Majorizing a Multivariate Polynomial over the Unit Sphere

Patrick J.F. Groenen* Jan de Leeuw ${ }^{\dagger}$

June 27, 2011

[^0]
Abstract

Abstract Minimizing a multivariate polynomial over the unit sphere can be quadratically majorized. By using Gerschgorin disks for the interval of the eigenvalues a reasonably sharp upper bound of the largest eigenvalue of the Hessian can be obtained.

Keywords: .

1 Introduction

Let $P(x)=\sum_{\alpha} p_{\alpha} x^{\alpha}$ be a multivariate polynomial with α are vectors of m nonnegative integers and

$$
\begin{equation*}
x^{\alpha}=\prod_{j=1}^{m} x_{j}^{\alpha_{j}} . \tag{1}
\end{equation*}
$$

The topic of this paper is to minimize $P(x)$ subject to $x^{\prime} x=1$. The gradient of $P(x)$ equals

$$
g(x)=\frac{\partial P(x)}{\partial x}=\sum_{\alpha} p_{\alpha} x^{\alpha} z \text { with } z_{j}=\left\{\begin{array}{ll}
\alpha_{j} / x_{j} & \text { if } \alpha_{j} \geq 1 \tag{2}\\
0 & \text { if } \alpha_{j}=0
\end{array} .\right.
$$

The Hessian H of $P(x)$ equals

$$
H(x)=\frac{\partial^{2} P(x)}{\partial x \partial x^{\prime}}=\sum_{\alpha} p_{\alpha} x^{\alpha}\left(z z^{\prime}-D\right)
$$

with D a diagonal matrix with elements $d_{j j}=$

$$
d_{j j}=\left\{\begin{array}{ll}
\alpha_{j} / x_{j}^{2} & \text { if } \alpha_{j} \geq 2 \\
0 & \text { if } \alpha_{j}<2
\end{array} .\right.
$$

Let H_{α} be the Hessian of $p_{\alpha} x^{\alpha}=p_{\alpha} \prod_{j=1}^{m} x_{j}^{\alpha_{j}}$. Then, the element $h_{i j \mid \alpha}$ equals

$$
h_{i j \mid \alpha}=\left\{\begin{array}{ll}
p_{\alpha} w_{i j \mid \alpha} \prod_{\ell=1}^{m} x_{\ell}^{\beta_{\ell}} & \text { if } j \neq i \\
p_{\alpha} w_{i i}{ }_{2 j} \prod_{\ell=1}^{m} x_{\ell}^{\gamma} & \text { if } j=i
\end{array} .\right.
$$

with

$$
\begin{aligned}
\beta_{\ell} & = \begin{cases}\alpha_{\ell} & \text { if } \ell \neq i \text { and } \ell \neq j \\
\alpha_{\ell}-1 & \text { if } \ell=i \text { and } \alpha_{\ell} \geq 1 \\
\alpha_{\ell}-1 & \text { if } \ell=j \text { and } \alpha_{\ell} \geq 1 \\
0 & \text { if } \alpha_{\ell}=0\end{cases} \\
\gamma_{\ell} & = \begin{cases}\alpha_{\ell} & \text { if } \ell \neq i \\
\alpha_{\ell}-2 & \text { if } \ell=i \text { and } \alpha_{\ell} \geq 2 \\
0 & \text { if } \ell=i \text { and } \alpha_{\ell} \leq 1\end{cases} \\
w_{i j \mid \alpha} & = \begin{cases}\alpha_{i} \alpha_{j} & \text { if } j \neq i \\
\alpha_{i}\left(\alpha_{i}-1\right) & \text { if } j=i\end{cases}
\end{aligned}
$$

Obviously, $H=\sum_{\alpha} H_{\alpha}$.
For quadratic majorization subject to the length constraint, we need an estimate of the largest eigenvalue of the Hessian H for any admissible x.

Note that H is square and symmetric so that its eigenvalues are real. The Gerschgorin disk theorem gives rowwise bounds on the size of the (unsorted) eigenvalues λ_{i}, that is,

$$
\begin{equation*}
h_{i i}-\sum_{j \neq i}\left|h_{i j}\right| \leq \lambda_{i} \leq h_{i i}+\sum_{j \neq i}\left|h_{i j}\right| . \tag{3}
\end{equation*}
$$

Therefore, we need to determine the largest value that each $\left|h_{i j}\right|$ can take knowing that $x^{\prime} x=1$. Note that $\left|h_{i j}\right|=\sum_{\alpha}\left|h_{i j \mid \alpha}\right|$.

We can use the weighted geometric-arithmetic mean inequality on each H_{α} that says

$$
\begin{aligned}
\left(\prod_{j=1}^{m}\left|x_{j}\right|^{\beta_{j}}\right)^{1 / m} & \leq \frac{\sum_{j=1}^{m} \beta_{j}\left|x_{j}\right|}{\sum_{j=1}^{m} \beta_{j}} \\
\prod_{j=1}^{m}\left|x_{j}\right|^{\beta_{j}} & \leq\left(\frac{\sum_{j=1}^{m} \beta_{j}\left|x_{j}\right|}{\sum_{j=1}^{m} \beta_{j}}\right)^{m}
\end{aligned}
$$

If all $\beta_{j}>0$ then the upper bound is attained whenever all x_{j} are equal. Obviously, the $x_{j} \mathrm{~S}$ with $\beta_{j}=0$ do not contribute and for attaining an upper bound should be chosen as zero. Let $m_{\text {pos }}$ be the number of nonzero β_{j}. Combining this with the restriction that the the sum of the $x_{j}^{2} \mathrm{~s}$ with nonzero β_{j} must equal 1 gives $x_{j}=m_{\text {pos }}^{-1 / 2}$ if $\beta_{j} \neq 0$ and $x_{j}=0$ if $\beta_{j}=0$. Consequently,

$$
\prod_{j=1}^{m}\left|x_{j}\right|^{\beta_{j}} \leq m_{\mathrm{pos}}^{-m_{\mathrm{pos}} / 2}
$$

As we are only interested in the largest absolute value of $h_{i j}$, we can remove the absolute value signs on the left hand side of the geometricarithmetic mean, that is,

$$
\prod_{j=1}^{m} x_{j}^{\beta_{j}} \leq m_{\mathrm{pos}}^{-m_{\mathrm{pos}} / 2}
$$

and multiplying the left hand side by $p_{\alpha} w_{i j \mid \alpha}$ and the right hand side by $\left|p_{\alpha}\right|$ retains the upper bound for the inequality as

$$
p_{\alpha} w_{i j \mid \alpha} \prod_{j=1}^{m} x_{j}^{\beta_{j}} \leq\left|p_{\alpha}\right| w_{i j \mid \alpha} m_{\mathrm{pos}}^{-m_{\mathrm{pos}} / 2}
$$

Note that each $h_{i j \mid \alpha}$ can be expressed as $p_{\alpha} w_{i j \mid \alpha} \prod_{j=1}^{m} x_{j}^{\beta_{j}}$, thus also for each $\left|h_{i j \mid \alpha}\right|$.

2 Example

Consider the polynomial

$$
\begin{equation*}
P\left(x_{1}, x_{2}\right)=3+4 x_{1}-5 x_{2}+x_{1}^{2} x_{2}^{2}-4 x_{1}^{3} \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
P\left(x_{1}, x_{2}\right)=3+4 x_{1}-5 x_{2}+x_{1}^{2} x_{2}^{2}-4 x_{1}^{3}=\sum_{k=1}^{5} P_{k}\left(x_{1}, x_{2}\right) \tag{5}
\end{equation*}
$$

with

$$
\begin{align*}
& P_{1}\left(x_{1}, x_{2}\right)=3 \tag{7}\\
& P_{2}\left(x_{1}, x_{2}\right)=4 x_{1} \tag{8}\\
& P_{3}\left(x_{1}, x_{2}\right)=-5 x_{2} \tag{9}\\
& P_{4}\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{2} \tag{10}\\
& P_{5}\left(x_{1}, x_{2}\right)=-4 x_{1}^{3} . \tag{11}
\end{align*}
$$

The gradients of $P_{k}\left(x_{1}, x_{2}\right)$ are

$$
\begin{align*}
& g_{1}\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \tag{12}\\
& g_{2}\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
4 \\
0
\end{array}\right] \tag{13}\\
& g_{3}\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
0 \\
-5
\end{array}\right] \tag{14}\\
& g_{4}\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2}
\end{array}\right] \tag{15}\\
& g_{5}\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
-12 x_{1}^{2} \\
0
\end{array}\right] \tag{16}
\end{align*}
$$

and Hessian are

$$
\begin{align*}
H_{1}\left(x_{1}, x_{2}\right)=H_{2}\left(x_{1}, x_{2}\right) & =H_{3}\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \tag{18}\\
H_{4}\left(x_{1}, x_{2}\right) & =\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \tag{19}\\
H_{5}\left(x_{1}, x_{2}\right) & =\left[\begin{array}{cc}
-24 x_{1} & 0 \\
0 & 0
\end{array}\right] \tag{20}
\end{align*}
$$

We can either use m or $m_{\text {pos }}$. Using m gives an upper bound of $2+\mid-$ $24 \mid 2^{-2 / 2}=14$ as the largest eigenvalue. Using $m_{\text {pos }}$ gives $2+|-24| 1^{-1 / 2}=26$.

[^0]: *Econometric Institute, Erasmus University Rotterdam, The Netherlands, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands (e-mail: groenen@few.eur.nl).
 ${ }^{\dagger}$ Statistics, UCLA (e-mail: deleeuw@stat.ucla.edu).

