Majorizing a Multivariate Polynomial over the
Unit Sphere

Patrick J.F. Groenen* Jan de Leeuw!

June 27, 2011

*Econometric Institute, Erasmus University Rotterdam, The Netherlands, P.O. Box
1738, 3000 DR Rotterdam, The Netherlands (e-mail: groenen@few.eur.nl).
fStatistics, UCLA (e-mail: deleeuw@stat.ucla.edu).

1



Abstract

Abstract

Minimizing a multivariate polynomial over the unit sphere can be
quadratically majorized. By using Gerschgorin disks for the inter-
val of the eigenvalues a reasonably sharp upper bound of the largest
eigenvalue of the Hessian can be obtained.
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1 Introduction

Let P(z) = Y, par® be a multivariate polynomial with « are vectors of m
nonnegative integers and

= ﬁx?ﬂ (1)

The topic of this paper is to minimize P(z) subject to 2’z = 1. The gradient
of P(x) equals

_ OP(x) a;/xr; fa; >1
g(x) = 5 ;pax z with z; = { 0 o, —0 (2)
The Hessian H of P(x) equals

82

07

with D a diagonal matrix with elements d;; =

g — aj/zi if oy > 2
W0 ifa; <2 °

Let H, be the Hessian of p,x® = pq . Then, the element h;j, equals

J 1 J
I v LA
Ve PaWij|a Hznzl xze if ] =1

with

Qy ifl#1and { #j
a—1 ifl=diand a,>1

Be = a—1 if¢=7jand ap>1
0 if ap = 0
(67 lfg#l

Yo = ap—2 iff=1iand ap > 2
0 if ¢ =4and ap <1

{aiaj if j #i

Wile ai(ay; —1) ifj=i

Obviously, H =3, H,.

For quadratic majorization subject to the length constraint, we need an
estimate of the largest eigenvalue of the Hessian H for any admissible .
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Note that H is square and symmetric so that its eigenvalues are real. The
Gerschgorin disk theorem gives rowwise bounds on the size of the (unsorted)
eigenvalues \;, that is,

hii — Y |hijl < N < hag + > . (3)
J#i J#i
Therefore, we need to determine the largest value that each |h;;| can take
knowing that 2’z = 1. Note that |h;;| = >, |hijlal-
We can use the weighted geometric-arithmetic mean inequality on each
H, that says

Ty Bl
;nzl ﬁj

ﬁ|$-lﬁj < <Z§nlﬁjlxﬂ'|>m
Jj=1 ! B ;n:lﬁj

If all 3; > 0 then the upper bound is attained whenever all z; are equal.
Obviously, the ;s with 8; = 0 do not contribute and for attaining an upper
bound should be chosen as zero. Let mpes be the number of nonzero ;.
Combining this with the restriction that the the sum of the x?s with nonzero
B; must equal 1 gives 7; = m71/2if 3; # 0 and 2; = 0if 3; = 0. Consequently,

pos

o
s
&
=
N——
B
IN

m
el < mpzee

pos
Jj=1

As we are only interested in the largest absolute value of h;;, we can
remove the absolute value signs on the left hand side of the geometric-
arithmetic mean, that is,

m /8

J *mpos/z
IIxj < Mpos .
j=1

and multiplying the left hand side by paw;jo and the right hand side by |p,|
retains the upper bound for the inequality as

m
ﬁ‘ - os
PaWij|a ij] < |pa|wij|o¢mp(;:p /2'
j=1
Note that each h;;, can be expressed as pow;jja H;»n:l xfj, thus also for each

|ijlal -



2 Example

Consider the polynomial

P(x1,79) = 3+ 4ay — bag + 2575 — 427

5
P(z1,22) = 3+4ay — bry+ aizy — 42} = Py, 22)

so that

with
Py (xq, 29
P2(331,332
P3(I1,$2
P4(9617I2
P5(331,332

The gradients of Py(x1,zs) are

g1(@1, 22)
g2(x1, w2)
g3(1, w2)
ga(z1, 72)
gs(x1, 72)
and Hessian are

Hi (21, 29) = Hy(w1, 72)

Hy(z1, 2)

H5($1, 1‘2)

41’1

—51132
2. .2

LTy

3
—4xy.

k=1



We can either use m or myes. Using m gives an upper bound of 2 4 | —
24]27%/2 = 14 as the largest eigenvalue. Using m.s gives 2+|—24]171/2 = 26,



