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ABSTRACT

A solution of the metric multidimensional unfolding
problem is stated as a special case of the general
multiqimeﬂgiénal scaling method of de Leeuw and
Heiser (1977), vhich gusrantees convergence to a local
minimum of stress. Because the number of local minima
is usually very large, conSiderable attention is paid
to the algebraic solution of the unfolding problem
which we use as an initial configuration. Here we dis-

tinguish three approaches: no centering, single cen-

". tering end double centering, which differ in the way

they treat the nonlinearity of the problem. The con-
tributions of Ross and CLiff (196L4) and Schinemann
(1970) are discussed within this framework. The vario&;
approaches are evaluated in terms of the stress they
produce in our iterative program, but the current state

of affairs does not permit any definite conclusions.
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1.0 Introduction ‘

In multidimensionél'unfoiding problems we coasider a nonnegative datamétrix
A of order nXm, whose elements are interpreted as measures of dissimilarity
between the n (rov)objeqtsgg?{r?,rz,...,rn} and m (column)objects
g;{cl,cz,...,cm}. Thus Gij_is thg dissimilarity between objects r; end o5e
In a psychological context the row objects are often called subjects, the

column objects stimuli, and the dissimilarities are derived from pfeference

Jjudgments.

Multidimensional unfolding technigues represent both row and column objects

%des@&hn”uﬁJmﬁyw“npnﬂﬁinamwhsmw<mvin

such a way that the distances d(xi,yj) are approximately egqual to the dissimi-

larities Gij.”We sometimes write dij’or_dij(X,Y) for d(xi,yj). In this paper

-we study representations of T1sT2se 0ol and C15C25eesC in the space of

all p-tuples of real numbers, in which the metric is defined by the euclidean

norm. Thus a representation of T1,T25...7) is the nxp configuration matrix X,

with elements xié, a representation of C15C25n0vsCp is the mxp configuration

matrix Y, with elements Yja and the dij(X;Y) are euclidean distances, defined

on the rows of X and Y by

-} . 3 (1)
d;5(%,7) = a§1(xia"ya'a) : ‘ 1

It is convenient to rephrase the multidimensional unfclding problem as a special

kind of multidimensional scaling problem, where in general we represent N ob-
jectSvQ%{ol,Oz,...,oN} as N points»ZF(zl,zz,;..,zN} in metric space such that

the interpoint distances dik(Z) are approximately equal to the interobject

- dissimilarities, collected in the matrix P={Yik}. To evaluate the badness-of~fit

of a particular configuration Z, we use the loss function

N XN
oo(z) = T I wyly; - a;(2))%, ‘ (2)
i=1 k=1 : _

where W={wik} is a nonnegative square matrix of given weights and the summation

is over i<k. We. can base our unfolding technigue on a general multidimensional

scaling algorithm that minimizes (2) by considering:

0

{rRUCY, ; S (e
z={xuy}, - (3p)
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ere the partitioning of ‘W parallels that of T' and N=n*m. Now the loss function

(2) transforms into

n ' nim . _ - .
ool = iZ1 k=x§+1 ¥ix Vi = 85, (z0)%, S T (5)

'ﬁand our unfolding technique will minimize

‘ n ‘ ‘ - : :
- 1 O'](X,Y) = Z 2 u i3 dij(X,Y))z. (6)
4 i=1 j=1

n principle, the generaiity of an unfolding technigue is determined by the

i;enerality of the multidimensional scaling technique on whiéh it is based. So,
uglven an ‘appropriate multldlmen51onal scaling algorlthm, we can do noneuclidian
‘lznfoldlng by generallzlng definition (1) to general Minkovski metries. Also, ir’
‘ <>nly the rank order of the di$similarities is given, we may use a: nonmetrlc
’ Quultldlmen51onal scaling algorithm to do nonmetric unfolding. In some applica—
ions, where we cannot assume comparability of intersubjective utilities, we
‘1eed & row-conditional (non)metric algorithm to @o the job. Apart from these
;enerallzatlons, we may handle missing data by setting uy —O for all pairs i,]

'ﬂ“or which no observation is available.

in this paper we only treat the 51mplc5t case metric enclidean unweighted

f&nfoldlng. There are at least two reasons for thls. In the Tirst place, the
>fmmpr6551ve succes of the nonmetric approach in multidimensional scaling problens

g8/ lepends critically on the great number ol ordinal restrictions that. are imposcd
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on tﬁg distadces; for cath of the IN(N-1) dissimilarities, we have in principle
IM(§-1) order sestrictions of the form Yy >Yyp. In an unfolding problem with

the same number of parameters {say (n+m)p), the number of restrictions imposed

by the data (3{nxm) (nxm-1)) decreases rapidly and moreover depends on the ratio

n/m; if only row-conditional comparisons are allowed,
This effect is illustrated in table 1.

this again reduces the

pumber of restrictions to nxim(m~1).

DS UNF UNF | UNF UNF ROW ROW ROV ROW
1.00 1.50 2.33 4.00 1.00 1.50° 2.33 k4,00
10 990 300 276 210 120 50 36 21 8

20 17955 4950 4560 3486 2016  hso 336 210 96
w30 | ouags esa0 esee0 17766 10296 1575 1188 756 360
40 307810 79806 73536 ' 56280 32640 3800 2880 1848 896
so | TigToo 195000 179700 137550 79800 7500 5700 3675 1800

Table 1. Number of restrictions imposed by ordinal data., For -the

unfoldinz cases (UNF) and the row—conditional unfolding cases

(ROW), N=n+m and b different ratio's n/m are tabulated..

So, for the not quite uncormon row-conditional 40x10 unfolding problem, the num-—

ver of restrictions (1800) is more than 10O times less then that number for the

equal parameter multidimensional scaling case (T49700). If ties in the data are

treated by the so called primery spproach (if 6ij=6kl’ then dij need not to be

equal to dﬁl)’ or if missing data are present, ‘the situation deteriorates even

more. As & result of all this, the configuration of points is less well "tightened”

by the data compared with the complete multidimensional scaling case and problems
agrise in the form of "degenerate" solutions, "spurious” dimensions and local
minime. o

The second remson for restricting ourselves to the simplest case is that, even in
the metric approach, the local minimum problem is very serious; i.e., if we do
not start en iterative technique in the neighbourhood of the global minimum, we
are almost sure that we get caught .in a local one. Therefore, we will concentrate ’
in section 2 on the algebraic analysis of the unfolding problem, based on the

properties of the sqpared euclidesn distences. We then use in seétion 3 the con-
'figuratiqns i,i which are solutions of the algebraic problem as a start for an

iterative technique which minimizes (6). ' .
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1.1 Other work

The one-dimensional unfolding ﬁodel was propoéed by Coombs (1950,1964) as &
consequence of his theory of preferential choice; in his terminology, the
one-dimensional conflguratlon Y is called the J-scale and each row of A an
I—écale, which may be.thought of as the J-scale folded at the ideal point Xy
with only the rank Qrder of the stimuli given in order of increasing dlstance
from the ideal poiq@. The extension to multidimensional unfolding was made
possible by the work of Bemnett and Hays (1960,1961; alsc see Coombs -196k).
These older approaches are non-metric, not only in the sense that rankorders
within rows of ‘A are used, but they also end up w1th a representation consis-

ting of p partial orders of prOJectlons on the axes of euclidean p-space.

The trick of specializing an iterative multidimensional scaling program such

" that it becomes an unfolding technique was developed by several people in the

late sixties (cf. Kruskal and Carroll, 1969), but the problem of finding a good

initial configuration for this spScial purpose seems to be a bit neglected. The
algebraic approach goes back to Coombs and Keo (1960), who conjectured a.con-
nection with principal component analysis, Ross and c1iff (1964), who proved
some theorems sbout this conjecture and Schénemann (1970), who proposed a method

for recovering X and Y from the double centered’ bquared distences (cf Gold 1973)

2.0 The algebraic approach

In this section we Study the algebraic properties of the unfolding préblem. We -

‘will distinguish three cases: no centering; single céntering and double centering.

These cases differ in the way they use 1nformatlon from the data. We w1ll also
present three algorithms, the last of which is very closely related to the one
proposed by Schdnemann (1970). v

2.1 No centering
We suppose that the nxm matrix D(E)ﬁ{dij(X,Y)} is given. According to the eucli-

dean assumption,

2
321 (¥ia - yja) ;

p .
xf +§y2- -2§ Xi Vi (8)
a &7 da oty ialda

2
dij(X,Y)

The problem is, how to reconstruct X and Y from D(2). Ross and Cliff (196L4} al-
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ready ‘observed, that (8) can be rewritten in matrix notation as

K

esasree

e! o . (9)

D(z) = |leia.X et
vl bA

with e a veetor with all elements equal to unity (the number of elements of e

follows. from the context), with Z=-2Y, with a vector o defined by

and a vector 8 defined by

j j y,]a . (10p)
An immediate consequence is the following theorem (also due to Ross and CLiff,

and conJectured in a somewhat imprecise form by Coombs and Kao 1960)
Theorem 1. 4 necessary condltlon for the solvablllty of (8) is rank(D(25 &p+ 2.

The necessary condition in theorem 1 is 1nterest1ng, but hopelessly inadequate
for most practical purposes. It does not use any of the special properties of (9},
only the number of rows and columns in the decomposition. The condition is neces-
sary and sufflc1en+ for D(e) t6 be representable as & vector or inner product
model in p+2 dimensions. Thus if the unfolding model is true, applying principal
cpmponent analysis is uneconomicaly in the sense that it gives two extra Yarti-
ficial" dimensions.

We now suppose n2m2p+2 and rank(D(z))=p+2. Suppose

D(Q) = GH' (11)

is a full-rank decomposition of D(z). The whole problem then amounts to finding
the direction of the two Movtificial" dimensions in the column space of G, It is
well known that decomposition (11) is unique up to & nonslngular transformatlon,

i.e., we can always find

(12a);
(12b)5
(12¢)]
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where U is an arbitrary nonsingular (p+2)x(p+2) matrix. It follows that what we

are looking for is a nonsingular T such that

ro. '
Gr= {eloa.X|- ' o _ (13a)
~and
HS = {B e 3 - ‘ < (13b)
with
s = () (13c)

We proceed the analysis asymmetrically, because we will try to reconstruct T
from (13a) and then define a solution for S to be the inverse of the solution

for T. We partition T as follows:

XN | (1)

vectors of length p+2 and Ty (p+2)%p. Rewriting {(13a), we get

wlt? t1 and t2
Gty =e, . , - - (158)
Gty =0 : ' (150)
GTy =X, : (15¢)

.

and from definition (10a) it follows that
E
o = diag(xx') , ‘ o (16)

vhere diag(A) denotes the vector of diagonal elements of A. Combining (15b) and

(15¢) we must have

s, = diag(GT3TéG'). . (17)

We can summarize the development as follows:

Theorem 2. Suppose rank(D(?))=p+2. Tien {8) is solvable for ¥ wgd Y if and only
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it (iSa) and (17) are solvable for tJ,tz,TS.

"It is elear that (15a) determines t, uniquely:

ty=Gle, (18)

where G' is the left inverse of G. We now analyse (17) in detail. We can

rewrite it as

(19)

(20)

Gt, = diag({coMG')

Thus (20) reéuireé that M is symmetric, positive semidefinite, with rank(M)gp.
Equation (19) is a linear homogeneous system in M and tz. We investigate its
solution space. First define the nx3(p+2)(p+3) "columnwise direct product"

(GxG) vy:
(6xG)g 1y = 2833841 (k>1) (21a)
.2 ) .
(6xC)4 (1) = 8ix (x=1) (21p)
Here we write (k1) for 1+3k(k-1) with k1, which makes (k1) run from 1 to
3(p+2)(p+3). We alsc define the 1(p+2)(p+3)-element vector m by
(21¢)

.ni(kl) = (M), - ,

So m is M, strung out as a vector. In definitions (21) we have made use of

the symmetry of M to avoid unnecessary linear dependencies in the columns of
(GXG). We may now rewrite (19) as
(22)

'Gt2v= (6xC)m .

So one of our "artificial dimensions is contained in the column space of (GXG).
Moreover, it turns out that all columns of G are contained in (GxG). To show
this, we define the } (p+2)(p+3)x(p+2) matrix ¥ vy

w(ki)u_= %(Tkélu +116ku) , : | | (23)

where Ty is the k'th element of the solubion of (18) ana élu'is Kronecker's §&.
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Then

. 1u ku ' luv ku
{(GXG)W?i,u = Ei 851,811 (Ty 8 * Ty 8) + Eg 85385y 3Ty 8 + Ty 8)

= ’Z 2 8ix8i1 xS Wi e 11:311T16 .

k1
=.%§ 'gildvl“? %1}«:: g»ikdkué b, + %g;u =8 | (2k)
where we have used (15a). Thus
(exa)¥ %G_ ' v 2 . I (25)
and (22) transferms into
(6xG)¥t, = (GxC)m . '~ - ’ (26)

Now suppose E contalns ‘a basis for the null space of {GxG), i.e. the subspace
{x](GXG)x-O} That the rank of (GXG) is at least one less than its number of
columns can be easily demonstrated. Suppose p=1; we wrlte x for X and,x2 for o.
Then if a transformation exist such that (13a) is true, there must be an accom-

panying transformation of the columns of (GxG) into

2x 2x3 ; x2_ } . ] (217)

]
N
»
IR
]

e veene e

.

where the powers are inderstood to be columnwise direct products again. Clearly
(27) contains one llnear dependency. Unfortunately however, we. have not been
able to derive any general results on the d;menslonallty of E. We therefore take

it %o be, say, a<i(p+2)(p+3) and all solutions of (22] are given by
= ¥5, + B0 : . . (28)

with both t2 and 6 {a vector of length i)'completely arbifrary. From m of the

form (28) we can recover t2 by

t, = cteoxe)m . . . » . (29)

We now need some identification constraints. Suppose we have chosen our full
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rank decompositién (11) such that G'G=I. We may require without loss of gene-

relity that the row points are centered which is true i.f.f.

e'G’I‘3 =0 (30&)‘
i.f.f.
t]75 = 0 (30v)
i.f.f
T ¥ o= 0
tiMb} = 0 (30c)

Here we have used (15¢),(18),(20) and the positive semi~definiteness of M. Now

define the (p+2)x(p+2) matrix P as

t.t! : . .
Ty o : ‘ (31}

Then the row points are centered i.f.f.

PMP = M . (32)
To use this condition, we revrite (28) in matrix form:
Ed , qQ . :
T
M=t ]+t + ‘):r 0.5, (33)

where the €y correspond with the vectors in the null space basis. Substituting

(32) in (33) we get:

q
M=}0Pe?P. (34)
v .

We summarize the developments in a new theorem:

Theorém 3. Suppose rank(D(Q))=p+2, and suppose D(2)=GH"is a full rank decompo-
sition of D(2) such that G‘G=I; Then (17) is solvable for t, and Ty if and only
if we can find an M in the subspace defined by (34) which is poéitive semi-
definitevof rank p.

So according to theorem 3, we end up with a nonlinear problem and its conditions
for solvability and uniqueness are complicated (if we merely assume that M must

be positivevsemi-definite, and forget about its rank, then useful results cen be

obtained).
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We propose an algorithm that minimizes the loss function

sr(M - T,T1)%
3.3 (35)

over the (p+2)xp matrices T, and over all M of the form (34). The algorithm is

3
sn alternating least squares method also used in INDISCAL (de Leeuw Ts.ka.ne and

Young 1977). We ‘alternate computlng 8 nevw optlma.l <] for fixed T3 (a. s:.mple

jinear regression problem), and computing a new op'blmal ‘J'.‘3 for flxed M (& trun- -

cated eigenvalue problem), until convergence has been reached. Of course, when

we choose g=1 only one iteration is needed.
Now suppose € is the solution of (18), %2 is a solution.of (29_) and ’1’3 a solution
£ (35). Then the general solution for T is of the form

1 0 0. A .
T 0 E O g : . (36)
0 0&%K : '

with £>0 an arbitrary constant and K an arbitrary pXp rotation matrix. Define

s = (T-1)' and partition S as

8 =|s;:5, S3 . {37}

We now must have
Gt, =e - - (38a)
g6, = o (38v)
EiGT K = (38¢)

as well as

Hs, =8 ‘ (39a)
£'ms, =e (396)
g-%H§3K =z (39¢)

As can be seen, we need not to bother z'bout the rotation, as it transforms b
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and ¥ in the same way, and we can use (39b) to determine §. We finally find

the solution for X and ¥:

X = E%G§$ _ _ (40a)
¥ = -3%-2m8, : _ (40b)

Ir (8) is not exactly solvable, we use least squares procedures for all sub-

problems. There is one additional problem, however. Equation (22) will no longer

‘have perfect solutions in general, because (25) is not necessarily true anymore.

Consequently we may need & 1east squares technlque (some canonical correlation

method) to find a. test” solution, but if a good fit is possible there will be
&, number of canonlcal correlations very close to unity. It seems better to work
with (28) and to define E as an approximate null space pasis of (GXG). The

. problem then becomes when & small eigenvalue is considered to be equel to zero.

Again the fact that we do not have information on the rank of (Gx@) in the per-

fect case proves to be a nuisance.

5.2 Single centering

In this section we will freely use some of the same symbols as in the preceeding

one, but with a dlfferent mesning. Again we suppose without loss of generality
that the row points are centered We now remove the column means of D(2)

(2) _ 4(2) _ 4(2)
aiJ = d.j d.j
- _1% R '
: a=1 e " 5 Zl_ :231 *ia 223 *ia¥ja (L1a)
(2) _ 1% ) P,
| REI Zl tji "o * Z: Yia (k1p)

and in matrix notation (lL1a) becomes

. . e!
p3) - ol X (42)
s v

where o is mow defined &s
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This gives us another'fesult proved by Ross and Cliff (196h4).

Theorem 4. A necessary condition for the solvability of (41a), and thus of
(8), is rank(d(®))gp+1.

In the rest of this section we ignore (471b), and we try to find X and Y from

(k2). Again we suppose that rank(ﬁ(z))

=p+1, and aggin
52 = o ' , ' A (bh)
(2)

is & full rank decéﬁposition of D'©’. Now we get

T= |t T o A € )
with t, of length p+1 and T, (pt+1)xp. Furthermore

Gt, = (GXG)n , o ' (46)

where the new (GXGY is a columnéenteredvversion of the old one:

(6X0); (1) = 285485y - 3 521 8585 (k >1) - (b7a)
(©C); ) = By -3 L &, =2) (k7o)

1=1

and m is M;TzTé, strung out as a vector. This time, however, it is not possible

"to find an explicit representation like (28) for the solutions of (46). We may

derive from (46), supposing G'G=I again,

o

6t, = GG'(GxG)n : (48)

and consequently
(I - GG')(GxG)m = 0 . A i ' (k)

S0 if E contains a basis for the null space of (I-GG')(GXG), then

m = £ o ’ - (50).
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(51}

The nonlinear problem now is to find 0 such that M given by (51) is positive
semi-definite of rank Pp. Again there is no information about the dimensionality

of the null sﬁace;E; in situations with non-exact f£it we have to compute an

approximate null space.

Tt is clear that single centering makes the uni'olding problem more simple, in the
gense that less arbitrary decisions have to be npade, it is much clearer how to

proceed. On the other hand, we use far less information from the data (vy igno-

ring (L1p)). We do not give an explicit algorithm, because after M, T, and ﬁ]

are'computed,it is fairly obvious what to do. It is also clear that another

single centering analysis can be done by removing row means. instead of column

-mesans. But this smounts.to the same thing, due.to the symmetry of (8) in X and Y.

2.3. Double centering

We now describe an approach,whichﬁis'evidently inspired by the. Torgerson—Gover
approach to metric multidimensional scaling. VWe. first define the centering.

operator

ee! ‘ " (52)

with e & vector with all elements equal to one (the pumber of elements of e

follows from the context). Furthermore, we form the nxm matrix C by double

centering -3D 2):

¢ = -3 . (53)
According to (9), the mafrix expression for_D(2) is )
D(‘z) = ef' + ge' - 2XY' . . (54)
Substituting (54) in (53) we get
(55)

¢=(x - et (Y - ev')'

1 1 o ‘ .
where u=5e'x and v=ﬁe'Y are the centroids of ¥ esad Y, respectively. From (55) we

obtain another Ross-Cliff theorem.
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Theorem 5. A necessary condition for the solvability of (55), and thus of (8),
is rank(C)<p.

Eere we have something quite different from the pfevious sections, because
thére is no partitioning, and there are no internal constraints. As a conse-
guence we have to use the removed row- and column means of D(2) later on to
determine X and Y and cannot simply ignore them, as we ignored'(hﬁﬁ). Suppose

again that renk(C)=p and suppose C=GH' is a full rank decomposition. It follows

that
G = X - ey’ {568)
BS = Y - ev" . (56v)
TS'= I (56c)
and obviously
= GT + ep'; : . (57a)
= HS + ev': ' , - (5Tl
We now derive some intermediate expressions.
Xt = GMa' + (u'udee' + GTue' + eu'T'C’ : - (58a)
Yyt = B HY + (V'D)ee' + HSvVe' + eV'S'H' ‘ (58p)
X' = - GH' + (u'V)ee' + GIve' + eu's'H’ _ ' (582)
where M=TT'. Furthermore
ge' = (GxGlme' + (W'H)ee’ + 2GTue' ’(58d)
ef' = en'(HxH)'+ (V'V)ee' + 2eV'S'H! (58¢)

where (GxG) is defined as before {ef.21) and (HxH) is defined analogously on

the columns of H. Substituting (58¢),(584) anad (58e) in (5L) we get

p{2) = (GxG)me' + en'(HxH)' + 2GT(n - V)e' - 2e{p - V)'S'H' +
# (= V) (1 - Vee' - 26H' . ' (53)

This is a matrix formulation of a result from Schénemann (1970). Following him»

we now define a matrix F as
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f =‘D<2) + 20H* (60)
F must be of the form

F = de' +eP' o+ xee' (61)
with

6 = (GxG)m + 207(n = V) (62a)

v = (m)n - 2HS(n - V) - (62v)

¥ = ln- vyt {u - v) (62¢)

At this point there ere probably several Ways to proceed. Schinemann (1970}

subtracts the jast row of F from the other ones to get rid of the terms with

¥ and X. We follow this asymmetric spproach (solving for m and (p-v) and defining
s solution for S as the jnverse of a solution for 7), but prefer the somewhat

1ess srbitrary procedure of centering F:

= J(oxG)me' + 2 JGT(y - vie' . (63)

To simplify things & pit, we define the matrix K as

K= [J(GXG) . JG] ' (64)
of order nXip(p+3) and th vector of paremeters £ as

n
E= | evernes ‘ . (65)
2T{1-v);

so that (63) transforms into

JF = KEé' (66)

Consequentlys in the perfect case We can use any column of JF, say fj’ to

solve the nonhomogeneous system of equations T, “YE In the fallible case, we

'may simply average the fJ and solve the resultlng linear regressxon problem.

-~

Having obtained & solution E, we may transform it back to M, T, 8 and (3-9),

and again assumlng without loss of generality that one of the configuration

metrices is ‘céntered, we may solve for X and Y from {57).
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3.0 The iterative approach

In this section we briefly review the SMACOF-3 program, designed to minimize
(6). It is based on the general multidimensional scaling technique discussed

in de Leeuw (1977) and de Leeuw and Heiser v(1977) , for which convergence o

a local minimum of (2) is assured. We will try out all three cases from section
2 as a starting configurastion for the iterative technique, first on a set of’
dissimilarities of which we are sure the model holds and then in a real date
situation. , ' ‘

3.1 SMACOF=3

The’ genéral iterative algorithm is as follows. Suppose Z‘l1 is our current best
salution (we write U for jterations). The basie iteration is ‘ ’

= * » . '
2y v B(Zu)zu . (67}

Here the matrix B(Zu)_is defined by

“W.oo Y .
v, (2) = ik Kk iti#k : (68a)
! dik(zu)
N W Vs
v (2) = g aril (68b)
R 1 8;,(z,)
bik(Zﬁ) =0 | if dik(Zﬁ) =0 | : (68c)

+ . . . . .
Furthermore, V. is the Moore-Penrose inverse of V, which is defined %y

Vi T Vip ifi#k ‘ : ' {69a)
. N . . ‘
Vi3 = lgi Vi1 o K (690)

In our unfolding case we apply the partitionings ciefined in (4) and get.

z, = o ’ , | . ()
u ;
é Eee'
I I : o v (71
ee' . @ '
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updates are (omitting v o):

(72)

(73)

(74

(75)

(76a)

(769)

(77a)

(770)

(7Tc

(778

(788

(78
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The effect of premultiplying by vt is, in words, to divide the updates (78a)
by m, then center the updates (78b) and divide by n and finally readjust both
of them such that they are jointly centered. We go on with these iterations

until the improvement of stress (6) is no longer appreciable.

3.2 Comparisons if the model holds’

We will study the behaviour of the three algorithms of section 2 in terms of

the initial and final stress values they produce in the SMACOF-3 program. For
this purpose we take the distances between 20 row- and 7 columnpoints, more oY
less randomly distributed in 2-space, and créate_three different levels of
precision in the data: the distances themselves (PERFECT), the distances rounded
to one significant digit (ROUNDED) and the distances dichotomized below and
above their mean (BINARY). The results are tabulated an table 2.

No centering - Single centering i Doﬁble centering

PERFECT 0.000007 0.000004 0.000010 0.00000% -. 0.000011 0.000@06

ROUNDED 0.004023 0.001618 0.003610 0.001623 0.003118 0.001610

BINARY 0.461769 0.186396 0.122152 0,208834 - -

Table 2. Initial and finsl values of stress under three levels

of precision in the data.

In the perfect case, there is nothing for SMACOF to improve. In the founded
case, the initial values differ somewhat, butlessentially'theyball converge to |
the same stress (and, at least to the naked eye, to the same {intended) confi-
guration). In the binary case, the double centered algorithm breaks down because
the second eigenvalue of M in.{58) becomes ﬁegative. The other two feproduce

the right configuration {with fairly large iocal distortiohs), but SMACOF can

improve stress & lot (only small local distortions remain).
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3,3 Comparisons in & real date situation

We now analyse a set-of dissimilarities taken from Gold (1958). The data are
reproduced in table 3. The 17 row objects represent several properties which
are possibly related to social power in a group of middle class american

children. Eight groups of children (labeled A - H) from about five to twelve

years old judged all properties according to their importance in social relea~-

tions.
T A B ¢ D B F G H
1.Smart at school’ 13.5 13 17 15 16 1T 1T 16
2.Good ideas how to 1 17 13 6 6 10 9 I
. have fun
3.Good at meking things |13.5 6.5 12 15 13 12.5 15 14
4.Good at games with 16.5 3 14 17 17 11 13 13
running end throwing |
5,Knows how to fight i2 N 11 15 14 15 16 12
‘6.5trong 9.5 13 ‘15 13 12 16 1k 15
7.Acts friendly 2 15.5 3 3 3 5 2
8.A good person to do ) 9.5 1 b 11 9 6 6
things with ) .
9.Asks you to do things | 5.5 5 1 L L 2 1 5
. in a nice way
10.Doesn't start fights 5.5 11 7.5 1 T 1 L ke
and doesn't tease
11.Knows how to act so 15 13 5 2 2 8 5 3
people will like him
12.Plays with you a lot | 3 8.5 9 10 8 9 11 6
13.Likes to do the same | 5.5 6.5 10 5 1T 8 1
things you like to do} .
14.Nice looking 11 10 7.5 12 15 1l 10 17
- 15.Has things you'd like 16.5 15.5 16 T 10 12.5 12 10
to have -
16.Gives you things 8 8.5 6 ‘9 11 3 T* 11
17.Does things for you 5.5 2 2 8 5 L 3 8

Teble 3. Ranks of items by per cent of times they were

rated "very important'; low value - most important. Taken

from Gold (1958).

The details of data collection and group composition do not bother us here,

we will just present six solutions (three initial and three final ones, see

figures 1 to 6), and discuss some striking features.
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In the first blace, neither the three initial nor the three final solutions

resemble each other very much. (there is more similerity between each initial
solution and its own final ome). furthermore, the final stresses roughly are
same, whichvillustrates again the locel minimum problem. Of course, the-

the
golutions are not completely different. The column points nearly always

six
along & curved liné in the order A —‘( DEH)-(GFC ) - B except in
"no centering start" configuration, which 1s severely elongated with A

of its common position. Some of the row points are always close together

lie
the

out
(cf. 16,17 and 8 with 8 always in the direction of B), others are always far

spart (cf. 2 enf ki, the first one being typical for roup A and the second one
for B). Also, some points move & lot (cf.15), others hardly never {(point 9 is

always near the centroid). These observations are rather typical for real data

situations.
Although in this example the double centering approach does produce the lowest
stress values, we think it is to early to give any definite recommendations

regarding the quality of the different approaches to metric multidimensional

unfolding.
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