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ABSTRACT
The graphical representation of the correlation matrix by means of different multivariate statistical methods
is reviewed, a comparison of the different procedures is presented with the use of an example dataset, and an
improved representation with better fit is proposed. Principal component analysis is widely used for making
pictures of correlation structure, though as shown a weighted alternating least squares approach that avoids
the fitting of the diagonal of the correlation matrix outperforms both principal component analysis and
principal factor analysis in approximating a correlation matrix. Weighted alternating least squares is a very
strong competitor for principal component analysis, in particular if the correlation matrix is the focus of the
study, because it improves the representation of the correlation matrix, often at the expense of only a minor
percentage of explained variance for the original data matrix, if the latter is mapped onto the correlation
biplot by regression. In this article, we propose to combine weighted alternating least squares with an
additive adjustment of the correlation matrix, and this is seen to lead to further improved approximation
of the correlation matrix.
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1. Introduction

The correlation matrix is of fundamental interest in many scien-
tific studies that involve multiple variables, and the visualization
of the correlation coefficient and the correlation matrix has been
the focus of several studies. Hills (1969) proposed Multidimen-
sional Scaling (MDS), using distances to approximate correla-
tions. Rodgers and Nicewander (1988) review multiple formulas
for the correlation coefficient, showing visualizations that use
slopes, angles and ellipses. Murdoch and Chow (1996) pro-
posed to visualize correlations using a table of elliptical glyphs.
Friendly (2002) proposed corrgrams that use color and shad-
ing of tabular displays to represent the entries of a correlation
matrix. Trosset (2005) developed the correlogram, which capi-
talizes on approximation of correlations by cosines. Obviously, a
correlation matrix can be visualized in multiple ways, using dif-
ferent geometric principles. In the statistical environment R (R
Core Team 2022), visualizations by means of vector diagrams or
biplots can be obtained using the R packagesFactoMineR (Lê,
Josse, and Husson 2008) and factoextra (Kassambara 2017;
Kassambara and Mundt 2020); corrgrams can be made with the
R packages corrgram (Wright 2021) and corrplot (Wei
and Simko 2021). The visualization of the correlation matrix
by means of a Principal Component Analysis (PCA) is facili-
tated by many statistical programs, among them the R packages
FactoMineR and factoextra. Figure 1 shows two popular
pictures of the correlation matrix of the myocardial infarction
or Heart attack data (Saporta 1990), a colored tabular display or
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corrgram (Figure 1(A)) and correlation circle (i.e., a correlation
biplot, Figure 1(B)) obtained by PCA.

Both plots reveal two groups of positively correlated vari-
ables ((CI, SI) and (Pulse, DBP, PA, VP, logPR)) with negative
correlations between the groups. In this article we focus on the
visualization of correlations by means of vector and scatter dia-
grams, refraining from colored tabular representations as in Fig-
ure 1(A). Despite the popularity of the correlation circle, from a
statistical point of view, PCA gives a suboptimal approximation
of the correlation matrix. PCA provides a least-squares low-rank
approximation to the data matrix (centred or standardized), and
the visualization of the correlation matrix can be seen as a by-
product of the analysis, but not its main goal. Principal Factor
Analysis (PFA) and correlograms (Trosset 2005) are multivari-
ate methods more specifically designed for approximation and
visualization of the correlation matrix. The main point of this
article is to emphasize and illustrate the improvements offered
by these and other methods and to stimulate their use over
just using standard PCA for representing correlations. Also, as
argued in Section 4, the correlation matrix requires goodness-
of-fit measures that are different from ones shown in Figure 1(B).

2. Materials and Methods

In this section we briefly summarize methods for the visual-
ization of the correlation matrix using a well-known multi-
variate dataset, the Heart attack data (Saporta 1990, pp. 452–
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2 J. GRAFFELMAN AND J. DE LEEUW

Figure 1. Displays of the correlation matrix of the Heart attack data obtained in R by using the corrplot, FactoMineR, and factoextra packages. A: Colored
tabular display or corrgram. B: Correlation circle or correlation biplot. See Section 2 for the abbreviations of the names of the variables.

454). The original data consists of 101 observations of patients
who suffered a heart attack, and for which seven variables are
registered: the Pulse, the Cardiac Index (CI), the Systolic Index
(SI), the Diastolic Blood Pressure (DBP), the Pulmonary Artery
Pressure (PA), the Ventricular Pressure (VP) and the pulmonary
resistance (logPR). Pulmonary resistance was log-transformed
in order to linearize its relationship with the other variables. We
successively address the representation of correlations by Princi-
pal Component Analysis (PCA), the Correlogram (CRG), Mul-
tidimensional Scaling (MDS), Principal Factor Analysis (PFA),
and Weighted Alternating Least Squares (WALS). An additive
adjustment to the correlation matrix is proposed to improve its
visualization by PCA and WALS.

2.1. Principal Component Analysis

Principal component analysis is probably the most widely used
method to display correlation structure by means of a vector
diagram as given in Figure 1(B). A correlation-based PCA can
be performed by the singular value decomposition of the stan-
dardized data matrix (Xs, scaled by 1/

√
n)

1√
n

Xs = UDsV′, (1)

where the left singular vectors are identical to the standardized
principal components, and the right singular vectors are eigen-
vectors of the sample correlation matrix R since

R = 1
n

Xs
′Xs = VD2

s V′ = VDλV′, (2)

where the eigenvalues of the correlation matrix are the squares
of the singular values. The vectors (arrows) in the correlation
circle are given by G = VDs, and represent the entries of
the eigenvectors scaled by the singular values. A well-known
property of this vector diagram is that cosines of angles θij

between vectors approximate correlations, as from GG′ = R it
follows that

cos(θij) = gi′gj

‖gi ‖‖gj ‖ ≈ rij, (3)

where gi is the ith row of G. This equation holds true exactly
in the full space when using all eigenvectors, but only approxi-
mately so if a subset of the first few (typically two) is used. Alter-
natively, one can use a PCA biplot (Gabriel 1971) to approximate
the correlation matrix. We define a biplot as a joint display of the
rows and the columns of a matrix that is optimal in a (weighted)
least squares sense. In biplots it is common practice to use scalar
products to approximate the entries of a data matrix of interest;
the entries of the matrix are approximated by the length of the
projection of one vector onto another, multiplied by the length
of the vector projected upon. The PCA biplot of the data matrix
(centred or standardized), with observations represented by dots
and variables by vectors, is most well-known, though PCA also
allows the approximation of the correlations by using scalar
products between vectors. In the case of a correlation matrix,
we have, using (2),

rij ≈ gi
′gj = cos(θij)‖gi ‖‖gj ‖ = ‖pi ‖‖gj ‖, (4)

where pi is the projection of gi onto gj. Biplots have been
developed for all classical multivariate methods, and several
textbooks describe biplot theory and provide many exam-
ples (Gower and Hand 1996; Yan and Kang 2003; Greenacre
2010; Gower, Gardner Lubbe, and Le Roux 2011). A goodness-
of-fit measure, based on least-squares, of the correlation matrix
is given by

tr(R̂′R̂)

tr(R′R)
= λ2

1 + λ2
2∑p

i=1 λ2
i

, (5)

where R̂ is the rank two approximation obtained from (2) by
using two eigenvectors only. We note that this measure is based
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on the squares of the eigenvalues, as detailed in the seminal paper
by Gabriel (1971), whereas the eigenvalues themselves are used
to calculate the goodness-of-fit of the centered data matrix (See
Section 3).

2.2. The Correlogram

The correlogram, proposed by Trosset (2005), explicitly opti-
mizes the approximation of correlations in a two or three dimen-
sional subspace by cosines, by minimizing the loss function

σ(θ) = ‖R − C(θ)‖2 with C(θ)jk = cos (θj − θk), (6)

where θ = (0, θ2, . . . , θp) is a vector of angles with respect to the
x axis, one for each variable, the first variable being represented
by the x axis itself. Equation (6) can be minimized numerically,
using R’s functionnlminb of the standard R packagestats (R
Core Team 2022). In a correlogram, vector length is not used in
the interpretation, and all variables are therefore represented by
vectors that emanate from the origin, and that have unit length,
falling all on a unit circle (see Figure 2(B)). A linearized version
of the correlogram was proposed by Graffelman (2013).

2.3. Multidimensional Scaling

Hills (1969) proposed to represent correlations by distances
using MDS, and suggested to transform correlations to distances
by using the transformation dij = 2(1 − rij), after which
they are used as input for classical metric multidimensional
scaling (Mardia, Kent, and Bibby 1979, chap. 14), also known as
principal coordinate analysis (PCO; Gower 1966). As a historical
note, in order to reproduce Hills’ result, one actually needs to
use the transformation dij = √

2(1 − rij), implying Hills’ article
referred to the squared distances. Importantly, with this trans-
formation the relationship between correlation and distance
is ultimately nonlinear. Using this distance, tightly positively
correlated variables will be close (dij ≈ 0), and tightly negatively
correlated variables will be remote (dij ≈ 2), whereas uncorre-
lated variables will appear at intermediate distance (dij ≈ √

2).
Obviously, the diagonal of ones of the correlation matrix will
always be perfectly fitted with this approach. In MDS, goodness-
of-fit is usually assessed by looking at the eigenvalues. However,
in this case the squared eigenvalues will be indicative of the
goodness-of-fit of the double-centered correlation matrix, not
of the original correlation matrix. In order to assess goodness-
of-fit in terms of the Root Mean Squared Error (RMSE), as we
will do for other methods, we will use the distances fitted by
MDS (in two dimensions), and backtransform these to obtain
fitted correlations in order to calculate the RMSE. A classical
metric MDS of correlations transformed to distances by Hills’
transformation is equivalent to the spectral decomposition of
the double-centered correlation matrix, which can be obtained
from the ordinary correlation matrix by centering columns and
rows with a centering matrix H = I − (1/p)11′. For the double-
centered correlation matrix Rdc, we have that

Rdc = HRH = (1/n)HXs
′XsH = Z′Z, (7)

with Z = (1/
√

n)XsH. It follows that Rdc is positive semidef-
inite, with rank no larger than p − 1, and consequently, a con-
figuration of points whose interpoint distances exactly represent
the correlation matrix in at most p – 1 dimensions can always be
found (Mardia, Kent, and Bibby 1979, sec. 14.2).

2.4. Principal Factor Analysis

The classical orthogonal factor model for a p-variate random
vector x, is given by x = Lf + e, where L is the matrix of
p × m factor loadings, f the vector with m latent factors, and e
a vector of errors. This model can be estimated in various ways.
Currently, factor models are mostly fitted using maximum likeli-
hood estimation, which also enables the comparison of different
factor models by likelihood ratio tests. PFA is an older iterative
algorithm for estimating the orthogonal factor model (Harman
1976; Johnson and Wichern 2002). It is based on the iterated
spectral decomposition of the reduced correlation matrix, which
is obtained by subtracting the specificities from the diagonal of
the correlation matrix. A classical factor loading plot is in fact a
biplot of the correlation matrix, since the factor model implicitly
decomposes the correlation matrix as

R = LL′ + � , (8)

where � is the diagonal matrix of specificities (variances not
accounted for by the common factors). A low-rank approxima-
tion to the correlation matrix, say of rank two, is obtained by R̂ =
LL′ after estimating the two-factor model. This approximation is
known to be better than the approximation offered by PCA, for
it avoids the fitting of diagonal of the covariance or correlation
matrix (Satorra and Neudecker 1998).

2.5. Weighted Alternating Least Squares

In general, a low-rank approximation for a rectangular matrix X
can be found by weighted alternating least squares, by minimiz-
ing the loss function

σ(A, B) =
n∑

i=1

p∑
j=1

wij(xij − ai
′bj)

2, (9)

where ai is the ith row of A, bj the jth row of B, W a matrix
of weights and where we seek the factorization X = AB′.
The unweighted case (wij = 1) is solved by the singular
value decomposition (Eckart and Young 1936). Keller (1962)
also addressed the unweighted case, and explicitly considered
the symmetric case. Bailey and Gower (1990) considered the
symmetric case with differential weighting of the diagonal. A
general-purpose algorithm for the weighted case based on iter-
ated weighted regressions (“criss-cross regressions”) was pro-
posed by Gabriel and Zamir (1979), Gabriel (1978) also pre-
sented an application in the context of the approximation of a
correlation matrix, where we have that X = R. Pietersz and
Groenen (2004) present a majorization algorithm for minimiz-
ing (9) for the correlation matrix. The fit of the diagonal of
the correlation matrix can be avoided by using a weight matrix
W = J − I, where J is a p × p matrix of ones, and I a p × p
identity matrix. This weighting gives weight 1 to all off-diagonal
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Figure 2. Visualizations of correlation structure, using the Heart attack data. A: PCA biplot of the correlation matrix; B: Trosset’s correlogram; C: MDS map, with negative
correlations indicated by dotted lines; D: Biplot obtained by PFA; E: Biplot obtained by WALS; F: Biplot obtained by WALS with scalar adjustment δ. The RMSE of the
approximation is given between parentheses in the title of each panel.

correlations and effectively turns off its diagonal by assigning it
zero weight. An efficient algorithm and R code for using WALS
with a symmetric matrix has been developed by De Leeuw
(2006). The WALS approach can outperform PFA, for not being
subject to the restrictions of the factor model. Communalities
in factor analysis cannot exceed 1, which implies that the rows
of the matrix of loadings L are vectors that are constrained to
be inside, or in the limit, on the unit circle. In practice, PFA
and WALS give the same RMSE if all variable vectors in PFA
fall inside the unit circle, but WALS achieves a lower RMSE
whenever a variable vector reaches the unit circle in PFA. This
typically happens when a variable, in terms of the factor model,
has a communality of one, or equivalently, zero specificity, a con-
dition known as a Heywood case in maximum likelihood factor
analysis (Heywood 1931; Johnson and Wichern 2002). In WALS,
the length of the variable vectors is unconstrained, and vectors
can obtain a length larger than one if that produces a better fit
to the correlation matrix. Indeed, if a factor analysis produces

a Heywood case, then this indicates that a representation of the
correlation matrix by WALS that outperforms PFA is possible.

2.6. Weighted Alternating Least Squares with an Additive
Adjustment

We propose a modification of the WALS procedure in order to
further improve the approximation of the correlation matrix.
By default, all vector diagrams (i.e., biplots) of the correlation
matrix have vectors that emanate from the origin, the latter
representing zero correlation for all variables; the fitted plane
is constrained to pass through the origin. This does generally
not provide the best fit to the correlation matrix. We propose
an additive adjustment to improve the fit of the correlation
matrix. By using an additive adjustment δ, the origin of the
plot no longer represents zero correlation but a certain level of
correlation. Consequently, the scalar products between vectors
represent the deviation from this level. The optimal adjustment
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Figure 3. Adjustment of the correlation matrix. All biplots have a calibrated correlation scale for SI. A: PCA biplot; B: PCA biplot using the δ adjustment; C: WALS biplot;
D: WALS biplot using the δ adjustment. The interpretation of the biplot origin is shown by its projection (in red) onto the calibrated scale. Black dots on biplot vectors
correspond to zero correlation for the corresponding variable. The interpretation of the black dot for SI is shown by its projection (in green) onto the calibrated scale. For
positive δ, biplot vectors are extended beyond the biplot origin toward their zero point. For negative δ, tails of biplot vectors are colored in red for the negative part of the
correlation scale.

(δ) and the corresponding factorization of the adjusted correla-
tion matrix can be found simultaneously by minimizing the loss
function

σ(A, B, δ) =
n∑

i=1

p∑
j=1

wij(xij − δ − ai
′bj)

2, (10)

where the notation is again kept general (for rectangular X; in
this article X = R and n = p). The adjustment amounts to
subtracting an optimal constant δ from all entries of the corre-
lation matrix, and factoring the so obtained adjusted correlation
matrix Ra = R−δJ = AB′. The minimization can be carried out
using the R program wAddPCA developed by de Leeuw (https://
jansweb.netlify.app/), and included in the Correlplot pack-
age for the purpose of this article. For a correlation matrix, the

minimization does, in general, yield A �= B, though unique
biplot vectors for each variable are easily obtained by a posterior
spectral decomposition: AB′ = VDV′ = GG′ with G = VD1/2.
The weighted least-squares approximation to R is then given by
δJ + GG′, and the WALS biplot is made by plotting the first two
columns of G; the origin of that plot represents correlation δ (See
Figure 3(D)).

We note that the additive adjustment is different from the
usual column (or row) centering operation, employed by many
multivariate methods like PCA, consisting of the subtraction of
column means (or row means) from each column (or respec-
tively, each row). It is also different from the double centering
operation, used in MDS, that subtracts row and column means,
but adds the overall mean. The adjusted correlation matrix

https://jansweb.netlify.app/
https://jansweb.netlify.app/
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Table 1. Correlation matrix of the Heart attack data.

CI SI VP Pulse logPR DBP PA

CI 1.000 0.887 −0.282 −0.112 −0.839 −0.361 −0.269
SI 0.887 1.000 −0.201 −0.503 −0.833 −0.483 −0.405
VP −0.282 −0.201 1.000 −0.085 0.318 0.285 0.244
Pulse −0.112 −0.503 −0.085 1.000 0.287 0.399 0.370
logPR −0.839 −0.833 0.318 0.287 1.000 0.761 0.716
DBP −0.361 −0.483 0.285 0.399 0.761 1.000 0.928
PA −0.269 −0.405 0.244 0.370 0.716 0.928 1.000

preserves the property of symmetry. The additive adjustment
can also be used in the unweighted approximation of the cor-
relation matrix by the iterated spectral decomposition of Ra,
calculating δ on each iteration as δ = tr((R − GG′)J)/p2, G
containing the scaled eigenvectors of Ra (analogously to (2))
in which case it can improve the fit to the correlation matrix
obtained by PCA (See Figure 3(B) for an example), though this
will not solve PCA’s problem of fitting the diagonal. It is thus
most appealing to use the additive adjustment in the weighted
approach.

3. Results

We present some examples of biplots of correlation matrices
obtained by PCA and by using WALS with the δ adjustment.
First, we successively apply all methods reviewed in the previous
section to the Heart attack data, whose correlation matrix is
given in Table 1, and compare them in terms of goodness-of-fit.
Second, we provide some additional illustrative examples, using
the Aircraft data (Gower and Hand 1996), the Swiss banknote
data (Weisberg 2005) and an artificial equicorrelation matrix.

3.1. Heart Attack Data

We use the root mean squared error (RMSE) of the off-
diagonal elements of the correlation matrix given by rmse =√

1
1
2 p(p−1)

∑
i<j

(
rij − r̂ij

)2 as a measure of fit for those methods

that do not aim to approximate the diagonal (PFA and WALS),
whereas we will include the diagonal for those methods that do
try to fit the diagonal (PCA, CRG, and MDS). The panel plot
in Figure 2 shows the results for PCA, CRG, MDS, PFA, WALS,
and WALS with scalar adjustment δ.

Figure 2(A) shows a PCA biplot of the correlation struc-
ture, where correlations are approximated by the scalar prod-
ucts between vectors. The RMSE when using scalar products
is 0.1808, whereas the RMSE obtained in PCA by cosines is
0.2945. Figure 2(B) shows the correlogram for the Heart attack
data, which capitalizes on the representation by cosines. This
representation decreases the RMSE to 0.2671 in comparison
with cosines in PCA. Figure 2(C) shows an MDS plot of the
correlation structure. To facilitate interpretation, intervariable
distances larger than

√
2 are marked with dotted lines to stress

that they represent negative correlations. Variables that are not
connected thus have a positive correlation. The plot indicates
that SI and CI are positively correlated, and that these variables
have negative correlations with all other variables. The plot also
shows that PA, DBP, and PR form a positively correlated group.

Figure 2(D) shows the factor loading plot obtained by PFA; this
achieves a considerably lower RMSE of 0.0755 for not fitting the
diagonal. Note that variable CI reaches the unit circle.

In Figure 2(E) we show the WALS biplot, which also avoids
fitting the diagonal, but is also freed from the constraints of the
factor model. Variable CI is now seen to slightly move out of
the unit circle. The RMSE of WALS is the lowest of all methods
in comparison with all previous methods; its RMSE is slightly
below the RMSE obtained by PFA (0.075519 vs. respectively
0.075523). Maximum likelihood factor analysis of the data pro-
duces a Heywood case, with precisely CI achieving a commu-
nality of 100%. When an additive adjustment is used, we obtain
δ = −0.2706. The corresponding biplot is shown in Figure 2(F).
With the adjustment, CI appears to stretch further, and the
obtuse angles between the pair CI and SI and the remaining
variables become smaller. The scalar adjustment further reduces
the RMSE of the approximation to 0.06622, providing the best
approximation to the correlation matrix.

The effect of the proposed adjustment is illustrated in more
detail in Figure 3, by using biplot axis calibration (Graffelman
and van Eeuwijk 2005), for both PCA and WALS. Calibration
of a biplot axis refers to the process of drawing tick marks with
numeric labels along (mostly oblique) biplot vectors. Calibration
can be used to illustrate the biplot interpretation rules, and to
highlight a particular variable of interest. The earliest example
of biplot calibration stems from Gabriel and Odoroff (1990);
formulas for carrying out the calibration have been developed
by several authors (Gower and Hand 1996; Graffelman and
van Eeuwijk 2005; Gower, Gardner Lubbe, and Le Roux 2011).
In the R environment, calibration can be carried out with the
package calibrate. In all panels of Figure 3, variable SI has
been calibrated in order to show the change in interpretation,
and the calibrated scale for SI is shifted toward the margin of
the plot (Graffelman 2011) to improve the visualization. Note
that in the analyses with the δ adjustment (panels B and D),
the origin of the scale for SI is no longer zero, but shifted by
δ, as is emphasized by the projection of the origin onto the
calibrated scale. The origin of the plot, where the biplot vectors
emanate from, is represented by the values δ = 0.14 and δ =
−0.27 for panels B and D, respectively. The sample correlations
of SI with all other variables and the approximations by the
different types of analysis are shown in Table 2; generally WALS
with the adjusted correlation matrix most closely approximates
the sample correlations, and has the lowest RMSE. The RMSE
of all variables are shown in Table 3; this shows that WALS
considerably lowers the RMSE in comparison with PCA and
that the representation of variable Pulse benefits from using the
adjustment.

Finally, we map observations onto the WALS correlation
biplot by regression, as shown in Figure 4(B), and compare the
results with those obtained by PCA in Figure 4(A). In PCA,
the goodness-of-fit of the standardized data matrix is calculated
from the eigenvalues and is 0.736; the goodness-of-fit of the
correlation matrix (including the diagonal), calculated from the
squared eigenvalues is 0.913. The correlation matrix thus has
better fit than the standardized data matrix (see Section 4). In
PCA, both principal components contribute to the goodness-
of-fit, and these contributions neatly add up. Figure 4(A) shows
the contributions of both axes to both the representation of
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Table 2. Sample correlations (r(SI,i)) of SI with all other variables, and estimates of
the sample correlations according to four biplots.

PCA WALS

r(SI,i) δ = 0 δ = 0.14 δ = 0 δ = −0.27
R Ra R Ra

Pulse −0.503 −0.264 −0.316 −0.271 −0.340
CI 0.887 0.818 0.905 0.894 0.889
SI 1.000 0.814 1.017 0.842 0.557
DBP −0.483 −0.609 −0.597 −0.514 −0.497
PA −0.405 −0.544 −0.546 −0.440 −0.430
VP −0.201 −0.416 −0.092 −0.252 −0.330
logPR −0.833 −0.867 −0.717 −0.848 −0.823
RMSE (SI) 0.160 0.116 0.099 0.086

NOTE: The bottom line gives the RMSE of SI for each method. For PCA, the RMSE
calculation includes the correlation of SI with itself, for WALS, it does not.

Table 3. RMSE of all variables for four methods.

PCA WALS

δ = 0 δ = 0.14 δ = 0 δ = −0.27
R Ra R Ra

Pulse 0.2469 0.1618 0.1345 0.0948
CI 0.0945 0.1078 0.0482 0.0530
SI 0.1598 0.1158 0.0988 0.0857
DBP 0.1212 0.1540 0.0242 0.0239
PA 0.1390 0.1828 0.0196 0.0218
VP 0.3103 0.1336 0.0877 0.0883
logPR 0.0564 0.1275 0.0329 0.0521
All 0.1808 0.1426 0.0755 0.0662

NOTE: The bottom line gives the overall RMSE for each method. For PCA, the RMSE
calculation includes the correlations of the variables with themselves whereas for
WALS these are excluded.

the standardized data matrix (0.560 + 0.176 = 0.736) and to
the correlation matrix (0.832 + 0.082 = 0.913). For WALS, the
goodness-of-fit of the standardized data matrix is 0.729, only
slightly below the maximum achieved by PCA. The scores of
the patients for the principal components in Figure 4(A) have
been scaled by multiplying by 1/

√
χ2

2 (0.95) = 0.409; this way
the unit circle drawn for the variables coincides exactly with the
95% contour of a multivariate normal density for the principal
components. PCA actually provides a double biplot, since the
projections of dots onto vectors approximate the (standardized)
data matrix, and the projections of vectors onto vectors approx-
imate the correlation matrix.

The WALS solution has different properties. First of all, there
is no nesting of axes, that is, the first dimension obtained of
a two-dimensional approximation is different from the single
dimension obtained in a one-dimensional solution. Moreover,
extracted axes are generally not uncorrelated. The goodness-
of-fit of the correlation matrix is best judged by the RMSE of
the off-diagonal correlations. In PCA the RMSE is 0.181 if the
diagonal is included. By using WALS, the RMSE is more than
halved, giving 0.0755 or 0.0662 if the adjustment is used. In this
case, one could say the WALS solution halves the RMSE of the
correlations at the expensive of sacrificing less than 1% of the
goodness-of-fit of the standardized data matrix in comparison
with PCA. WALS reduces the RMSE of all variables with respect
to PCA (see Table 3), VP, PA, DBP, and Pulse in particular. In
the WALS biplot, the vectors for Pulse and VP appear shorter,
reducing the exaggeration observed in PCA of the correlations of
these two variables with DBP and PA, and CI and SI, respectively.

The supplementary materials provide approximations of the
correlation matrix obtained by all methods discussed.

3.2. Aircraft Data

The Aircraft data consists of four variables, the specific power
(SPR), the flight range factor (RGF), the payload (PLF) and
sustained load factor (SLF), registered for 21 fighter aircrafts.
This data has been described and analyzed by Gower and Hand
(1996). We here focus on the correlations between these four
variables. Figure 5(A) shows the biplot of the correlation matrix
obtained by a PCA of the standardized data. The RMSE of the
representation of the correlation matrix (ones on the diago-
nal included) is 0.1362. If we apply WALS with the additive
adjustment, we obtain an estimate for δ that is almost zero
(3.3e-05), indicating that for this data, there is no benefit in
using the adjustment. The corresponding biplot is shown in
Figure 5(B), and has a RMSE that is very small (0.0003), meaning
the correlation structure is virtually perfectly represented in this
two dimensional display. All variable vectors fall within the unit
circle. For this case, the WALS representation is equivalent to the
factor loading plot obtained in PFA. The biplot vectors obtained
by WALS are shorter, which translates into smaller scalar prod-
ucts and therefore lower estimates of the correlation coefficients.
Because PCA tries to fit the diagonal of the correlation matrix,
it tends to stretch the biplot vectors toward unit length, and
thereby exaggerates the correlations between the variables.

3.3. Swiss Banknote Data

The Swiss banknote data consists of six measurements of differ-
ent size aspects of a banknote: the top margin (Top) and the bot-
tom margin (Bottom) surrounding the image, the diagonal of the
image on the banknote (Diagonal), the left and right height of the
banknote (Left and Right respectively) and the horizontal length
(Length) of the banknote. The original data consists of coun-
terfeits and non-counterfeits (a hundred of each), of which we
use the counterfeits only. Figure 6(A) shows the PCA correlation
circle, and Figure 6(B) the correlation circle obtained by WALS
with zero weights for the diagonal and using the δ adjustment.
By using WALS we obtain a considerable lower RMSE (0.0467),
and the origin of the WALS biplot represents a correlation of
δ = 0.07. To facilitate the interpretation of the WALS biplot,
zero correlation is marked on the biplot vector of each variable
with a black dot and the positive part of the correlation scale
is shown in blue. Variable Bottom appears stretched outside
the unit circle with respect to PCA; the dataset would have a
produced a Heywood case in ML factor analysis. PCA and WALS
biplots show two quite interpretable dimensions in the data: an
apparent banknote size dimension represented by the outer size
measurements Left, Right and Length, and an vertical centering
of the image dimension represented by the opposition between
Top and Bottom. Detailed RMSE statistics for each variable in
Table 4 show all variables improve their representation when the
WALS biplot is used. The largest improvement is due to avoiding
the fit of the diagonal of the correlation matrix. The PCA biplot
exaggerates the negative correlation between Top and Diagonal,
and also exaggerates the positive correlations of the group (Left,
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Figure 4. Comparison of the double biplots of PCA and WALS. A: PCA biplot, reporting goodness-of-fit of both data and correlation matrix on each axis using eigenvalues.
B: WALS biplot (without δ adjustment).

Figure 5. Biplots of the correlation matrix of the Aircraft data. A: PCA biplot B: WALS biplot. The RMSE of the approximation is given in the title of each panel.

Figure 6. Biplots of the Swiss banknote data. A: PCA biplot; B: WALS biplot. The RMSE of the approximation is given in the title of each panel.
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Figure 7. Biplots of a 10 × 10 equicorrelation matrix. A: PCA biplot; B: WALS biplot. Variable labels for the WALS biplot are not shown, as the 10 vectors coincide.

Table 4. RMSE of all variables for four methods.

PCA WALS

δ = 0 δ = 0.16 δ = 0 δ = 0.07
R Ra R Ra

Length 0.2725 0.2734 0.0380 0.0170
Left 0.1624 0.1172 0.0616 0.0440
Right 0.1661 0.1855 0.0608 0.0641
Bottom 0.0665 0.0986 0.0071 0.0109
Top 0.2084 0.1080 0.0355 0.0186
Diagonal 0.3352 0.2890 0.0826 0.0790
All 0.2192 0.1949 0.0533 0.0466

NOTE: The bottom line gives the overall RMSE for each method. For PCA, the RMSE
calculation includes the correlations of the variables with themselves.

Right and Length). In general, WALS reduces the estimates of the
correlations obtained by PCA toward zero. When a rank three
approximation to the correlation matrix is considered, the RMSE
obtained by PCA with three principal components decreases to
0.1447, whereas WALS obtains an almost perfect representation
of R with a RMSE below 0.0002.

3.4. The Equicorrelation Matrix

We analyze a 10 × 10 equicorrelation matrix with a correlation
of 0.5 between all pairs of variables. The PCA and WALS biplots
are shown in Figure 7. The RMSE of the approximation obtained
with two principal components is 0.1414 , whereas for WALS
a the approximation of the correlation matrix turns out to be
perfect (RMSE=0). Though we use two-dimensional plots in
Figure 7, we show a rank one approximation for WALS, which
already achieves a perfect approximation to R. Quite obviously,
the perfect rank one approximation is obtained by 10 coincident
biplot vectors with norm √rij = 0.7071. Note that in order to
achieve zero RMSE in PCA, all 10 dimensions would be needed.
Again, PCA is hampered by having to fit the diagonal of ones of
the correlation matrix.

4. Discussion

Principal component analysis is widely used for making graph-
ical representations, correlation circles, better termed biplots,

of a correlation matrix. However, as shown in this article, the
approximation to the correlation matrix offered by using the first
two dimensions extracted by PCA is suboptimal, and a weighted
alternating least squares algorithm that avoids the fitting of the
diagonal outperforms PCA and other approaches. It is common-
place to analyze and visualize a quantitative data matrix by PCA,
but it is questionable if that is really the best way to proceed.
Indeed, it is shown with an example that an approximation of
the correlation matrix by WALS and adding the observations
to the biplot of the correlation matrix posteriorly by regression
may be more interesting than PCA itself, because it capitalizes on
the display of the correlation structure, possibly at the expense
of only sacrificing a minor portion of explained variance of
the data matrix. The WALS algorithm is powerful and deserves
more attention; we suggest it as the default method for depicting
correlation structure. The various approaches detailed in the
article are all available in the R environment combined with the
Correlplot R package. The examples in the article show the
largest reduction in RMSE is obtained by turning off the diagonal
of the correlation matrix; an additional but smaller gain results
from using the proposed adjustment. The adjustment, when
different from zero, changes the interpretation rules of the biplot:
orthogonal vectors no longer correspond to correlation zero,
but to correlation δ. Consequently, biplot vectors with sharp
and obtuse angles no longer necessarily correspond to positive
and negative correlations. To facilitate interpretation, marking
the zero on the biplot vector is therefore recommended (See
Figure 6(B)). More practical data analysis, and eventually some
simulation studies, will provide more insight on the benefit of
the adjustment.

In a correlation-based PCA, the first eigenvalue is always
larger or at worst equal to 1, as the first component will have a
variance larger than that of one standardized variable. Trailing
eigenvalues are smaller than 1, because the eigenvalues sum
to p, the number of variables. Consequently, when eigenvalues
are squared, the relative contribution of the first dimension
increases. This implies that PCA generally does a better job at
representing the correlation matrix than it does at representing
the standardized data matrix, as is also the case for the Heart
attack data studied in this article, at least if the diagonal of
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ones is included. The “variables plot” of the FactoMineR and
factoextra R packages report, on its axes, the explained
variability of the standardized data matrix, not of the correlation
matrix (See Figure 1(B)), for which the squared eigenvalues
(Figure 4(A), second entry on each axis) are needed. Ultimately,
to report the goodness-of-fit (or error) of the approximation to
the correlation matrix, the off-diagonal RMSE is the preferred
measure for avoiding the unnecessary approximation of the
ones, and for being directly interpretable as the average amount
of error in the correlation scale.

Principal components are usually centered, therefore, have
zero mean, they are orthogonal and uncorrelated. The axes
extracted by the WALS algorithm generally do not have these
properties. A centering of the WALS solution is not always
convenient, because scalar products are not invariant under the
centering operation, and centering the solution can therefore
worsen the approximation. The scores obtained by WALS can,
if desired, be orthogonalized by using the singular value decom-
position; this has been used for most WALS biplots shown in this
article.

The elegance and power of the WALS algorithm resides in
its generality, as it encompasses most, if not all, types of analysis
considered in this article. PCA can be performed by applying the
WALS algorithm (9) to the column-centred data matrix. Hills
(1969) MDS of the transformed correlations can be carried out
by WALS of a double-centred correlation matrix.

With regard to the preprocessing of the correlation matrix
prior to analysis, obvious alternatives to using the proposed
δ adjustment are column (or row) centering or a double
centering operation prior to biplot construction. Column
(or row) centering alone is not recommended, because this
yields a nonsymmetric transformed correlation matrix. For
biplot construction, the singular value decomposition of this
matrix would be needed, leading to different biplot markers
for rows and for columns. Consequently, each variable would be
represented twice, by both a column and a row marker that differ
numerically, leading to a more dense plot that is less intuitive to
interpret. A double centering of the correlation matrix retains
symmetry, but due to the double centering operation the origin
no longer has a unique interpretation and represents a different
value for each scalar product. If double centering is applied,
then the representation of the correlations by distances, as
proposed by Hills (1969), is more convenient than the use
of scalar products. The proposed additive adjustment retains
symmetry and preserves the use of the scalar product for
interpretation.

Supplementary Materials

R-package Correlplot: R-package Correlplot (version 1.0.8) contains
code to calculate the different approximations to the correlation matrix
and to create the graphics shown in the article. The package contains
all datasets used in the article. R-package Correlplot has a vignette
containing a detailed example showing how to generate all graphical
representations of the correlation matrix (GNU zipped tar file).

Approximations: The file approximations.pdf contains the
approximations to the correlation matrix of the Heart attack data. Each
table in the supplement gives the sample correlations above the diagonal,
and the approximations obtained with a particular method on and/or
below the diagonal (PDF file).

Acknowledgments

Part of this work (Graffelman 2022) was presented at the 17th Conference
of the International Federation of Classification Societies (IFCS 2022) at
the "Fifty years of biplots" session organized by professor Niël le Roux
(Stellenbosch University) in Porto, Portugal. We thank two anonymous
reviewers whose comments on the manuscript have helped to improve it.

Disclosure Statement

The authors report there are no competing interests to declare.

Funding

This work was supported by the Spanish Ministry of Science and Innovation
and the European Regional Development Fund under grant PID2021-
125380OB-I00 (MCIN/AEI/FEDER); and the National Institutes of Health
under Grant GM075091.

ORCID

Jan Graffelman http://orcid.org/0000-0003-3900-0780
Jan de Leeuw http://orcid.org/0000-0003-1420-1797

References

Bailey, R., and Gower, J. (1990), “Approximating a Symmetric Matrix,”
Psychometrika, 55, 665–675. [3]

De Leeuw, J. (2006), “A Decomposition Method for Weighted Least Squares
Low-Rank Approximation of Symmetric Matrices,” Department of Statis-
tics, UCLA . Available at https://escholarship.org/uc/item/1wh197mh. [4]

Eckart, C., and Young, G. (1936), “The Approximation of One Matrix by
Another of Lower Rank,” Psychometrika, 1, 211–218. [3]

Friendly, M. (2002), “Corrgrams: Exploratory Displays for Correlation
Matrices,” The American Statistician, 56, 316–324. [1]

Gabriel, K. R. (1971), “The Biplot Graphic Display of Matrices with Appli-
cation to Principal Component Analysis,” Biometrika, 58, 453–467. [2,3]

(1978), “The Complex Correlational Biplot,” in Theory Construction
and Data Analysis in the Behavioral Sciences, eds. S. Shye, pp. 350–370,
San Francisco, CA: Jossey-Bass. [3]

Gabriel, K. R., and Odoroff, C. L. (1990), “Biplots in Biomedical Research,”
Statistics in Medicine, 9, 469–485. [6]

Gabriel, K., and Zamir, S. (1979), “Lower Rank Approximation of Matrices
by Least Squares with any Choice of Weights,” Technometrics, 21, 489–
498. [3]

Gower, J. C. (1966), “Some Distance Properties of Latent Root and Vector
Methods used in Multivariate Analysis,” Biometrika, 53, 325–338. [3]

Gower, J. C., Gardner Lubbe, E., and Le Roux, N. (2011), Understanding
Biplots, Chichester: Wiley. [2,6]

Gower, J. C., and Hand, D. J. (1996), Biplots, London: Chapman & Hall.
[2,6,7]

Graffelman, J. (2011), “A Universal Procedure for Biplot Calibration,” in New
Perspectives in Statistical Modeling and Data Analysis, Studies in Clas-
sification, Data Analysis and Knowledge organization, eds. S. Ingrassia,
R. Rocci, and M. Vichi, pp. 195–202, Berlin, Heidelberg: Springer-Verlag.
[6]

(2013), “Linear-Angle Correlation Plots: New Graphs for Revealing
Correlation Structure,” Journal of Computational and Graphical Statistics,
22, 92–106. [3]

(2022), “Fifty Years of Biplots: Some Remaining Enigmas and Chal-
lenges,” in 17th Conference of the International Federation of Classifica-
tion Societies (IFCS 2022). Classification and Data Science in the Digital
Age. Book of Abstracts, CLAD - Associação Portuguesa de Classificação
e Análise de Dados (ed.), p. 40. Available at https://ifcs2022.fep.up.pt [10]

Graffelman, J., and van Eeuwijk, F. A. (2005), “Calibration of Multivariate
Scatter Plots for Exploratory Analysis of Relations Within and between
Sets of Variables in Genomic Research,” Biometrical Journal, 47, 863–879.
[6]

http://orcid.org/0000-0003-3900-0780
http://orcid.org/0000-0003-1420-1797
https://escholarship.org/uc/item/1wh197mh
https://ifcs2022.fep.up.pt


THE AMERICAN STATISTICIAN 11

Greenacre, M. J. (2010), Biplots in Practice, Bilbao: BBVA Foundation. Rubes
Editorial. [2]

Harman, H. H. (1976), Modern Factor Analysis (3rd ed.), Chicago, IL:
University of Chicago Press. [3]

Heywood, H. (1931), “On Finite Sequence of Real Numbers,” Proceedings of
the Royal Society of London, Series A, 134, 486–501. [4]

Hills, M. (1969), “On Looking at Large Correlation Matrices,” Biometrika,
56, 249–253. [1,3,10]

Johnson, R. A., and Wichern, D. W. (2002), Applied Multivariate Statistical
Analysis (5th ed.), Hoboken, NJ: Prentice Hall. [3,4]

Kassambara, A. (2017), Practical Guide To Principal Component Methods in
R: PCA, M (CA), FAMD, MFA, HCPC, factoextra (Vol. 2), STHDA. [1]

Kassambara, A., and Mundt, F. (2020), factoextra: Extract and Visualize the
Results of Multivariate Data Analyses. R package version 1.0.7. https://
CRAN.R-project.org/package=factoextra [1]

Keller, J. (1962), “Factorization of Matrices by Least-Squares,” Biometrika,
49, 239–242. [3]

Lê, S., Josse, J., and Husson, F. (2008), “FactoMineR: A Package for Multi-
variate Analysis,” Journal of Statistical Software, 25, 1–18. [1]

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Analysis,
London: Academic Press. [3]

Murdoch, D., and Chow, E. (1996), “A Graphical Display of Large Correla-
tion Matrices,” The American Statistician, 50, 178–180. [1]

Pietersz, R., and Groenen, P. J. F. (2004), “Rank Reduction of Correlation
Matrices by Majorization,” Quantitative Finance, 4, 649–662. [3]

R Core Team (2022), R: A Language and Environment for Statistical Com-
puting, Vienna, Austria: R Foundation for Statistical Computing. https://
www.R-project.org/ [1,3]

Rodgers, J. L., and Nicewander, W. A. (1988), “Thirteen Ways to Look at the
Correlation Coefficient,” The American Statistician, 42, 59–66. [1]

Saporta, G. (1990), Probabilités analyse des données et statistique, Éditions
technip, Paris. [1]

Satorra, A., and Neudecker, H. (1998), “Least-Squares Approximation of
Off-Diagonal Elements of a Variance Matrix in the Context of Factor
Analysis,” Econometric Theory, 14, 156–157. [3]

Trosset, M. W. (2005), “Visualizing Correlation,” Journal of Computational
and Graphical Statistics, 14, 1–19. [1,3]

Wei, T., and Simko, V. (2021), R Package ’corrplot’: Visualization of a Corre-
lation Matrix. (Version 0.92). https://github.com/taiyun/corrplot [1]

Weisberg, S. (2005), Applied Linear Regression (3rd ed.), Hoboken, NJ:
Wiley. [6]

Wright, K. (2021), corrgram: Plot a Correlogram. R package version 1.14.
https://CRAN.R-project.org/package=corrgram [1]

Yan, W., and Kang, M. (2003), GGE Biplot Analysis: A Graphical Tool
for Breeders, Geneticists, and Agronomists, Boca Raton, FL: CRC Press.
[2]

https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=factoextra
https://www.R-project.org/
https://www.R-project.org/
https://github.com/taiyun/corrplot
https://CRAN.R-project.org/package=corrgram

	Abstract
	1.  Introduction
	2.  Materials and Methods
	2.1.  Principal Component Analysis
	2.2.  The Correlogram
	2.3.  Multidimensional Scaling
	2.4.  Principal Factor Analysis
	2.5.  Weighted Alternating Least Squares
	2.6.  Weighted Alternating Least Squares with an Additive Adjustment

	3.  Results
	3.1.  Heart Attack Data
	3.2.  Aircraft Data
	3.3.  Swiss Banknote Data
	3.4.  The Equicorrelation Matrix

	4.  Discussion
	Supplementary Materials
	Acknowledgments
	Disclosure Statement
	Funding
	ORCID
	References


