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Summary: We consider a general least squares loss function for multidimensional
scaling. Special cases of this loss function are stress, s-stress, and multiscale.
Several analytic results are presented. In particular, we present the gradient and
Hessian, and look at the differentiability at a local minimum. We also consider
fulldimensional scaling and indicate when a global minimum can be obtained.
Furthermore, we treat the problem of inverse multidimensional scaling, where the
aim is to find those dissimilarity matrices for which a fixed configuration is a
stationary point.

1. Introduction

Various loss functions exist for performing multidimensional scaling (MDS)
that all aim at representing n objects in a p dimensional space such that the
distances correspond in some optimal sense to fixed nonnegative dissimilarity
measures δij for every pair of objects i, j. Here, we consider the general least
squares loss function

σ(X,∆) =
n∑
i=1

n∑
j=1

wij (f(dij(X))− f(δij))
2 . (1)

It is convenient to express the squared distance between row i and row j
of the n × p coordinate matrix X as dij(X) = tr (X′AijX), where Aij =
(ei−ej)(ei−ej)

′ with ei equal to column i of the identity matrix. wij = wji
are fixed nonnegative weights with wii = 0. The function f(z) could be any
function from <1 to <1, although we shall assume that f(z) is twice contin-
uously differentiable over the domain (0,∞) and that the inverse function
f−1(z) exists such that f−1(f(z)) = f(f−1(z)) = z. We focus on three
particular examples of f(z), i.e., f(z) = z1/2 gives Kruskal’s (1964) raw
stress function, f(z) = z gives s-stress (Takane, Young, and de Leeuw
(1977)), and f(z) = log(z) gives Ramsay’s (1977) multiscale loss function.
For these cases several algorithms for minimizing (1) over X exist, notably
for s-stress the alscal algorithm (Takane et al. (1977)), an algorithm
of Glunt, Hayden, and Liu (1991), and the Newton–Raphson algorithm of
Browne (1987). For the stress case the kyst algorithm (Kruskal, Young,



and Seery (1977)) and smacof of de Leeuw and Heiser (1980) can be used.
An algorithm based on a probabilistic version of (1) with replications was
presented by Stoop, Heiser, and de Leeuw (1981).

In the next section we present the gradient and Hessian of the general least
squares MDS loss function (1) and investigate several useful properties.
Then we consider a special case, fulldimensional scaling, and indicate in
what situations a global minimum can be obtained. One of the problems of
the algorithms above is that they usually stop at a local minimum, which
need not be the global minimum. In order to get a better understanding
of the local minimum problem we also study its inverse problem; what dis-
similarity matrices ∆ have some given X as local minimum. This problem
of inverse scaling has been discussed first in de Leeuw and Groenen (1993)
using stress.

2. The gradient and Hessian

For a local minimum X∗ we need that, if it exists, the gradient equals zero
and the Hessian is nonnegative definite. Explicit formulae for gradient and
Hessian are given below.

A necessary condition for a stationary point X is that the gradient of σ(X,∆)
is equal to zero. This gradient, if it exists, can be written as

∂σ(X,∆)

∂xs
= 4

n∑
i=1

n∑
j=1

wij (f(dij(X))− f(δij)) f
′(dij(X))Aijxs, (2)

where f ′(z) denotes the first derivative of f at z and xs is column s of X.
Since Aij is double centered (has row and column sums equal to zero) we
may assume that X also has column sum zero. It is not difficult to see that
if X∗ has zero gradient, X∗T with T a rotation matrix (TT′ = I) is also a
stationary point since distances do not change under rotation of X. Note
that in general (2) may not be defined everywhere. Especially when zero
distances occur f(z) or f ′(z) may not be defined. For s-stress this problem
does not occur which was an important reason for proposing this MDS loss
function.

Of course, the set of configurations with zero gradient includes local minima,
local maxima and saddle points. If the gradient of σ(X,∆) at X is zero and
the Hessian H is positive definite, i.e., y′Hy > 0 for all y 6= 0, then we have
a strict local minimum at X. Moreover, a necessary condition for a local
minimum of σ is that the gradient vanishes and the Hessian H is positive
semidefinite, i.e., y′Hy ≥ 0 for all y. The Hessian is a p × p partitioned
block matrix with blocks

Hst = 4βst
n∑
i=1

n∑
j=1

wij(f(dij(X))− f(δij))f
′(dij(X))Aij +

8
n∑
i=1

n∑
j=1

wij(f(dij(X))− f(δij))f
′′(dij(X))Aijxsx

′
tAij +



8
n∑
i=1

n∑
j=1

wij(f
′(dij(X)))2Aijxsx

′
tAij (3)

of size n×n, where βst = 1 if s = t and βst = 0 otherwise. In Table 1 we give
the particular gradients and in Table 2 the Hessians of stress, s-stress
and multiscale.

Some properties of the Hessian can be derived. If H is defined, then H
has only real eigenvalues, since H is symmetric. Furthermore, H is rank
deficient, which implies that H has zero eigenvalues. If the n× p vector y
is an eigenvector corresponding to a zero eigenvalue, then

∑p
t=1 Hstyt = 0,

where y is partitioned in p n× 1 vectors yt. The Hessian H has p eigenval-
ues equal to zero corresponding to the p orthogonal eigenvectors for which
ys = 1 if s = t and ys = 0 if s 6= t. In addition, if X is a stationary point,
then H has at least p(p − 1)/2 additional eigenvalues equal to zero. Let
Y = (y1| . . . |yp) = XS with S skewsymmetric, i.e., S = −S′. Without
loss of generality we may assume that X is centered and of rank p. For any
s consider

∑p
t=1 Hstyt, which is equal to zero if y is the eigenvector corre-

sponding to a zero eigenvalue. The first term of (3) becomes zero, because
it is multiplied with linear combinations of columns of a stationary point X
and the gradient is zero at stationary points. Furthermore, multiplying the
last two terms of (3) by yt gives

8
p∑
t=1

n∑
i=1

n∑
j=1

wij
(
(f(dij(X))− f(δij))f

′′(dij(X)) + (f ′(dij(X)))2
)

Aijxsx
′
tAijyt =

8
n∑
i=1

n∑
j=1

wij
(
(f(dij(X))− f(δij)) f

′′(dij(X)) + (f ′(dij(X)))
2
)

Aijxs

p∑
t=1

x′tAijyt. (4)

The factor
∑p
t=1 x′tAijyt can be simplified into tr (X′AijXS), which is zero,

since it is the trace of the product of a symmetric and a skewsymmetric
matrix. Thus all the terms that constitute

∑p
t=1 Hstyt are equal to zero,

which proves that y is an eigenvector with zero eigenvalue. There are p(p−
1)/2 linearly independent skewsymmetric matrices S, which lead to linearly
independent eigenvectors of the above type. This shows the assertion.

If at a stationary point X the Hessian H has exactly p(p+ 1)/2 zero eigen-
values and all other eigenvalues are positive, then we call X a strict local
minimum.

3. Differentiability at a local minimum

To investigate differentiability of σ(X,∆) we set f(z) = g(z1/2), where we
assume the function g : [0,∞) → <1 to be differentiable with right sided



Table 1: The gradients of stress, s-stress and multiscale.

f(z) f ′(z) Name Gradient

z1/2 1
2
z−1/2 stress 2

∑n
i=1

∑n
j=1wij(1−

√
δijd

−1
ij (X))AijX

z 1 s-stress 4
∑n
i=1

∑n
j=1wij(dij(X)− δij)AijX

log(z) z−1 multiscale 4
∑n
i=1

∑n
j=1wij log(dij(X)δ−1

ij )d−1
ij (X)AijX

Table 2: The Hessians of stress, s-stress and multiscale.

f ′′(z) Name Hst

−1
4
z−3/2 stress 2βst

∑n
i=1

∑n
j=1wij(1− δ

1/2
ij d

−1/2
ij (X))Aij+

2
∑n
i=1

∑n
j=1wijδ

1/2
ij d

−3/2
ij (X)Aijxsx

′
tAij

0 s-stress 4βst
∑n
i=1

∑n
j=1wij(dij(X)− δij)Aij+

8
∑n
i=1

∑n
j=1wijAijxsx

′
tAij

−z−2 multi- 4βst
∑n
i=1

∑n
j=1wij log(dij(X)δ−1

ij ))d−1
ij (X)Aij+

scale 8
∑n
i=1

∑n
j=1wij(1− log(dij(X)δ−1

ij ))d−2
ij (X)Aijxsx

′
tAij



derivative g′(0) at z = 0. Then f(dij(X)) = g(d̃ij(X)) with

d̃ij(X) =

( p∑
s=1

(xis − xjs)2

)1/2

,

the distance between points i and j. It is quite natural to assume that g(0) =
0, i.e., zero distances and dissimilarities are not transformed to positive
values, and g′(z) ≥ 0 for all z ≥ 0, which means that the transformation g
of distances is monotone. In the limit, g′(0) =∞ is also allowed.

Obviously, if g′(0) = 0 then σ(X,∆) is differentiable for all X, no matter if
zero distances occur. Thus we investigate the case that g′(0) > 0, such that
nondifferentiable points may be encountered. Examples of corresponding
transformations are the utility functions g(z) = ln(z+1) and g(z) = 1−e−λz,
λ > 0, and furthermore the class of functions gλ(z) = zλ, 0 < λ ≤ 1.

g1(z) = z, e.g., yields stress via f(z) = z1/2. In this case de Leeuw
(1984) has shown that stress is differentiable at a local minimum, pro-
vided wijδij > 0 for all i 6= j. He calls such data usable. This result has
been extended to arbitrary Minkowski `p–distances by Groenen, Mathar and
Heiser (1992). We follow the basic idea to evaluate directional derivatives of
σ(X,∆). The directional derivative of σ at X in direction Y is defined by

∇σ(X; Y) = lim
ε↓0

σ(X + εY,∆)− σ(X,∆)

ε
,

and always exists if f is differentiable. The directional derivatives of the
compositions f ◦ dij = g ◦ d̃ij and f 2 ◦ dij = g2 ◦ d̃ij are given by

∇g ◦ d̃ij(X; Y) =

 g′(d̃ij(X))d̃ij(Y), if d̃ij(X) = 0
g′(d̃ij(X))

d̃ij(X)

∑p
s=1(xis − xjs)(yis − yjs), if d̃ij(X) 6= 0,

and

∇g2 ◦ d̃ij(X; Y) =


2g(d̃ij(X))g′(d̃ij(X))d̃ij(Y), if d̃ij(X) = 0
2g(d̃ij(X))g′(d̃ij(X))

∑p

s=1
(xis−xjs)(yis−yjs)

d̃ij(X)
, if d̃ij(X) 6= 0.

For X ∈ <n×p define P = {(i, j) | i 6= j, d̃ij(X) 6= 0} and correspondingly

Q = {(i, j) | i 6= j, d̃ij(X) = 0}. From the above representations we obtain
the directional derivative of σ as

∇σ(X; Y)

=
∑
i 6=j

wij∇g2 ◦ d̃ij(X; Y)− 2
∑
i 6=j

wijg(δ
1/2
ij )∇g ◦ d̃ij(X; Y)

=
∑

(i,j)∈P

2wijg
′(d̃ij(X))

∑p
s=1(xis − xjs)(yis − yjs)
d̃ij(X)

[g(d̃ij(X))− g(δ
1/2
ij )]

+
∑

(i,j)∈Q
2wijg

′(d̃ij(X))d̃ij(Y)[g(d̃ij(X))− g(δ
1/2
ij )]. (5)



¿From this it easily follows that for all X,Y

∇σ(X; Y) +∇σ(X;−Y) = 4
∑

(i,j)∈Q
wijg

′(d̃ij(X))d̃ij(Y)[g(d̃ij(X))− g(δ
1/2
ij )].

If X is a local minimum, the directional derivative in all directions is non-
negative. This yields∑

(i,j)∈Q
wijg

′(0)d̃ij(Y)[g(0)− g(δ
1/2
ij )] ≥ 0 (6)

for all Y. Now choose Y such that d̃ij(Y) > 0 for all i 6= j. Because of the
assumptions g′(0) > 0 and g(0) = 0, (6) can happen for usable data only if

Q = ∅. Thus, at a local minimum X it holds that d̃ij(X) > 0 for all i 6= j.

In summary, we have shown the following result: for usable data (wijδij >
0 for all i 6= j), for any differentiable transformation g with g(0) = 0,
g′(0) > 0, and f(z) = g(z1/2), the general least squares loss function σ(X,∆)
is differentiable at any local minimum X. If g′(0) = 0 then σ(X,∆) is
differentiable for all X. Thus for usable data stress and s-stress are
differentiable at a local minimum, but for multiscale this need not be so.

4. Fulldimensional scaling

For fulldimensional scaling, where p = n−1, every local minimum is a global
minimum for some choices of f . This can be seen by using

dij(X) = tr AijXX′ = tr AijC = cii + cjj − 2cij (7)

with the only requirement that C is in the cone of positive semi definite
double centered symmetric (DCS) matrices. and rewriting (1) as

σ(C,∆) =
n∑
i=1

n∑
j=1

(f 2(δij) + f 2(tr AijC)− 2f(tr AijC)f(δij)). (8)

Suppose that f(z) ≥ 0 for z ≥ 0 and that f(z) is concave. This makes the
third term of (8) a convex function in C. If additionally f 2(z) is convex,
then σ(C,∆) is a convex function in C. Thus, minimizing σ(C,∆) over C
is minimizing a convex function over a convex set. Then any local minimum
is a global minimum. It is easy to see that f(z) = z and f(z) = z1/2 satisfies
these requirements, so that fulldimensional scaling for stress and s-stress
results in a global minimum. In fact, f(z) = zλ with 1

2
≤ λ ≤ 1 satisfies the

requirement for a global minimum of fulldimensional scaling. Gaffke and
Mathar (1989) proposed a special algorithm for s-stress with p = n − 1
based on cyclic projection.



Critchley (1986) and Bailey and Gower (1990) prove that the rank of the
fulldimensional scaling solution of s-stress can never be larger than the
number of positive eigenvalues of −1

2
J∆J, where J is the centering operator

I − n−111′. Numerical experiments with fulldimensional scaling of stress
suggest that the same rank conditions also holds for stress, although no
proof for this conjecture exists yet. It may even be the case that this assertion
holds for all f for which σ(C,∆) is a convex function.

5. Inverse scaling

Instead of finding the configurations which are optimal for given dissimi-
larities, we now look for dissimilarities for which a given configuration is
optimal.

Let f(δij) = f(dij(X))− eij. Inserting this in (2) gives

−
n∑
i=1

n∑
j=1,j 6=i

wijeijf
′(dij(X))AijX. (9)

By substituting eij = tij/(wijf
′(dij(X))) for i 6= j and eii = 0 into (9)

we have that X is a stationary point if the gradient (2) equals zero, or,
equivalently, if

−
n∑
i=1

n∑
j=1,j 6=i

tijAijX = 0. (10)

Of course we assume that f ′(dij(X)) exists for all pairs ij with i 6= j. Fur-
thermore, we assume that X is centered, i.e., X′1 = 0.

We should realize that the Aij form a basis of the space of double centered
symmetric (DCS) matrices. Condition (10) simply translates into TX = 0
such that T is DCS. But any DCS matrix T satisfying TX = 0 and T1 = 0
can be expressed as KMK′ with M symmetric and (K| 1√

n
1) an orthonormal

basis of the nullspace of X′, i.e., K′X = 0 and K′1 = 0. If r is the rank
of X then the rank of K equals n− r − 1. Since M is symmetric there are
(n− r)(n− r− 1)/2 independent solutions. Note that the diagonal elements
tii are left free, so that they can be chosen such that T becomes DCS.

Since the dissimilarities are required to be nonnegative and f(δij) ∈ Ω with
Ω = range(f) must hold, certain restrictions on tij are necessary. In partic-
ular, it must be ensured that

f−1

(
f(dij(X))− tij

wijf ′(dij(X))

)
≥ 0 (11)

and that

f(dij(X))− tij
wijf ′(dij(X))

∈ Ω. (12)



For s-stress both requirements lead to tij ≤ wijdij(X). The second re-

quirement imposes restrictions on T for stress. Since δ
1/2
ij ≥ 0 we have

that d
1/2
ij (X) − tij/(2wijd

1/2
ij (X)) ≥ 0, or, equivalently, tij ≤ wij/2. For

multiscale no restriction is needed on tij, because log(δij) has Ω = <1 and

log(δij) = log
(
dij(X)e−tijw

−1
ij d−1

ij (X)
)

(13)

so that the domain of right logarithm is positive for every tij.

De Leeuw and Groenen (1993) proved for stress by making use of the in-
equality constraints that inverse scaling defines a closed, convex polyhedron
that contains the matrix of distances of X. For s-stress a similar result
can be proved, but not for multiscale.

Thus we can find a dissimilarity matrix for which the gradient is zero, given
a configuration X. That only means that X is a stationary point for any
of those dissimilarity matrices obtained by inverse scaling. But X can be a
local minimum, a local maximum or a saddle point. If we wish to find only
those dissimilarity matrices for which X is a strict local minimum, then we
have to impose the additional constraint that the Hessian is positive semi-
definite, where the only zero eigenvalues are those indicated in section 3. For
more details of the stress case, we refer to de Leeuw and Groenen (1993).
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