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Abstract

Several loss functions exist for doing multidimensional scaling. Two im-
portant ones are based on the sum of squared differences of distances and
dissimilarities (Stress) and on differences of squared distances and squared
dissimilarities (S-Stress). The Power-Stress loss function incorporates these
loss functions as it takes the sum of squared differences of distances and
dissimilarities to some power larger than one. In this paper, we propose a
majorization algorithm to minimize the Power-Stress loss function. In the
case of the power one (Stress), the new algorithm simplifies to the well-
known SMACOF algorithm for MDS. An important advantage of this new
algorithm is that as with any majorizing algorithm, a monotonically nonin-
creasing series of Power-Stress values is obtained that in almost all practical
situations ends up in a local minimum.
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1 Introduction
In this paper, we study the least-squares multidimensional scaling of power differ-
ences. This problem is formalized by minimizing the Power-Stress loss function,
that is,

σ(X) =
∑

i<j

wij(δ
λ
ij − dλ

ij(X))2. (1)
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over X. Here X is an n × p configuration, the wij’s are known nonnegative
weights, the δij’s are known dissimilarities, and dij(X) is the Euclidean distance
between rows i and j of X. Thus, we fit distances raised to some power λ ≥
1 to the dissimilarities raised to the same power. Larger choices of λ leads to
emphasizing the fit of larger dissimilarities and conversely the smaller λ to less
emphasis on fitting the larger dissimilarities. Note that the summation is done
only over the upper triangular elements of the dissimilarity matrix. The weights
wij are assumed to be irreducible, that is, there does not exist two or more subsets
of objects such that all weights between objects belonging to different subsets is
zero. This assumption avoids the situation where the MDS problem can be split
into two or more independent MDS problems.

We need some convenient matrix expressions for the squared Euclidean dis-
tance, that is,

d2
ij(X) = (ei − ej)

′XX′(ei − ej) = tr XAijX, (2)

with ei and ej columns i and j of the n× n identity matrix and Aij the matrix

Aij = (ei − ej)(ei − ej)
′. (3)

2 The Power-Stress Majorization Algorithm
Let us analyze (1) more closely and first expand this function as

σ(X) =
∑

i<j

wijδ
2λ
ij +

∑

i<j

wijd
2λ
ij (X)− 2

∑

i<j

wijδijd
λ
ij(X)

= ηδ + η2(X)− 2ρ(X). (4)

Using majorization, we develop an algorithm in steps. First, we majorize −ρ(X),
then η2(X), followed by combining the two results int a single algorithm.

2.1 Majorizing −ρ(X)

The term −ρ(X) consists of a weighted sum of −dλ
ij(X) with the weights wijδ

λ
ij

being nonnegative. The function dλ
ij(X) is a convex function in X and raising it to

the power λ ≥ 1 keeps in convex. Therefore, −dλ
ij(X) is a concave function in X.

Standard majorizing theory tells that any concave function can be majorized by a
linear function in X. The requirement is that at a support point Y, the majorizing
function should touch the original (concave) function, so that, the functions values
and first derivatives are equal provided the first derivative exists. Let

∇
(
−dλ

ij(X)
)

=
∂

(
−dλ

ij(X)
)

∂X
= −λdλ−2

ij (X)AijX
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be the first derivative of
(
−dλ

ij(X)
)
. Then, the following majorization inequality

holds,

−dλ
ij(X) ≤ −λdλ−2

ij (Y)tr X′AijY + (λ− 1)dλ
ij(Y) (5)

Consequently, multiplying the left and right hand side of (5) by wijδij and sum-
ming over all combinations of i, j gives

−ρ(X) = −∑

i<j

wijδ
λ
ijd

λ
ij(X)

≤ −λ
∑

i<j

wijδ
λ
ijd

λ−2
ij (Y)tr X′AijY + (λ− 1)

∑

i<j

wijδ
λ
ijd

λ
ij(Y)

= −λ
∑

i<j

wijδ
λ
ijd

λ−2
ij (Y)tr X′AijY + (λ− 1)ρ(Y) (6)

2.2 Majorizing η2(X)

The term η2(X) equals the weighted sum of elements wijd
2λ
ij (X). For the moment,

we focus on d2λ
ij (X) and assume that λ is a positive integer. To derive a majorizing

inequality, consider (2). There, the matrix Aij has largest eigenvalue 2, so that the
matrix Aij − 2I is negative semidefinite, implying that

tr X(Aij − 2I)X ≤ 0

d2
ij(X) = tr XAijX ≤ 2tr X′X.

By rewriting d2λ
ij (X) and using the previous inequality λ− 1 times, we obtain the

inequality

d2λ
ij (X) = d2

ij(X)d
2(λ−1)
ij (X)

= (ei − ej)
′XX′(ei − ej) [(ei − ej)

′XX′(ei − ej)]
λ−1

= tr X′AijX [X′AijX]
λ−1

≤ 2λ−1tr X′AijX [X′X]
λ−1

= gij(X). (7)

Note that both sides of the inequality above are twice differentiable for λ ≥ 1. Let
∇2d2λ

ij (X) = Hd be the Hessian of d2λ
ij (X) and∇2gij(X) = Hg be the Hessian of

gij(X). Then, the inequality d2λ
ij (X) ≤ gij(X) implies that Hg −Hd is positive

semidefinite. Let

hij(X,Y) = gij(X)− tr X′[∇gij(Y)−∇d2λ
ij (Y)]

+d2λ
ij (Y)− gij(Y) + tr Y′[∇gij(Y)−∇d2λ

ij (Y)], (8)
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where

∇gij(X) =
∂

(
2λ−1tr X′AijX [X′X]λ−1

)

∂X
= λ2λAijX(X′X)λ−1

and

∇
(
d2λ

ij (X)
)

=
∂

(
d2λ

ij (X)
)

∂X
= 2λd2λ−2

ij (X)AijX.

Then, hij(X,Y) is a majorizing function of d2λ
ij (Y). To prove so, we have to

establish that (a) d2λ
ij (X) ≤ hij(X,Y) for all X and (b) d2λ

ij (Y) ≤ hij(Y,Y) at
the supporting point Y. Requirement (b) is easily derived by substituting Y for X
in (8). To prove (a), we use the fact that the Hessian of hij(X,Y) is equal to Hg

as hij(X,Y) is the sum of gij(X) and linear or constant terms in X. Consider the
difference function hij(X,Y) − d2λ

ij (X). The Hessian of this difference function
equals Hg −Hd and is positive semidefinite (proven above) so that the difference
function is convex, which only has global minima. A minimum of the difference
function is found at Y because (1) hij(Y,Y) = d2λ

ij (Y) so that the difference
hij(Y,Y)−d2λ

ij (Y) = 0 and (2) if the gradient of the difference function vanishes
at Y. The gradient of hij(X,Y) equals

∇hij(X,Y) = ∇gij(X)− [∇gij(Y) +∇d2λ
ij (Y)]

which is equal to ∇d2λ
ij (Y) at X = Y, hence the gradient

∇[hij(Y,Y)−∇d2λ
ij (Y)] = ∇d2λ

ij (Y)−∇d2λ
ij (Y) = 0,

so it vanishes indeed. These steps prove that

d2λ
ij (X) ≤ hij(X,Y) (9)

for all X and Y, with equality if X = Y.
Multiplying d2λ

ij (X) by wij and summing over i, j gives

η2(X) = −∑

i<j

wijd
2λ
ij (X)

≤ ∑

i<j

wijhij(X)

=
∑

i<j

wij(gij(X)− tr X′[∇gij(Y)−∇d2λ
ij (Y)]

+d2λ
ij (Y)− gij(Y) + tr Y′[∇gij(Y)−∇d2λ

ij (Y)])

=
∑

i<j

wij(gij(X)− tr X′[∇gij(Y)−∇d2λ
ij (Y)]) + ch, (10)
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where ch contains the constant terms in X. The term
∑

i<j wijgij(X) can be con-
veniently expressed as

η2(X)
∑

i<j

wijgij(X) = 2λ−1tr X′VX(X′X)λ−1 (11)

with V =
∑

i<j wijAij .

2.3 Getting the Update
The update can be derived from the combined majorizing functions of η2(X) and
ρ(X).

σ(X) ≤ 2λ−1tr X′VX(X′X)λ−1 − tr X′

∑

i<j

wij[∇gij(Y)−∇d2λ
ij (Y)]




−2tr X′

λ

∑

i<j

wijδ
λ
ijd

λ−2
ij (Y)AijY


 + ch + 2(λ− 1)ρ(Y) + ηδ

= 2λ−1tr X′VX(X′X)λ−1 − λ2λtr X′VY(Y′Y)λ−1

−2λtr X′

∑

i<j

wij

[
δλ
ijd

λ−2
ij (Y)− d2λ−2

ij (Y)
]
Aij


 Y + c

= 2λ−1tr X′VX(X′X)λ−1 − λ2λtr X′VY(Y′Y)λ−1

−2λtr X′B(Y)Y + c, (12)

where B(Y) =
∑

i<j wij

[
δλ
ijd

λ−2
ij (Y)− d2λ−2

ij (Y)
]
Aij and c = ch + 2(λ −

1)ρ(Y) + ηδ. The majorizing function in (12) can also be expressed as

2λ−1tr X′VX(X′X)λ−1 − λ2λtr X′VY(Y′Y)λ−1 − 2λtr X′B(Y)Y + c, (13)

To minimize the majorizing function, its gradient must be equal to zero yielding
the following linear system:

λ2λVX(X′X)λ−1 − λ2λVY(Y′Y)λ−1 − 2λB(Y)Y = 0
VX(X′X)λ−1 = VY(Y′Y)λ−1 + 21−λB(Y)Y
VX(X′X)λ−1 = Z

with Z = VY(Y′Y)λ−1 + 21−λB(Y)Y. To solve (14) for X, consider the sin-
gular value decomposition of V−Z (with V− a generalized inverse of V, that is,
V−Z = PΦQ′ with P′P = Q′Q = I and Φ diagonal with nonnegative values.
Choosing the update

X+ = PΦ1/(2λ−1)Q′ (14)

satisfies the zero gradient condition (14) so that the majorizing function at the
right of (12) is minimized.
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2.4 Special Case of λ = 1: Stress

2.5 Special Case of λ = 2: S-Stress
Leeuw (1977)
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