the unit, the number of
which is the first parameter of the 1/0 options card;
if the data matrix is on cards, it must follow the pa-
rameter cards.

In the data matrix the rows have to correspond with
objects or individuals and the columns with variables.
The data will be read according to the user's format.
The data should consist of positive integers starting
with the number one (gaps are allowed). The number on
the category card is regarded as the highest meaningful
category number and thus as the total number of cat-
egories of that particular variable.

- Any number in the data matrix less than one or larger

than the highest number of categories of a variable, is
considered as missing.

. When there are more variables in the data matrix than

should be analyzed, the analysis variables should come
first. The other variables can be used for labeling
the plot of object scores.
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I1.3. The plots.

There are four kinds of plots available in the program.
One of the plots is unlabeled, and the other plots are
labeled.

a. Plot of object scores (unlabeled).
The printed symbols correspond with the object scores.
The symbols 1,..,9, A,..,Z2 indicate the number of
points that fall in a particular cell. A,..,Z stand for
the numbers 10,..,35. When there are more than 35
points in one cell, a symbol '+' will be printed.
After the plot the exact number of points for every '+

sign is given.

b. Plot of component loadings (labeled).
The symbols printed correspond with the variable num-
bers. The symbols 1,..,9 are self evident, the symbols
A,..,2 stand for the numbers 10,..,35. When there are
more than 35 points the symbol attribution starts
again with number 1. A '+' ig printed when two points

coincide; the labels for those points are specified
after the plot.

c. Plot of object scores (labeled).
The printed symbols correspond with the original cat-

egory numbers of a variable. The symbolizing is as in b.

d. Plot of rescaled categories for each variable (labeled).

The printed symbols correspond with the original cat-
egory numbers of a variable. The symbolizing is as in b.
For single variables the single and multiple category
coordinates are printed, for multiple variables the

category quantifications are printed.
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I1.4. Implementation.

a. The first two assignment statements of the subroutine
PRIINM have the following meaning:
ICAR=5; 5 is the logical unit number for the card reader.
IPRI=6; 6 is the logical unit number for the printer.

b. The dynamic storage allocation in the IBM version of
PRINCALS can easily be replaced by a static storage
allocation. In this case not the Assembler subroutine
DECLAR should be called, but the Fortran subroutine
DECLAR. This routine allocates a superarry of a certain
specified length. It has to be large enough to contain
all the arrays used in the program. The size of the
superarray should roughly be equal to:
4(N(T+4P+6)+M(10+3P)+T+K(3+3P)) bytes, with N the
number of objects, M the number of active variables,
T the total number of variables, K the total number of
categories and P the number of dimensions. If the
superarray is not large enough, the program will return
from DECLAR with an error message and the correct size
of the superarray.

C. The labeled common block VARBLS contains parameters and
array sizes, all scored as integers. This common block
is defined in the PRIINM subroutine. Three types of
arrays are used in the program: integer arrays, which
use 32 bits per element, real arrays, which also use 32
bits per element, and double precision arrays, which
use 64 bits per element.

d. The random number generator in the subroutine RANDMA
requires a largest available integer number of 348525375
29

(<2

generator must be impleted. This random generator

). If this number is too large another random

should produce double precision numbers between -1 and
+1.
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If the plots are not square, or if they are too large
or too small for the printer, some statements in sub-
routine PLOTTO should be adapted according to the
notes in the source in the subroutine.

In subroutine IMTQL2 the parameter MACHEP is the ma-
chine dependent parameter specifying the relative pre-
cision of floating point arithmetic. The value for IBM-

machines is 2”29,

.. © e o
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II.5. Job control.
We give an example of the job control cards for PRINCALS.

The cards starting with //* are comment cards.

// TIME=(0,30),REGION=256K

/*JOBPARM, LINES=1, CARDS=0,DAG

/*ROUTE PRINT RMT3

//A EXEC PGM=PRINCALS

//STEPLIB DD DISP=SHR,DSN=DIENST

//FTO6F001 DD SYSOUT=A

//* EXAMPLE OF AN INPUT DATA SET

//FTO08F001 DD DSN=U.DATA,UNIT=3350, VOL=SER=USERO1,
// DISP=(OLD,KEEP)

//* EXAMPLE OF AN OUTPUT DATA SET FOR OBJECT SCORES
//FT07F001 DD SYSOUT=B

//* EXAMPLE OF AN OUTPUT DATA SET FOR CATEGORY QUANTIFI-
//* CATIONS

//FT10F001 DD DSN=U.CATEGO,UNIT=3350, VOL=SER=USER02,
// DISP=(NEW,KEEP),SPACE=(TRK, (10,2)),

// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)

//FTOSF001 DD * .

parameters

/*
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II.6. Output.
For the initial and final configuration identical output i

is possible. The user has to specify this by the coding of |
input parameters.

a. Print output.

1. Input parameters.

2. Raw data (optional), 10 objects are always printed.

3. Measurement levels.

4. Marginal frequencies.

5. History of iterations (optional).

6. Eigenvalues per dimension.

7. Category quantifications, single and multiple category
coordinates for single variables; category quantifica-
tions for multiple variables.

8. Multiple fit.

9. Single fit (for single variables only).

10. Component loadings (for single variables only).

11. Total fit, total loss, multiple loss and single loss.

12. Correlation matrix (only if there are no missing data).

13. Object scores (optional).

14. Unlabeled plot of object scores (optional).

15. Labeled plot of component loadings (optional).

16. Labeled plot(s) of object scores (optional).

17. Labeled plot of single and multiple category coordi-
nates for single variables, of category coordinates
for multiple variables (optional).

b. Output on card, tape or disk.
1. Category quantifications (with variable and category-

number) (only for single variables),
format (I13,1X,I3,1X,F8.3) (optional).

2. Object scores (with variable and category-number),
format (I5,9F8.3/(5X,9F8.3)) (optional).

3. Rescaled categories (with variable- and category-
number) single category coordinates for single
variables, category quantifications for multiple
vapiables,
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format (2I4,9F8.3/(8X,9F8.3)) (optional).
4. Component loadings (with variable number) (only for
single variables), format (I5,9F8.3/(5X,9F8.3)).
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II1.7. Input parameters.
Card 1 number of problems
Column Format Information
1-5 I5 number of problems
Card 2 title
column format Information
1-80 20A4 any alphanumeric code to name the analysis
Card 3 : problem size
Column Format Information
1-5 I5 number of objects
6-10 15 number of variables in the data matrix
11-15 15 number of analysis-variables
16-20 15 number of dimensions
21-25 15 maximum number of categories over all
variables
26~-30 I5 total number of categories of the analysis-
variables
Card 4 analysis parameters
Column Format Information
1-5 15 maximum number of iterations to compute
the final configuration (default = 75)
6-15 F10.8 convergence criterion for the final
configuration (default = 0.50E-04)
16-20 15 maximum number of iterations to compute
the initial configuration (default = 20)
21-30 F10.8 convergence criterion for the initial

configuration (default: depends on kind
and largness of problem)

R O
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Card 5 1/0 options
Column Format Information
1-5 15 unit number of the input medium for the
data
6-10 I5 print of data matrix
0 : no
1 : yes
14-15 211 print options
initial final
0 0 : no print
1 1 : print object-scores only
2 2 : print object-scores and
category quantifications
3 3 : print category quantifi-
cations only
19-20 211 print history of iterations
initial final
0 0 : no
1 1 : yes
24-25 211 plot options
initial final
0 0 : no plot
1 1 : plot object-scores and
component loadings
2 2 like option 1 and in addi-
tion plots of objectscores
labeled by the category
numbers of selected vari-
ables specified on card 7
and/or plots of category
quantifications of vari-
ables specified on card 7
29-30 2111) unit number for output of object-scores

to other media than line printer
initial final
0 0 : no extra output required
k 3 : output to unit number
k and/or j
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Column Format Information
34-35 2111) unit number for output of category-coor-
dinates to other media than line printer
initial final
0] 0 : no extra output required
k j : output to unit number
k and/or j
39-40 2111) unit number for output of category
quantifications to other media than
line printer
initial final
0 0 : no extra output required
k J : output to unit number
k and/or j
41-45 15 measurement level of variables
0 : mixed levels which are specified
on card 8
1 only multiple nominal variables
2 only single nominal variables
3 only ordinal variables
4 only numerical variables
46-50 15 i/o options for initial configuration
0 : no output of initial configuration
1 : identical options as for final
solution
2 : options specified in first column of
the relevant parameters
51-55 15 number of categories per variable

0 : variables have different numbers of
categories specified on card 6
k : all variables have k categories

1) If column 46-50 (card 5) not equals 2, format I2 may be

used to specify the options for the final solution or
both the initial and the final solution.

P
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Column Format Information
56-60 2111) unit number for output of component

loadings to other media than line printer

initial final

0 0 : no extra output

k j : output to unit number

k and/or j

Card 6 number of categories

Only if the number of categories per variable=0 (column

51-55 of card 5)

maximum number of categories of each
variable in the datamatrix (16 variables

per card; if necessary continue on

Only if plot options = 2 (column 24/25 of card 5)

Column Format Information
1-80 1615
following card(s))
Card 7 : plot specifications
Column Format Information
1-80 8011

The columns specify variables in the same

order as in the data matrix (80 variables

per card; if necessary continue on fol-

lowing card(s))

0 : no extra plot options for this
variable

1 : plot of object scores, labeled with
category numbers of this variable

2 : like 1 and in addition the plot of cat-
egory quantifications of this variable

3 : plot of the category quantifications
of this variable

1) If column 46-50 (card 5) not equals 2, format 12 may be

used to specify the options for the final solution or
both the initial and the final solution.
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Card 8 : measurement level

Only if measurement level = 0 (column 41-45, card 5)
Column Format Information

1-80 1615 measurement level of each variable
(16 variables per card; if necessary
continue on following card(s)

: multiple nominal
1 : single nominal
2 : ordinal
3

numerical

Card 9, 10 and 11 : data format (always three cards)

Column Format Information

1-80  20A4 Fortran integer format

Card 12,....: data
Only if column 1-5 of card 5 equals 5.

Depending on the value of the number of problems (card 1,
column 1-5) more problems can be analysed in one job step.
For every extra problem all cards, except the first one,
have to be repeated.
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III. Numerical examples.

IIT.1. Guttman-Bell data.

IIT.1.1. Initial data.
These data are discussed in Guttman (1968) and Lingoes

(1968). The data were derived by Guttman from a sociologi-
cal text. They characterize seven different groups in terms
of five variables. The variables, with their categories are:
1. Intensity of interaction;

a. slight,
b. low,

C. moderate,
d. high.

2. Frequency of interaction;
a. slight,
b. non-recurring,
c. infrequent,
d. frequent.
3. Feeling of belonging;

a. none,
b. slight,
C. variable,
d. high.

4. Physical pbroximity;
a. distant,
b. close.
5. Formality of relationship;
a. no relationship,
b. formal,
c. informal.
The seven objects were classified as follows,
- Crowd a a a b
-~ Audience
- Public
- Mob
- Primary group
-~ Secundary group

T a0 oo o
O 0 @ o o o
O 0 o o o o
T o U U o o
oo aoaoe oo

- Modern community
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III.1.2. All variables single ordinal.
PRINCALS results with all variables single ordinal are
given in the Appendix. A joint plot of variables (arrows

based on component loadings) and objects is given in
figure 1II1.1.1. The figure does not need much comment.
Obviously, the first dimension 1is correlated with all
variables (but most with variables 1,2,5, less with vari-
ables 3,4), whereas the second dimension contrasts vari-
ables 3 and 4, and also contrasts objects Secondary Group
(distant physical proximity, high feeling of belonging)
and Crowd (close physical proximity, no feeling of belong-
ing).

Figure III.1l.1l: Guttman-Bell data, single ordinal solution,
object scores and component loadings
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II1.1.3. All variables single nominadt.

Results of PRINCALS with all variables single nominal are
not given; they differ little from the single ordinal sol-
ution. One typical result is that categories b and c of
variable 2 have reversed order (note that the apriori
order of the cateyories of variable 2 is not very clear).
The single solution in fact merges categories b and c¢
(they have the same quantification).

An interesting result is that the PRINCALS single nominal
solution is not the optimal one. The fact that PCA is used
as the initial configuration in this example leads to a
single nominal solution which corresponds to a "local
minimum". The best single nominal solution is given in
Gifi (198la), p.188. This best solution requires a much
more drastic re-ordering of categories, far away from the
PCA solution.
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ITII.2. Suicide questionnaire.

I11.2.1. Introduction.
In 1979/80 the Department of Clinical Psychology of the
University of Leiden collected responses to a gquestion-

naire about attitudes towards suicide (Speijer & Diekstra

1980; Diekstra & Kerkhof 1982). The 12 items of the ques-

tionnaire are described in table III.2.1.. In addition,

data were obtained with respect to background variables of
the 694 respondents - these variables are listed in table

I11I1.2.2..

For the following example only those respondents will be

analyzed who have less than 7 missing values on the 12

suicide. attitude items. This reduced the number of re-

spondents to 580. The example will cover:

(a) analysis of relations between the 12 items (section
IIT1.2.2.). This includes a two-dimensional and a three-
dimensional ordinal PRINCALS solution - both solutions
will be compared with the numerical solution.

(b) analysis of relations between the 12 items and the
background variables, with background variables active,
or passive (section III.2.3.).

IIT1.2.2. Analysis of responses on suicide items.

II1T1.2.2.1. Number of dimensions.

We first performed a two-dimensional PRINCALS solution
with all variables (m=12) ordinal. This resulted into
eigenvalues of .362 and .165. Since the last eigenvalue is
still larger than 1/m=.083, a three-dimensional ordinal
solution was also considered. Its last eigenvalue appeared
to be .098.

IT11.2.2.2. Two-dimensional ordinal solution.

Figure III.2.l1.gives a plot of the 580 object scores,
labeled by object number (this is not regular PRINCALS out-
put). Clearly this plot shows a peculiar shape: a sort of
blurred Vv with most objects along the left edge of the V.

st o - o
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Table III1.2.1. Circumstances.

Under what circumstances would you commit suicide?

(1 = certainly not, 2 = probably not, 3 = perhaps,
4 = probably, 5 = certainly.) If you:

are old and decrepit,

were to suffer a lot,

were left by your partner,

became seriously handicapped,

became unemployed,

got a disabled child,

had to be taken into a mental hospital,

.

could not have children,

O 0O N0 Uk W N

were to suffer from an incurable disease,

=
o

were to lose a loved one,
11. could not find a life-partner,

12. were responsible for someone's death.

Table 1I1.2.2.: The background variablesg, their categories

and frequencies.

1. SEX: 1l=male 291 (MALE)
2=female 285 (FEMALE)
missing 4

2. AGE: 1=15 - 24 Years old 86 (15-24Y)
2=25 - 29 " " 132 (25-29Y)
3=30 - 35 " " 132 (30-35Y)
4=36 - 47 " " 111 (36-47Y)
5=48 - 75 " " 113 (48-75Y)
missing 6

3. MARITAL STATUS: l=married 380 (MARRIED)

2=widowed ‘ 10 (WIDOWED)
3=single 113 (SINGLE)
4=divorced 28 (DIVORCED)

5=1iving together 40 (LIV.TOGE)

missing 9
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4. RELIGION: 1=no
2=catholic
3=calvinistic
4=protestant

missing

5. POLITICAL PREFERENCE:

294 (NO RELIG)
131 (CATHOLIC)

29 (CALVI

NIS)

99 (PROTEST.)

27

1=no 1

2=PVDA-socialists 1

3=CDA-christian democrats

4=VVD-conservative liberals

5=PPR~-radical socialists

6=CPN-communists

7=PSP-pacifist socialists

8=DS'70-conservative social democrats

9=D'66-liberals

missing

6. Broadcasting company:
1=no 180
2=KRO-catholic 37
3=VARA-socialist 48
4=AVRO-conservative 70
5=NCRV-protestant 34
6=VPRO~-progressive 49
7=EO-calvinistic 5
8=TROS-1light entertainment 78
9=V00-light entertainment for
young people 79

missing 0

53 (NO POL.)
48 (PVDA)

74 (CDA)

55 (VVD)
15 (PPR)

5 (CPN)
16 (PsSP)

4 (DS'70)
76 (D'66)
34

(NO-BROAD)
(KRO)
(VARA)
(AVRO)
(NCRV)
(VPRO)
(EO)
(TROS)

(VOO)

* In the Netherlands a broadcasting company 1s a non-

profit organisation with an idealistic aim of which

people can be a member.
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Figure I1I1I.2.1: two-dimensional ordinal solution, object
scores labeled by object number
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The second graph plots component loadings (figure III1.2.2.).
Squared lenghts of the arrows in this plot correspond to

row sum single fit, and therefore to "explained variance™"
per item. Projections on the horizontal axis correspond to
correlations between object scores on the first dimension
and each of the quantified items; projections on the ver-

tical axis correspond to correlations between quantified
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Figure I111.2.2: two~dimensional ordinal solution, com-

ponent loadings
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items and object scores on the second dimension.

The graph suggests a difference between items 1,2,4,9 on
the one hand, and items 5,6,8,11 on the other. The inter-
pretation is easy: the first set of items refers to physi-
cal circumstances under which suicide is considered; the
second set gives social indications.

Figure III.2.3. plots original responses (from 1 to 5, as
indicated in table III.2.1.) against their ordinal quan-
tifications. Because all items are treated as ordinal, all
plots show the quantification as an increasing function.
There is the interesting result that for items 5,6,8,11
(the '"social items") the quantification is dichotomous




Figure II1I1.2.3: two-dimensionai oidiuai solution, cat-

egories, original responses against their quantifications

(all responses different from 1 are quantified in the same
way), whereas for items 1,2,4,9 the quantification is more
gradual. It 1is interesting to see that this result is
related to the shape of the marginal distributions (table
I11.2.3.). This table shows that the "social" items are
characterized by a reversed-J shape distribution, whereas
the "physical" items have an almost symmetric distribution.
Respondents clearly react to the physical items in a dif-
ferent way than to the social items.
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Table III1.2.3: Marginal frequencies

CATEGORIES

MISSING 1 2 3 4 5

**‘k)\‘*************’k*******t“kk**‘:‘(*1::‘k********n’****************
VARIABLES

1. 1 239 156 147 37 9

2. 1 98 113 222 145 41

3. 7 345 163 54 9 2

4. 8 164 157 192 45 14

5. 14 520 42 2 1 1

6. 6 597 60 6 %) 1

7. 7 213 202 123 23 12

8. [ 528 36 9 7 1

9. 9 192 135 224 83 27

19, 5 346 169 50 1 o

11, 17 479 61 19 4 )

12. 18 136 182 164 23 7

Figure 1III1.2.4. further illustrates this point. This
figure shows single and multiple coordinates for physical
item 2. ' The single coordinate category points are on a
straight line (this line has the same direction as the
arrow for component loadings of variable 2). ‘The figure
shows that single and multiple coordinates are close to-
gether, for each of the five categories.

For each of the items 5,6,8 and 11, the figure shows the
single category coordinates for the categories 2,3,4,5 of
these variables - these categories have identical quanti-
fication. The figure also shows single category coordi-
nates for category 2 of item 3, and for categories 3,4,5
of this same item. The figure makes it clear that the
non-1l responses to items 5 or 8 (unemployment, or not
being able to have children, respectively) are the most
extreme in the "social direction", followed by respondents
with non-1 response to item 6 (disabled child), item 11
(not being able to find a partner), and item 3 (left by
partner). In addition, in this order the frequency of
these responses increases.

It is interesting to see that in figure I11.2.4. the non-1
category points for items 3,11,6,5 and 8 are on a curved
line. This agrees with the general pattern of objects in
figure III.2.1.. It means that objects high on the social
dimension are less extreme on the physical dimension than
objects moderate on the social dimension. It is good
strategy to check such a suggestion in the actual data. In




Figure III.2.4:
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fact, the 22 objects in category 2,3,4,5 both of item 5
and item 8 have average quantified score of .198 on item

2. The respondents in category 2,3,4,5 of item 5 have

average of .247; those in 2,3,4,5 of item 8 have average
of .294; those in 2,3,4,5 of item 6 have average .312;
those in 2,3,4,5 of item 11 have average .302; those in
3.4.5 of item 3 have average .360 on variable 2. These
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results confirm that respondents with extreme position in
the social direction have lower score in the physical
direction than respondents with intermediate score in the
social direction.

Possibly this rather unexpected result is related to age
differences, in the sense that respondents with extreme
score in the social direction are younger people (unem-
ployment, or not being able to have children, are real-
istic threats, whereas physical illness still is a some~
what remote and abstract threat), whereas respondents
with intermediate position in the social direction are
of medium age (both types of threats are realistic to
them). This hypothesis implies that elderly people in the
whole would be low in the social direction, but have large
variation in the physical direction. Such a hypothesis
finds some confirmation from the analysis of background
variables (section 10.3); it would be worth while, how-
ever, to make a direct check in the actual data. In fact,
the methodological point here is that a PRINCALS solution
might generate specific hypotheses: the PRINCALS solution
may invite the researcher to have a closer look at the
data with some specific idea what to look for.

II1.2.2.3 Comparison with numerical solution.

The two first dimensions of a numerical solution (PCA)
have eigenvalues .330 and .162, with sum (total fit) equal
to .492, showing that these two dimensions explain 49.2%
of the total variance. For ordinal PRINCALS the corre-
spbnding value 1is 52.7%, so that there is only a slight
gain obtained from mildering restrictions from numerical
to ordinal. In addition, component loadings for the nu-
merical solution are almost the same as for the ordinal
solution. Also, the plot of object scores looks very much
the same as in figure I111.2.1. and therefore is not repro-
duced here.

This result is not so surprising, because the ordinal quan-
tification differs from the numerical solution primarily
in the treatment of the social items (for which the re-




Figure III1.2.5: two-dimensional numerical solution, single

and multiple coordinates for items 2 and 11
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versed J-shape distibutions are dichotomized). This af-
fects mainly the categories with low frequencies. The ef-
fect on correlations therefore is rather limited.

For comparison with figure III.2.4. figure III.2.5. has
been drawn, showing single and multiple coordinates for
the categories of variables 2 and 11 in the numerical
solution. Clearly, for item 2 multiple category points

.
cat



remain close to their single category points (indicating
that even a single multiple treatment of item 2 would not
change much). For item 11, however, the multiple category
points for categories 2,3,4 are much closer together than
their single category points (the single ordinal solution
will merge them into one category).

I1I1.2.2.4. Three-dimensional solution.

As was explained in section I11I1.2.2.1., also a three-dimen-

Figure I11.2.6: three-dimensional ordinal solution, object

scores labeled by object number
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sional solution was explored. With all variables treated
as single ordinal, this three-dimensional solution appears
to degenerate. Figure II1I1.2.6. (the plot of object scores
in first and second dimension) shows what happens: the
second dimension is entirely dominated by the single re-
spondent numbered 375. Inspection of the data reveals that
this respondent is the only one with response categories 5
to items 6 and 8 (see marginal frequencies 1in table
I1I1.2.3.). In addition, there are no respondents at all
who use category 4 for these two items. In such a situa-
tion there are two possible options. The first one is to
delete the peculair respondent from the data set, and
repeat the analysis for the other respondents. Of course,
this does not mean that in a final report of the analysis
object 375 should be ignored as if this respondent never
existed. To the contrary: it should be reported that
PRINCALS spotted this unique respondent as a special "out-
lier", and that once this special respondent was recog-
nized the analysis is restriced to the remaining respon-
dents.

The other option is to re-code the extreme responses of
the unique respondent. For example it means that category
5 on items 6 and 8 is merged with category 3 (category 4
does not occur). In fact, the two-dimensional solution
already suggested this merging.

After re-coding object 375, the three dimensional solution
has eigenvalues .360, .164 and .098, showing that there is
about 10% gain in explained variance compared to the two-
dimensional solution. In addition, the first two dimensions
are roughly the same as those of the two-dimensional sol-
ution, for component loadings as well as for object scores.
The third dimension distinguishes between items 6 (dis-
abled child) and 8 (could not have children), both with
negative loadings of about -.40 on one end, and on the
other the items 3 (left by partner), 10 (lose loved one),
11 (no 1life-partner) and 12 (responsable for someone's
death) with positive loadings of about .40.
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IIT.2.3. Relations with background variables.

I1T1.2.3.1. Introduction.
In the present example the 12 items referring to attitude

towards suicide in given circumstances are the fore-ground

variables - in addition there are six background variables

listed in table III.2.2..

Relations between fore- and background variables can be

investigated in several ways.

(i) One might investigate for each of the fore-ground
variables whether there is a (significant) relation
with each of the background variables. The disadvantage
of this approach is that it ignores dependence between
variables. E.g., if two fore-ground variables are high-~
ly correlated (such as items 2 and 9 in the present
example), they will be found to be related to the same
background variables. Conversely, if two background
variables are highly interrelated, they will have simi-
lar relations with fore-ground variables.

(ii) Another approach is to treat background variables as
active. PRINCALS results then will depend on all vari-
ables jointly. For the present example such an analysis
will be illustrated in section III.2.3.2..

(iii) A third approach is to treat background variables
as passive - this will be illustrated in section
IT1.2.3.3..

(iv) A fourth possibility would be that the objectscores,

obtained from PRINCALS on the fore-ground variables, ;

are related to background variables by using canonical
analysis, with background variables treated as single i
nominal. Such an analysis respects the PRINCALS results
for the fore-ground variables (their quantification is 1
not changed), whereas background variables obtain 1
optimal quantification with respect to their relation
to fore-ground variables.

(v) A fifth possibility would be that fore-ground and |
background variables are treated as two sets of vari- {

ables, and are subjected to CANALS.
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This approach falls outside the scope of this User's
Guide (see van der Burg, CANALS User's Guide, 1983). In
fact this approach assumes that the two sets of vari-
ables are, so to speak, on equal footing; whereas ap-
proaches (iii) and (iv) above analyse fore-ground vari-
ables on their own right, and make the connection with
background variables afterwards, for fixed results of
the fore-ground variables.

II1.2.3.2. Background variables active.

Treating background variables as active implies that they
are given the same importance as fore-ground variables.
The risk is that the solution might become entirely domi-
nated4by relations between background variables (with low

component loadings for fore-ground variables). In addition,

Figure III1.2.7: background variables active, component
loadings of 12 items
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Figure III.2.8: background variables active, category coor-

dinates of the background variables (EO has been omitted)
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such relations between background variables might be quite
trivial (such as showing that widowed persons are older,

or that religious people more often prefer some denomina-

tional party). In the present example treatment of back-
ground variables as active (two dimensions, suicide items
treated as ordinal, background variables as multiple nomi-
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nal) does not change much with respect for results of the
12 items: we find the same distinction between "social"
and '"physical" items. This is shown in figure III.2.7.
(component loadings for the 12 items). Figure I1I11.2.8.
shows multiple category coordinates for the categories of
the background variables. In this figure the points for
category EO of background variable 6 has been omitted;
this point has coordinates (-1.685, 1.158), indicating
that respondents in this category have extreme position
both in the physical and the social direction. The, figure
further suggests that respondents low on the physical
direction are older, more often widowed, more often cal-
vinistic or Roman-Catholic, more often member of denomina-
tional broadcasting companies. In the opposite direction
we find respondents who are divorced, have left wing pol-
itical preference, and subscribe to "leftish" broadcasting
companies such as VARA or VPRO. In the social direction we
find respondents who are younger, more often female than
male, and with either no political preference, or prefer-
ence for CPN as contrasted with DS'70 (but note that both
last mentioned categories have extremely low marginal
frequencies).

Little is known about how political parties stand with
respect to suicide. Present results suggest that their
attitude towards physical motives for suicide is about the
same as their attitude towards abortion.

In the present example the active treatment of background
variables does not change much in results for fore-ground
variables, possibly because there are 12 items in the fore-
ground, and only 6 variables for background. But if there
are many more background variables than fore-ground vari-
ables, the risk indicated in the beginning of this section
becomes much larger.

Also, results in figure III.2.8. show the usual pattern
for multiple nominal variables: categories with small
marginal frequency tend to be farther away from the origin,
whereas categories with high marginal frequency tend to be

close to the origin.



Figure III.2.9: background variables passive, objects

labeled by age categories: 1 = young, 5 = old
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I11.2.3.3. Background variables passive.
with background variables passive PRINCALS results depend
only on the fore-ground variables (the 12 suicide items).

What PRINCALS may add for a passive variable is just a
plot of objects labeled by category numbers of a passive
variable.

Such a plot is shown in figure III.2.9., with objects
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labeled by age categories.

Figure III.2.10. confirms most of the results of figure
111.2.8.. figure I1I11.2.10 shows that re-
spondents high in the social direction are in the lower

In particular,

age groups,
for CPN.

mension is related to religious affiliation,

Figure I1I11.2.10:

more often single,

background variables

more often with preference

The figure also confirms that the physical di-

and corre-~

passive, category

coordinates of background variables (EO has been omitted)
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sponding political preference.

In conclusion, our advice is to treat background variables
as passive (unless one is prepared to enter into further
detailed analysis, as was suggested in III.2.3.1. iv or v).
It is true that PRINCALS output for passive variables is
rather limited; the user should use a SPSS program (or
other standard programs) if more detailed output is wanted.
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II1.3. Roskam's journal preference data.

ITT1.3.1.
Table III.3.1. gives preference rank orders of 39 psychol-
ogists for ten psychological journals (from Roskam, 1968).
Columns of the table refer to the following journals:
1: JEXP: Journal of experimental psychology,
JAPP: Journal of applied psychology,
JPSP: Journal of personality and social psychology,
: MUBR: Multivariate behavioral research,
JCLP: Journal of consulting psychology,
JEDP: Journal of educational psychology,
PMEK: Psychometrika,
: HURE: Human relations,
BULL: Psychological bulletin,
10: Hude: Human development.

W 00 3 O 0 b W N

In addition, table III.3.1. contains a final column that
identifies each psychologist with respect to the depart-
ment he or she is affiliated. The codes are:

social psychology (4),

educational and developmental psychology (7),

clinical psychology (4)

: mathematical psychology and psychological statistics (3),
experimental psychology (10),

cultural psychology and psychology of religion (3),
industrial psychology (6),

P oH o®™m=E Q0 n

: physiological and animal psychology (2),

Numbers between parentheses in the list above give the
number of psychologists from the department.

Table II11.3.1. gives preferences in the usual way, from 1
(most preferred journal) to 10 (least preferred journal).

I1I1.3.2.

A matrix of ranking such as given in table III.3.1. can be

analyzed in two ways.

(a) columns (journals) as variables, rows (psychologists)
as objects,

(b) rows (psychologists) as variables, columns (journals)
as objects.



Table I1I11.3.1: Preference rankvorders of 39 psychologists

for ten psychological journals

1: 7 4 1 811g 9 5 2 3 6 (S)
2: 7 6 2 9 23 81y 1 4 5 (5)
3: 1g 5 1 7 4 6 8 2 3 9 (35
A 6 5 3 7 4 8 9 2 118 (S
5: 6 3 518 4 2 9 7 g 1 (D)
6: g 7 4 9 2 51y 6 3 1 (D)
7 5 8 4 @ 6 21y 7 3 1 (D)
8: 6 7 4 9 5 318 8 2 1 (D)
9: 2 3 6 4 % 8 9 71 1 (D)
19 s 8 2 9 1 714 6 4 3 D)
11: 7 2 61y 5 1 9 8 4 3 (D)
12: g 7 2 9 1 619 &5 3 4 (C)
13: 19 7 1 9 4 6 8 2 3 5 (O)
14: 5 2 3 4 1 8 7 9 619 (C)
15: 6 5 2 7 11 9 8 4 3 (C)
16: 4 7 5 2 8 9 1 6 318 M
17: 4 7 5 3 9 8 1 6 218 (M
18: 5 4 7 3 9 & 11 2 6 (M
19: 1 5 6 719 9 3 &6 2 4 (B
20 1.5 8 7 9 3 610 2 4 (E)
21: 2 7 6 2 8 4 5 9 118 (B)
22: 1 3 8 6 9 7 418 2 5 (E)
23: 1 4 6 5 91 2 8 3 7 (E)
24 1 7 5 418 9 3 8 2 6 [(E)
25: 1 8 6 65 % 4 310 2 7 (E)
26 1 2 5 61 4 7 9 3 8 (E)
27: 1 58 6 4 8 7 2 9 318 (BE)
28: 4 6 & 1 718 3 8 2 9 (E)
29: g 7 1 2 91 6 3 4 5 (R)
35 7 4 1 2 91/ 8 6 3 5 (R)
31: g 8 2 7 1 419 5 6 3 (R}
32: 7 1 5 8 2 6 3 9 418 (T)
33: 2 3 7 81 9 1 6 4 5 (AT)
34: g 4 2 9 3 5 6 & 1 7 (A7)
35: 3 21 6 8 4 7 9 1 5 A7)
36: 6 1 3 9 4 7 1p 2 5 8 (1
37: 2 1 6 41 9 &5 7 3 &8 (T)
38: 2 3 6 5 7 8 4 9 118 (A
39: 2 6 7 231 8 4 9 1 &5 (A)

ad a. In the quantified data matrix variables have zero
mean. The solution with journals as variables therefore
implies that in the gquantified data matrix journals no
longer differ in average preference score. Note that in
the raw data matrix journals are quite different with re-
spect to average preference score: the journals 1,2,3 and
9 are on the average much more highly preferred than the
journals 5,6,7 and 8.

ad b. In the quantified data matrix with psychologists as
variables, columns will also have zero mean. Note, however,
that if for each psychologist the 10 ratings are replaced
by deviations from their mean, nothing much changes: all
entries of table I1II.3.1. should be subtracted with the
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value 5.5. This has no effect on the averages for journals:
they maintain the same differences as before 5.5 was sub-
tracted.

Also, in case (b), it makes no sense to try a solution
with all variables (psychologists) nominal. In fact, for
all variables, each category occurs only once - the cat-
egories are the rank numbers from 1 to 10. As a conse-
quence, no matter how categories are quantified, they al-
ways coincide with the object quantification of the one
object in the category , so that multiple fit, per vari-
able and per dimension, always equals the maximum of 1.00.
In case (a) a nominal solution (either single or multiple)
will not necessarily degenerate. However, one should real-
ize that case (a) implies that all psychologists who put
journal i on the j'th place in their rank-order, are
considered as if they are in the same category - an as-
sumption that might be tenable in some cases, but may be-
come too presumptuous in others. On the other hand, in
case (b) such an assumption is not made. In general,
therefore, it seems that with ranking data it will be
better to take the rankers as variables, and the things
ranked as objects. This approach is sometimes called the

"vectormodel" for analysis of preferential choice data.

III.3.3. Ordinal solution with psychologists as variables.

The solution in two dimensions, for the present data, has
eigenvalues .405 and .157. The plot of object scores (jour-
nals) is given in figure III.3.1., that of the component
loadings (psychologists), labeled by department, in figure
II1.3.2.. The plot of psychologists clearly shows, on the
first dimension, a contrast between experimental, animal,
and mathematical psychologists on the positive side,
versus social and developmental psychologists on the other.
The second dimension distinguishes between social versus
developmental psychologists. The psychologists from the
other departments are somewhat scattered in both dimen-
sions. The plot of the journals shows a similar division,
with the "hard" journals (1,2,4,7) at the left, the more



Figure 1I1.3.1: ordinal solution, object scores (journals)
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"developmental" journals (6,10) to the NE, and the more
"social" and "clinical" journals in the SE. Note that in
figure I111.3.1. the "hard" psychologists are on the right,
whereas in figure III.3.2 the "hard" journals are on the
left ~ the reason is that a high score reflects low pref-
erence, a low score reflects high preference.

The solution given here is somewhat different from that
given in Gifi (198la, p.191-192). This is probably due to
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Figure 111.3.2: ordinal solution, component loadings
(psychologists) labeled by department
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the fact that the solution in Gifi was not computed on the
basis of the standard PRINCALS program, and differences in
initial configuration may have had their effect on the
final solutions. Nevertheless, the sum of the eigenvalues
in both solutions is the same. It is quite probable with
data of this sort, that there are different quantifica-
tions with about the same total fit; the choice of initial
configuration then becomes decisive with respect to which
of such equivalent solutions will turn up.

B
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I11.3.4. Ordinal solution with journals as variables.

The other approach is to

take journals as variables, with
psychologists as objects. The two-dimensional solution now
has eigenvalues .460 and
111.3.3./4.. The

similar to figure III.3.2..

.258. Results are graphed in fig-
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Figure 111.3.4: ordinal solution, component loaalngs

(journals)
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somewhat different, as could be expected, because in the
present analysis differences for average preference for
journals - measured in terms of the quantified variables -
are eliminated.

IIT.3.5. PRINCALS on rank-orders.
Summarizing: the present section III.3. has been included
in this User's Guide in order to demonstrate that PRINCALS

0-64 0.7 0,89 1.;32
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can also handle rankorder data. The example, however, has
not been included to suggest that such an analysis should
be recommended in all cases. The user should also consider
application of one of the SMACOF programs (Heiser & de
Leeuw, How to use SMACOF-3, 1979).
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