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Preface

This report has four parts, each of which offers self-contained algorithm descriptions of the
optimal scaling programs ANACOR, HOMALS, PRINCALS, and OVERALS. I apologize to
those readers who find the overlap in explications and references boring. The descriptions are
valid for those versions of the programs that are supported by the Department of Data Theory at
the time of writing, which will also be available from the software company SPSS Inc. in the very

near future.

Leiden, February 1989 Albert Gifi



ANACOR

GENERAL

The ANACOR algorithm consists of three major parts: (1) a singular value decomposition (SVD),
(2) centering and rescaling of the data, and various rescalings of the results, and (3) variance
estimation by the delta method. Other names for SVD are "Eckart-Young decomposition”, after
Eckart and Young (1936) who introduced the technique in psychometrics, and "basic structure”
(Horst, 1963). The rescalings and centering, including their rationale, are well explained in
Benzécri (1969), Nishisato (1980), Gifi (1981), and Greenacre (1984). Those who are interested
in the general framework of matrix approximation and reduction of dimensionality with positive
definite row and column metrics are referred to Rao (1980). The delta method is a method that can
be used for the derivation of asymptotic distributions, and is particularly useful for the
approximation of the variance of complex statistics. There are many versions of the delta method,
differing in the assumptions made and in the strength of the approximation (Rao, 1973, ch.6;

Bishop et al,, 1975, ch. 14; Wolter, 1985, ch. 6).

(1) NOTATION

(a) k1 number of rows (row objects)

ko number of columns (column objects)

P number of dimensions.
(b) Data related quantities
fij  nonnegative data value for row i and column j; collected in table F

fiy marginal total of row i,i=1,...k;
£y marginal total of column j, j = 1,...kp
N grand total of F

(c) Scores and statistics

Tis score of row object i on dimension s



Cis score of column object j on dimension s

I total inertia.

(2) BASIC CALCULATIONS

One way to phrase the ANACOR objective (cf. Heiser, 1981) is to say that we wish to find row

scores {rig} and column scores {st} so that the function
o({rishi{cjs)) = Zizj f X (s - cje)?

is minimal, under the standardization restriction either that 2; f;. risTie = 05t or Ej f4j cjscjp = 0%,
where 6%t is Kronecker's delta, and t is an alternative index for dimensions. The trivial set of
scores ({1},{1}) is excluded.

The ANACOR algorithm can be subdivided into five steps, as explained below.

(i) Data scaling and centering
The first step is to form the auxiliary matrix Z with general element
zij = £/ (Vi NEy) - (VENE) /N
(ii) Singular value decomposition

Let the singular value decomposition of Z be denoted by
Z =KAL', with KK =1, L'L =1, and A diagonal.

This decomposition is calculated by a routine based on Golub and Reinsch (1971). It

involves Householder reduction to bidiagonal form and diagonalization by a QR procedure

with shifts. The routine requires an array with more rows than columns, so when kj < kp
the original table is transposed and the parameter transfer is permuted accordingly.

(iii) Adjustment to the row and column metric
The arrays of both the left-hand singular vectors and the right-hand singular vectors are
adjusted row-wise to form scores that are standardized in the row and in the column

marginal proportions, respectively:



Tis = kis / Vfu/N,
Cjs=1lis/ \/f+j/N.

This way both sets of scores satisfy the standardization restrictions simultaneously.

. (iv) Determination of variances and covariances
For the application of the delta method to the results of generalized eigenvalue methods
under multinomial sampling the reader is referred to Gifi (1981, chapter 12) and Israéls
(1987, Appendix B). It is shown there that N times the variance-covariance matrix of a
function ¢ of the observed cell proportions p = {p;; = f;/N} asymptotically reaches the

form

NCOV(o(p) —» 2w (9¢/apy;) (2¢/dpy)
- (ZiX; 35 00/9py;) (XX i d/dpyy)'

Here the quantities ;; are the cell probabilities of the multinomial distribution, and d¢/dp;;
are the partial derivatives of ¢ (which is either a generalized eigenvalue or a generalized
eigenvector) with respect to the observed cell proportion. Expressions for these partial
derivatives can also be found in the above-mentioned references.

' (v) Normalization of row and column scores
Depending on the normalization option chosen the scores are normalized, which implies
a compensatory rescaling of the coordinate axes of the row scores and the column scores.

The general formula for the weighted sum of squares that results from this rescaling is

row scores: 2 fiy T2 = NAI+®  column scores: Zj f,j Cjs2 = NA1-D .

The parameter q can be chosen freely, or it can be specified according to the following
designations: canonical: q = 0; row principal: q = 1; column principal: q=-1. Thereis a
fifth possibility, choosing the designation "principal", that does not fit into this scheme. It
implies that the weighted sum of squares of both sets of scores becomes equal to NA2.
The estimated variances and covariances are adjusted according to the type of normalization

chosen.



" (3) DIAGNOSTICS

After printing the data ANACOR optionally also prints a table of row profiles and column profiles,

which are {fjj /fj,} and {fjj/ f,;}, respectively.

(a) Singular values, maximum rank, and inertia
All singular values A defined in 2(ii) are printed up to a maximum of min[(k;-1),(kp-1)].
Small singular values and corresponding dimensions are suppressed when they don't
exceed the quantity (kjkp)!/2 10-7; in this case a warning message is issued. Dimension-

wise inertia and total inertia are given by the relationships

I= z"s A2 = z"s (Zi fiu1is2 I N),

where the right-hand part of this equality is only true if the normalization is row principal

(but for the other normalizations similar relationships are easily derived from 2(v)). The
quantities "proportion explained” are equal to inertia divided by total inertia: A2/ I,

(b) Scores and contributions
The next output is given first for rows, then for columns, and always preceeded by a
column of marginal proportions (f;,/N and f, /N, respectively). The table of scores is

printed in p dimensions. The contribution to the inertia of each dimension is given by

Tis = (4 / N) 1362 / A{1#0)
Ts = (fﬂ /N) cjsz/ )\-s(l-q),

where q, as before, denotes the parameter which controls the normalization. The

contribution of dimensions to the inertia of each point is given by, for s,t = 1,...p,

Ojs = TP / 2y 12014
Ojs = stz)\.s(l' ) /Zt Cjtz)\.t(l‘ )] .

(c) Variances and correlation matrix of singular values and scores
The computation of variances and covariances is explained in section 2(iv). Since the row

and column scores are linear functions of the singular vectors, an adjustment is necessary
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depending on the normalization option chosen. From these adjusted variances and
covariances the correlations are derived in the standard way.

(d) Permutations of the input table
For each dimension s let p(ils) be the permutation of the first k; integers that would sort the
sth column of (r;} in ascending order; similarly, let p(jls) be the permutation of the first ko

integers that would sort the sth column of {c;s) in ascending order. Then the permuted data

matrix is given by [fp(i|s),p(jls)}-
(4) PRECISION
All calculations are in single precision.

(5) REFERENCES

Benzécri, J.-P. (1969). Statistical analysis as a tool to make patterns emerge from data. In
Methodologies of Pattern Recognition (Watanabe, S., Ed.). New York: Academic Press.

Bishop, Y.M.,, Fienberg, S.E., and Holland, P.W. (1975) Discrete Multivariate Analysis.
Cambridge, Massachusetts: M.L.T. Press.

Eckart, C. and Young, G. (1936). The approximation of one matrix by another one of lower rank.
Psychometrika, 1, 211-218.

Gifi, A. (1981). Nonlinear Multivariate Analysis. Leiden: Department of Data Theory.

Golub, G.H., and Reinsch, C. (1971), Chapter .10 in Linear Algebra, Vol. II of Handbook for
Automatic Computation (Wilkinson, J.H. and C. Reinsch, Eds.). New York: Springer.
Greenacre, M.J. (1984). Theory and Applications of Correspondence Analysis. London:

Academic Press.

Heiser (1981). Unfolding Analysis of Proximity Data. Doctoral dissertation. Department of Data
Theory, University of Leiden.

Horst, P. (1963). Matrix Algebra for Social Scientists. New York: Holt, Rinehart and Winston.

Israéls, A. (1987). Eigenvalue Techniques for Qualitative Data. Leiden: DSWO Press.

Nishisato, S. (1980). Analysis of Categorical Data: Dual Scaling and its Applications. Toronto:
University of Toronto Press.

Rao, C.R. (1973). Linear Statistical Inference and its Applications. New York: Wiley.

Rao, C.R. (1980). Matrix approximations and reduction of dimensionality in multivariate
statistical analysis. In: Multivariate Analysis (Krishnaiah, P.R., Ed.) Vol 5. Amsterdam:
North-Holland.

Wolter, K.M. (1985). Introduction to Variance Estimation. Berlin: Springer Verlag.



HOMALS

GENERAL

The iterative HOMALS algorithm is a modernized version of Guttman (1941). The treatment of
missing values - to be described below - is based on setting weights in the loss function equal to
zero, and was first described in De Leeuw and Van Rijckevorsel (1980). Other possibilities do

exist, and can be accomplished by recodings of the data (Gifi, 1981; Meulman, 1982).

(1) NOTATION

(a) n number of cases (objects)
m number of variables
P number of dimensions.

(b) For variable j, j = 1,....m
h; n-vector with categorical observations
k; number of categories (distinct values) of variable j
G; indicator matrix for variable j, of order n x k;
the elements of Gj are defined as i = 1,...n; r = 1,...,kj)
g()ir = 1 when the ith object is in the rth category of variable
8(j)ir = 0 when the ith object is not in the rth category of variable j
; binary, diagonal n x n matrix, with diagonal elements defined as
mj); = 1 when the ith observation is within the range [1,k;]
myj);; = 0 when the ith observation is outside the range [1,k;]
D; diagonal matrix containing the univariate marginals, i.e. the column sums of G;.
(c) The quantification matrices are
X object scores, of order n x p
Y; category quantifications, of order k; x p

Y concatenated category quantification matrices, of order Zj k; x p.
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Note: the matrices Gy, M;, and D; are exclusively notational devices; they are stored in reduced

form, and the program fully profits from their sparseness by replacing matrix multiplications with

selective accumulation.

(2) OBJECTIVE FUNCTION OPTIMIZATION

The HOMALS objective is to find object scores X and a set of Y; (for j = 1,...m) so that the

function
o(X;Y) = I/m Z; r (X - GY)MX - G;Y))

is minimal, under the normalization restriction X'M«X = mn I, where the matrix M« = Ej M;, and
Lis the p x p identity matrix. The inclusion of M; in 6(X;Y) ensures that there is no influence of
data values outside the range [1.k], w\hich may be really missing or merely regarded as such; M«
contains the number of "active” data values for each object. The object scores are also centered,

i.e. they satisfy u'M«X = 0 with u denoting an n-vector with ones.

Optimization is achieved through the following iteration scheme:

@) Initialization

(i) Update object scores
(iii) Orthonormalization
@iv) Update category quantifications

v) Convergence test: repeat (ii) - (iv) or continue
(vi) Rotation

These steps are explained below.

(i) Initialization
The object scores X are initialized with random numbers, which are normalized so that
u'Mu«X = 0 and X'M«X = mn I, yielding X~. Then the first category quantifications are
obtained as Y;~ = Dy 1GyX~.

(ii) Update object scores

First the auxiliary score matrix Z is computed as



and centered with respect to M«:
7« {M* - (Msuu'Ms /u'M-u)} Z.

These two steps yield locally the best updates when there would be no orthogonality

constraints.
(ii1) Orthonormalization

The orthonormalization problem is to find an Mx-orthonormal X+ that is closest to Z~ in

the least squares sense. In HOMALS this is done by setting

X+ & ml2M.12 GRAM Mx-12 Z~),

which is equal to the genuine least squares estimate up to a rotation - see (vi). The notation
GRAMY() is used to denote the Gram-Schmidt transformation (Bjérk and Golub, 1973).
(iv) Update category quantifications

For j = 1,...,m the new category quantifications are computed as:
+=D-1G.'X~
Y+ =Dy iGX

(v) Convergence test

The difference between consecutive loss function values 6(X~;Y~) - o(X*;Y*) is compared
with the user specified convergence criterion € - a small positive number. Steps (ii) to (iv)
are repeated as long as the loss difference exceeds €.
(vi) Rotation

As remarked in (iii), during iteration the orientation of X and Y with respect to the
coordinate system is not necessarily correct; this also reflects the fact that o(X;Y) is
invariant under simultaneous rotations of X and Y. From theory it is known that solutions
in different dimensionality should be nested, i.e. the p-dimensional solution should be

equal to the first p columns of the (p+1)-dimensional solution. Nestedness is achieved by

computing the eigenvectors of the matrix 1/m Zj Y;'D;Y;. The corresponding eigenvalues
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are printed after the convergence message of the program. The calculation involves
tridiagonalization with Householder transformations followed by the implicit QL algorithm
(Wilkinson, 1965).

(3) DIAGNOSTICS

(a) Maximum rank (may be issued as a warning when exceeded)
The maximum rank pp,, indicates the maximum number of dimensions that can be

computed for any data set. In general we have:
Pmax = min {@ - 1), (Zjk;) - max (my, 1))},

where mjy is the number of variables with no missing values. Although the number of non-
trivial dimensions may be less than py,x when m = 2, HOMALS does allow dimen-
sionalities all the way up to ppax-

(b) Marginal frequencies
The frequencies table gives the univariate marginals and the number of missing values
(i.e., values that are regarded as out of range for the current analysis) values for each
variable. These are computed as the column sums of D; and the total sum of M;.

(c) The discrimination measures _
These are the dimensionwise variances of the quantified variables. For variable j and

dimension s we have:
Njs? = YGps Dy ps / 1

where y(j)s is the sth column of Yj, corresponding to the sth quantified variable G;yj)s.

(d) Eigenvalues
The computation of the eigenvalues that are reported after convergence is discussed in (vi).
When the HISTORY option is in effect the sum of the eigenvalues is reported during

iteration, under the heading "total fit". Due to the fact that the sum of the eigenvalues is

equal to the trace of the original matrix the sum can be computed as 1/m ijs T]jSZ. The
value of 6(X;Y) is equal to p - 1/m ijs Njs2-
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(4) PRECISION

All basic calculations are in double precision, while the data and some of the simple statistics are

kept in single word integer arrays.

(5) REFERENCES

Bjork, A. and Golub, G.H. (1973). Numerical methods for computing angles between linear
subspaces. Mathematics of Computation, 27, 579-594.

De Leeuw, J. and Van Rijckevorsel, J. (1980). HOMALS and PRINCALS - Some generalizations
of principal components analysis. In E. Diday et al. (Eds.), Data Analysis and Informatics.
Amsterdam: North-Holland.

Gifi, A. (1981). Non-linear Multivariate Analysis. Leiden: Department of Data Theory.

Guttman. L. (1941). The quantification of a class of attributes: A theory and method of scale
construction. In P. Horst et al. (Eds.), The Prediction of Personal Adjustment. New York:
Social Science Research Council.

Meulman, J. (1982). Homogeneity Analysis of Incomplete Data. Leiden: DSWO Press.

Wilkinson, J.H. (1965). The algebraic eigenvalue problem. Oxford: Clarendon Press.
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PRINCALS

GENERAL

The PRINCALS algorithm was first described in Van Rijckevorsel and De Leeuw (1979) and De
Leeuw and Van Rijckevorsel (1980); also see Gifi (1981, 1985). Characteristic features of
PRINCALS are the possibility to specify any of a number of measurement levels for each variable

separately, and the treatment of missing values by setting weights in the loss function equal to

ZETO.

(1) NOTATION

(a) n number of cases (objects)
m number of variables
P number of dimensions.

(b) For variable j, j = 1,....m

h; n-vector with categorical observations
kj number of categories (distinct values) of variable j

Gj indicator matrix for variable j, of order n x k;
the elements of Gj are defined as i = 1,...n;r = 1,...,kj)
gGir = 1 when the ith object is in the rth category of variable j
g(ir = 0 when the ith object is not in the rth category of variable j
M; binary, diagonal n x n matrix, with diagonal elements defined as
myj)i = 1 when the ith observation is within the range [1,k;]
my);j = 0 when the ith observation is outside the range [1,kj]
D; diagonal matrix containing the univariate marginals, i.e. the column sums of G;.
(c) The quantification matrices and parameter vectors are
X object scores, of order n x p

Y; multiple category quantifications, of order kjxp
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Yj single category quantifications, of order k;

3 variable weights (equal to component loadings), of order p
Q transformed data matrix of order n x m, with columns g; = G;y;
Y collection of multiple and single category quantifications.

Note: the matrices G, M;, and D; are exclusively notational devices; they are stored in reduced
form, and the program fully profits from their sparseness by replacing matrix multiplications with

selective accumulation.

(2) OBJECTIVE FUNCTION OPTIMIZATION

The PRINCALS objective is to find object scores X and a set of _Y_j (for j = 1,....m) - the

underlining indicates that they are possibly restricted - so that the function
o(X;Y) = /m Xj tr (X - GY)'MjX - GyY;)

is minimal, under the normalization restriction X'M«X = mn I, where the matrix M« = Zj M;, and
Tis the p x p identity matrix. The inclusion of M; in 6(X;Y) ensures that there is no influence of
data values outside the range [1,k;], which may be really missing or merely regarded as such; M«
contains the number of "active" data values for each object. The object scores are also centered,
i.e. they satisfy uM«X = 0 with u denoting an n-vector with ones.
The following measurement levels are distinguished in PRINCALS:

(a) multiple nominal: Xj = Yj / unrestricted

(b) single nominal: Y=y / rank-one restrictions only

(c) (single) ordinal: _Y_j = yjaj' and Vi€ Cj / rank-one and monotonicity restrictions

(d) (single) numerical: X_j = yjaj' and Vi€ Lj / rank-one and linearity restrictions.
For each variable these levels can be chosen independently. The general requirement in the
"single™ options is Y =ypj.ie Y is of rank one; for identification purposes yjis always
normalized so that y;'D;y; = n, which implies that the variance of the quantified variable q; =G;y;

is 1. In the ordinal case the additional restriction y; € C; means that y; must be located in the

convex cone of all kj-vectors with nondecreasing elements; in the numerical case the additional
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restriction y; € Lj means that y; must be located in the subspace of all kj-vectors that are a linear

transformation of the vector consisting of k; successive integers.

Optimization is achieved by executing the following iteration scheme twice:

@) Initialization I or II

(i) Update object scores
(iii) Orthonormalization
@iv) Update category quantifications

W) Convergence test: repeat (ii) - (iv) or continue

(vi) Rotation
The first time (for the initial configuration) initialization I is used and all single variables are
temporarily treated as single numerical, the second time (for the final configuration) initialization II

is used.Steps (i) to (vi) are explained below.

(i) Initialization
I. The object scores X are initialized with random numbers, which are normalized so that
u'MsX = 0 and X'M«X = mn [, yielding X~. For multiple variables the initial category
quantifications are obtained as Y;~ = Dj'lG jX~. For single variables the initial
category quantifications are defined as the first k; successive integers, normalized so that
uDjy;~ =0 and y;~Djy;~ = n, and the initial variable weights are calculated as the vector
aj~ = X~'Gjy;~, rescaled to unit length.
II. All relevant quzinﬁﬁes are copied from the results of the first cycle.

(ii) Update object scores |

First the auxiliary score matrix Z is computed as
Z e« Zj MJGJYJ"'
and centered with respect to Ms:

Z~ — {Mx - (MsuuMs /u'Msu)} Z.
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These two steps yield locally the best updates when there would be no orthogonality
constraints.

(iii) Orthonormalization

The orthonormalization problem is to find an M«-orthonormal X* that is closest to Z~ in

the least squares sense. In PRINCALS this is done by setting

X+ « ml2 M2 GRAM M«12 Z7),

which is equal to the genuine least squares estimate up to a rotation - see (vi). The notation
GRAMY() is used to denote the Gram-Schmidt transformation (Bjérk and Golub, 1973).
(iv) Update category quantifications; loop across variables j = 1,...,m:

(a) For multiple nominal variables the new category quantifications are computed as:
Y;* = Dy1GyX+.

(b) For single variables first an unconstrained update is computed in the same way:
Y= Dj'lGj'X+ .

Next one cycle of an ALS algorithm (De Leeuw et al., 1976) is executed for computing a
rank-one decomposition of Y;~, with restrictions on the left-hand vector. This cycle starts
from the previous single quantifications y;~ with

3t = Yy Dy
When the current variable is numerical we are ready; else we compute

X Y.~qt
yj =Yjajt.

Now, when the current variable is single nominal we can simply obtain y;* by normalizing
yj* in the way indicated below; else the variable must be ordinal, and we have to insert the

weighted monotonic regression process

y;* & WMON (y;"),
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which makes yj’" monotonically increasing. The weights used are the diagonal elements of
D;, and the subalgorithm used is the up-and-down-blocks minimum violators algorithm

(Kruskal, 1964; Barlow et al., 1972). The result is normalized:
it =nl2yi" (5" Dyyy )12

Finally, we set Y;* = y;*a;*'.
(v) Convergence test

The difference between consecutive values of the quantity

TFIT = 1/m ZS [ ZjGJ Y(i)s'DjY(i)s + g J aj'aj ],

where y(j)s denotes the sth column of Y; and where J is an index set recording which
variables are multiple, is compared with the user specified convergence criterion € - a small
positive number. It can be shown that TFIT = p - o(X;Y). Steps (ii) to (iv) are repeated as
long as the loss difference exceeds €.

(vi) Rotation
As remarked in (iii), during iteration the orientation of X and Y with respect to the
coordinate system is not necessarily correct; this also reflects the fact that 6(X;Y) is

invariant under simultaneous rotations of X and Y. From the theory of principal

components it is known that if all variables would be single the matrix A - which can be
formed by stacking the row vectors a;' - has the property that A'A is diagonal. Therefore

we may rotate so that the matrix
1/m A'A = I/m X a8 = 1/m X Y{D}Y;
becomes diagonal. The corresponding eigenvalues are printed after the convergence

message of the program. The calculation involves tridiagonalization with Householder

transformations followed by the implicit QL algorithm (Wilkinson, 1965).
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(3) DIAGNOSTICS

" (a) Maximum rank (may be issued as a warning when exceeded)
The maximum rank pp,y indicates the maximum number of dimensions that can be

computed for any data set. In general we have:
Pmax = min [(n - 1)» ((ZJE] kj + m2) - max (ml, max(O, l- m2)))}»

where m; is the number of multiple variables with no missing values, mj the number of
single variables, and J an index set recording which variables are multiple. Although the
number of non-trivial dimensions may be less than pp,,x when m = 2, PRINCALS does
allow dimensionalities all the way up to ppax. When due to empty categories in the actual
data the rank deteriorates below the specified dimensionality the programs stops.

(b) Marginal frequencies
The frequencies table gives the univariate marginals and the number of missing values
(i.e., values that are regarded as out of range for the current analysis) values for each
variable. These are computed as the column sums of D; and the total sum of M;.

(c) Fit and loss measures |
When the HISTORY option is in effect the following fit and loss measures are reported:
(i) Total fit. This is the quantity TFIT defined in (v).
(ii) Total loss. This is 0(X;Y), computed as the sum of multiple loss and single loss
defined below.

(iii) Multiple loss. This measure is computed as
TMLOSS =p - 1/m Z; tr Y{D;Y;.
(iv) Single loss. This measure is computed only when some of the variables are single:

SLOSS =1/m Zjé] tr Yj'Dij + ZjEJ aj'aj .

(d) Eigenvalues and correlations between optimally scaled variables
If there are no missing data the eigenvalues printed by PRINCALS are those of 1/m R(Q),

where R(Q) denotes the matrix of correlations between the optimally scaled variables in the
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columns of Q. For multiple variables g; is defined here as Gjyj);. When all variables are

single, or when p = 1, R(Q) itself is also printed. If there are missing data then the

eigenvalues are those of the matrix with elements qj'Mn.‘lql, which is not necessarily a

correlation matrix, although it is positive semi-definite.

(4) PRECISION

All basic calculations are in double precision, while the data and some of the simple statistics are

kept in single word integer arrays.

(5) REFERENCES

Barlow, R.E., Bartholomew, D.J., Bremner, J.M. and Brunk, H.D. (1972). Statistical Inference
under order restrictions. New York: Wiley.

Bjork, A. and Golub, G.H. (1973). Numerical methods for computing angles between linear
subspaces. Mathematics of Computation, 27, 579-594.

De Leeuw, J. and Van Rijckevorsel, J. (1980). HOMALS and PRINCALS - Some generalizations
of principal components analysis. In E. Diday et al. (Eds.), Data Analysis and Informatics.
Amsterdam: North-Holland.

- De Leeuw, J., Young, F.W.,, and Takane, Y. (1976). Additive structure in qualitative data: an
alternating least squares method with optimal scaling features. Psychometrika, 41, 471-503.

Gifi, A. (1981). Non-linear Multivariate Analysis. Leiden: Department of Data Theory.

Gifi, A. (1985). PRINCALS. Leiden: Department of Data Theory, Internal Report UG-85-02.

Kruskal, J.B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika,
29, 115-129.

Van Rijckevorsel, J. and De Leeuw, J. (1979). An Outline of PRINCALS. Leiden: Department of
Data Theory, Internal Report RB 002-'79. _

Wilkinson, J.H. (1965). The algebraic eigenvalue problem. Oxford: Clarendon Press.
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OVERALS
GENERAL

The OVERALS algorithm was first described in Gifi (1981) and Van der Burg, De Leeuw and
Verdegaal (1984); also see Verdegaal (1986), Van de Geer (1987), Van der Burg, De Leeuw and
Verdegaal (1988), and Van der Burg (1988). Characteristic features of OVERALS, conceived by
De Leeuw (1973), are the partitioning of the variables into K sets, and the possibility to specify
any of a number of measurement levels for each variable separately. Analogously to the situation
in multiple regression and canonical correlation analysis OVERALS focusses on the relationships
between sets; any particular variable only contributes to the results in as much as it provides

information that is independent of the other variables in the same set.

(1) NOTATION

(a) n number of cases (objects)
m total number of variables
p number of dimensions
K number of sets.
(c) For variable j, j = 1,....m
kj number of categories (di.;‘.tinct values) of variable j
G; indicator matrix for variable j, of order n x k;
the elements of Gj are defined as i = 1,....n; r = 1,...,kj)
g(ir = 1 when the ith object is in the rth category of variable j
g(ir = 0 when the ith object is not in the rth category of variable j
D; diagonal matrix containing the univariate marginals, i.e. the column sums of G;.
(b) For setk, k= 1,...K
J(k) index set of the variables that belong to set k (so that we may write j € J(k))

my  number of variables in set k (number of elements in J(k))



19

My  binary, diagonal n x n matrix, with diagonal elements defined as
Mg = 1 when the ith observation is within the range [l,kj] forallj e J(k)
my);i = 0 when the ith observation is outside [1,k;] for any j € J(k).
(d) The quantification matrices and parameter vectors are
X object scores, of order n x p
X; auxiliary matrix of order n x p, with corrected object scores when fitting variable j
i category quantifications for multiple variables, of order k; x p
category quantifications for single variables, of order k;
variable weights for single variables, of order p

Yj
3
Qx  quantified variables of the kth set, of order n x my, with columns q; = Gyy;
Y

collection of multiple and single category quantifications across variables and sets.

Note: the matrices G;, D, and My, are exclusively notational devices; they are stored in reduced

form, and the program fully profits from their sparseness by replacing matrix multiplications with

selective accumulation.

(2) OBJECTIVE FUNCTION OPTIMIZATION

The OVERALS objective is to find object scores X and a set of Xj (for j = 1,...,m) - the

underlining indicates that they maybe restricted in various ways - so that the function
o(X:Y) = VK Zy tr (X - Zj ¢ 509 GyYy IMy( X - X 509 GsY;)

is minimal, under the normalization restriction X'M«X = Kn I, where the matrix Mx = Zk My, and
Iis the p x p identity matrix. The inclusion of M in 6(X;Y) provides the following mechanism for
weighting the loss: whenever any of the data values for object i in set k falls outside its particular
range {1 ,kj], a circumstance which may indicate either genuine missing values or simulated
missing values for the sake of analysis, all other data values for object i in set k are disregarded
(listwise deletion per set). The diagonal of M« contains the number of "active” sets for each object.
The object scores are also centered, i.e. they satisfy uM«X = 0 with u denoting an n-vector with

ones.
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The following measurement levels are distinguished in OVERALS:

(a) multiple nominal: Xj = Yj / unrestricted

(b) single nominal: Y, = y;ay’ / rank-one and equality restrictions

(c) (single) ordinal: X_j =yjay and Vi€ Cj / rank-one and monotonicity restrictions

(d) (single) numerical: Xj = yjaj' and Yj€ Lj / rank-one and linearity restrictions.
For each variable these levels can be chosen independently. The general requirement in the
"single" options is Y; = y;a;, i.e. Y is of rank one; for identification purposes y; is always
normalizgd so that y;'D;y; = n, which implies that the variance of the quantified variable q; = Gjy;
is 1. In the ordinal case the additional restriction y; € C; means that y; must be located in the
convex cone of all k;-vectors with nondecreasing elements; in the numerical case the additional
restriction y; € Lj means that y; must be located in the subspace of all k;-vectors that are a linear

transformation of the vector consisting of k; successive integers (= normalized data vector).

Optimization is achieved by executing the following iteration scheme:

@) Initialization I or II

(i) Loop across sets and variables:

(iii) Eliminate contributions of other variables
@iv) Update category quantifications

w) Update object scores

(vi) Or;honormalimtion

(vii) Convergence test: repeat (ii) - (vi) or continue
(viil) Rotation

Steps (i) to (viii) are explained below.

(i) Initialization
I. Random. The object scores X are initialized with random numbers, which are

normalized so that u'M«X = 0 and X'M«X = Kn ], yielding X~. For multiple variables the

initial category quantifications are set equal to zero. For single variables the initial category
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quantifications ¥~ are defined as the first k; successive integers normalized in such a way
that w'D;y;~ = 0 and y;~'Djy;~ = n, and the initial variable weights are set equal to zero.
II. Nested. In this case the above iteration scheme is executed twice. In the first cycle
(initialized with initialization I) all single variables are temporarily treated as single
numerical, so that for the second, proper cycle all relevant quantities can be copied from
the results of the first one.

(ii) Loop across sets and variables
The next two steps are repeated for k = 1,....K and all j € J(k). During the updating of

variable j all parameters of the remaining variables are fixed at their current values.

(iii) Eliminate contributions of other variables

For quantifying variable j in set k we define the auxiliary matrix
Vi = Z1e 300 OXa- GY;

which accumulates the contributions of the other variables in set k; then in (X - V(k)j) the
contributions of the other variables are eliminated from the object scores. This device

enables us to write the loss 6(X;Y) as a function of X and Xj only:
o(X;Y;) = constant + 1/K tr ( (X - Vxy)) - GyY; IM((X - Vo - Gj ).

With fixed current values X~ the unconstrained minimum over Xj is attained for the matrix
Y™ = (G{MGj)1G{My (X~ - Vo)),

which forms the basis of the further computations. When switching to another variable / in

the same set the matrix V), is not computed from scratch, but updated:
V(k)l « V(k)j + Gij -Gy,

(iv) Update category quantifications

(a) For multiple nominal variables the new category quantifications are simply

Yt =Yy
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(b) For single variables one cycle of an ALS algorithm (De Leeuw et al., 1976) is executed
for computing the rank-one decomposition of Y;~, with restrictions on the left-hand vector.

This cycle starts from the previous category quantifications y;~ with
A+ =Y. ~D.vy.~
ajt = YJ Djyj .
When the current variable is numerical we are ready; else we compute
‘*

=Y.~a+t
yj =Yjat.

Now, when the current variable is single nominal we can simply obtain y;* by normalizing
yj’" in the way indicated below; else the variable must be ordinal, and we have to insert the

weighted monotonic regression process
yj* +«— WMON (yj*),

which makes yj" monotonically increasing. The weights used are the diagonal elements of
D;, and the subalgorithm used is the up-and-down-blocks minimum violators algorithm

(Kruskal, 1964; Barlow et al., 1972). The result is normalized:
yjt =012 y;* (v"Dyy;H12.

Finally, we set Y;* = yj*a;*.
(v) Update object scores

During the loop across sets the auxiliary score matrix W is accumulated as
W W+ M X ¢ ja GiYjt

and centered with respect to Ma:
X* = {I- (Msut' / M)} W.

From these two steps Ms-1X* would yield the locally best update when there would be no

orthogonality constraints.

(vi) Orthonormalization
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The orthonormalization problem is to find an M«-orthonormal X* that is closest to M« 1X*

in the M«-weighted least squares sense. In OVERALS this is done by setting
X+ ¢« m!/2 Mu'12 PROCRU (M«-1/2 X*),

The notation PROCRU( ) is used to denote the Procrustes orthonormalization process. If
the singular value decomposition of the input matrix M«~1/2 X* is denoted by KAL', with
KK =1, L'L =1, and A diagonal, then the output matrix KL' = M«1/2 X *LA-1L' satisfies
orthonormality in the unit metric (Cliff, 1966). The matrix X* defined above satisfies

orthonormality in the metric M«. The calculation of L and A is based on tridiagonalization

with Householder transformations followed by the implicit QL algorithm (Wilkinson,
1965).

(vii) Convergence test
The difference between consecutive values of tr A% is compared with the user specified
convergence criterion € - a small positive number. After convergence the badness-of-fit
value 6(X;Y) = p - tr A4 is also given. Steps (ii) to (vi) are repeated as long as the loss
difference exceeds €.

(viii) Rotation
The OVERALS loss function 6(X;Y) is invariant under simultaneous rotations of X and Y.
It can be shown that the solution is related to the principal axes of the average projection

operator
Qv = 1/K 23 MpQu(QeM Q) 1Q My, -

In order to achieve principal axes orientation, which is useful for purposes of interpretation
and comparison, it is sufficient to find a rotation matrix that makes the cross products of
the matrix M«-1/2X* diagonal - a matrix identical to the one used in the Procrustes
orthonormalization in step (vi). In the terminology of that section we rotate the matrices
X+, Y+, and the vectors 3 with the matrix L. The rotation matrix L is taken from the last

PROCRU operation as described in (vi).
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(3) DIAGNOSTICS

(a) Maximum rank
The maximum rank pp,, indicates the maximum number of dimensions that can be

computed for any data set (if exceeded, OVERALS adjusts the number of dimensions if

possible and issues a message). In general we have:

Pmax =min {(n-1),ry,rp} if K=2

Pmax =min {(n-1),Zyr, } if K>2,
where the quantities ry are defined as

T = Zuje JM(k) Kj + My - Myo.

Here my, is the number of multiple variables with no missing values in set k, my, the
number of single variables in set k, and JM(k) an index set recording which variables are
multiple in set k. Furthermore, OVERALS stops when either one of the following
conditions is not satisfied:
() Iy <ng-1
(ii) ng >2
(i) Lyr S (ng-1)- (pax-1).
Here ng denotes the number of nonmissing objects in set k, and np,,, the maximum across
all of ny.

(b) Marginal frequencies
The frequencies table gives the univariate marginals and the number of missing values
(i.e., values that are regarded as out of range for the current analysis) for each variable.
These are computed as the column sums of D; and the total sum of My, for j € J(k).

(c) Fit and loss measures
In the SUMMARY OF ANALYSIS loss and fit measures (i) and (ii) are reported:
@) Loss per set. This is K times o(X;Y), partitioned with respect to sets and

dimensions; the means per dimension are also given,



(ii)
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Eigenvalue. The values listed here are 1 minus the means per dimension defined
above, forming a partitioning of FIT, which is p - 6(X;Y) when convergence is

reached. These quantities are the eigenvalues of Q« defined in section (viii).

Other fir and loss measure reported are:

(iif)

@iv)

)

Multiple fit. This measure is computed as the diagonal of the matrix Y;D;Y;,
computed for all variables (rows) with dimensions given in the columns.

Single fit. This table gives the squared weights, computed only for variables that
are single. The sum reported is the sum of squares of the weights: a;'a;.

Single loss. Single loss is equal to multiple fit minus single fit for single variables
only. It is the loss incurred by the imposition of the rank-one and measurement

level restrictions.

(d) Component loadings and quantifications

After the SUMMARY OF ANALYSIS the weights are reported; next the quantities:

®

(i)

Component loadings for single variables. Loadings are the lengths of the
projections of the quantified (single) variables onto the object space: g;’X. When
there are no missing data the loadings are equal to the correlatioﬁs between the
quantified variables and the object scores (the principal components).

Component loadings for multiple variables. In this case the loadings are computed

for each of the multiple quantifications, i.e. each column of Y;. For dimension s we

have (n yG)sDjygys) 2 y(js G'X.

Next the object scores are reported. The following results are arranged by variable:

(iiia)
(iiib)
@)

)

Category quantifications (either Yj or y;).

Single coordinates. For single variables only: Y; = yja;'.

Multiple coordinates. These are Yj" defined in section 2(iii), i.e. the unconstrained
minimizers of the loss function, for multiple variables equal to the category
quantifications.

Category centroids. The centroids of all objects that share the same category:

Dj'lGj'X; note that they are not necessarily equal to the multiple coordinates.
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(vi)  Projected category centroids. For single variables only: y;b;'. These are the points
on a line in the direction given by the loadings b; that result from projection of the

category centroids with weights D;.

(4) PRECISION

All arrays are in single precision; the data and some of the simple statistics are kept in single word

integer arrays.

(5) REFERENCES

Barlow, R.E., Bartholomew, D.J., Bremner, J.M. and Brunk, H.D. (1972). Statistical Inference
under order restrictions. New York: Wiley.

Cliff, N. (1966). Orthogonal rotation to congruence. Psychometrika, 31, 33-42.

De Leeuw, J.(1973). Canonical Analysis of Categorical Data. Doctoral dissertation, University of
Leiden. Re-issued by DSWO Press (Leiden, 1984).

De Leeuw, J., Young, F.W., and Takane, Y. (1976). Additive structure in qualitative data: an
alternating least squares method with optimal scaling features. Psychometrika, 41, 471-503.

Gifi, A. (1981). Non-linear Multivariate Analysis. Leiden: Department of Data Theory.

Kruskal, J.B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika,
29, 115-129.

Van de Geer, J.P. (1987). Algebra and geometry of OVERALS. Internal Report RR-87-13,
Leiden, Department of Data Theory.

Van der Burg, E. (1988). Nonlinear canonical correlation and some related techniques. Leiden:
DSWO Press.

Van der Burg, E., De Leeuw, J. and Verdegaal, R. (1984). Non-linear canonical correlation
analysis. Internal Report RR-84-12, Leiden, Department of Data Theory.

Van der Burg, E., De Leeuw, J. and Verdegaal, R. (1988). Homogeneity analysis with k sets of
variables: an alternating least squares method with optimal scaling features. Psychometrika,
53, 177-197.

Verdegaal, R. (1986). OVERALS. Internal Report UG-86-01, Leiden, Department of Data
Theory.

Wilkinson, J.H. (1965). The algebraic eigenvalue problem. Oxford: Clarendon Press.



