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MULTIDIMENSIONAL MAPPING OF PREFERENCE DATA

1. Introduction.

The analysie of preferential choice data has attracted the attention of
methodologists in the social sciences for a long time. The claseical approach,
starting off from the work of Fechner on experimental esthetics (Fechner, 1871),
and formulated as a theory of choice by Thurstone in his famous Law of Compare~
tive Judgment (Thurstone, 1927, 1959), involves the assumption of an unidimen-
sional utility continuum and normel distributions of utilities. The pairwise
choice frequencies are then accounted for in terms of properties of the
distributions of utility: means, standard deviations and correlations. A rigorous
statistical treatment of Thurstonean scaling is given by Bock and Jones (1968).
Further interesting developments in the theory of individual choice behaviour
were made by Luce (1959) and Tversky (19T72); for an analysis of social choice
behaviour and many related topics, see Arrow (1951) and David (1963). An
authorative recent review article is Bradley (1976); an up-to-date bibliography
on the method of Paired Comparisons is given by Davidson and Farquhar (1976).
These 'statistical' approaches will not interest us here, however, Instead, we
will focus upon ‘'date~analytic' approaches that have been advocated in recent
years. They are multidimensional in nature and emphasize the graphical display
of data.

The first approach we will discuss is very much in line with Thurstonean theory.
In fact, it starts from the general Law of Comparative Judgment, but avoids the
customary restrictive case V assumptions. It then aims at a multidimensional
analysie of the comparatal dispersione. The second approach is made up of what
we will call decomposition. techniques. Here we assume transitivity for each
subject and a 'latent' cognitive or evaluative structure, common to all subjects.
The individual utilities are then decomposed into the common structure and a

set of points or vectors which represent the individuals. Finally, a third

class of techniques will be discussed which tries to map the individual utilities
into a known common structure straight away. We will call these projection
techniques (Carroll (1972) uses the terms internal and external analysis for
decomposition and projection resp., but these words do not clarify much the

completely different character of the techniques involved).




2. Some terminology and notation.

The several kinds of data that will be considered in the next sections can
all be thought of to be derived from {or actually computed from) the central
three-way datsblock in figure 1.
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figure 1, Central three-way datablock
with three derived matrices
For convenience, we will interpret the general element pglt) to be the

preference strength of subject i with which he prefers object j to object k.

The collection of cbjects may be anything: odours, crimes, concepts, political
parties, commodity bundles, persons etc. Moreover, we use the word preference
in its broadest sense: any judgement or behaviour which indicates that, accor-

ding to subject i, object j is nicer than, heavier than, wilder than or more




velusble than object k, will be suited for our analyses. And of course, when
we say that the 'third way' pertains to subjects, we do not want to imply
that this couldn't be replications, occasions, conditions, groups or any

other datasource.

So, we consider a set of n objects, a set of m subjects and & measure of
preference strength pgi). In many applications, the e-experimenta.l set-up calls
for a preferential choice, so that the individual p.(jlt) are dichotomous
variables, simply indicating whether or not subject i prefers object j to
object k. Sometimes however, we want to incorporate indifference judgments
(trichotomous case) or quantitative measures of preference strength (graded

patr comparisons). The marginal teble P is defined as follows:

m .
ij=$§P§;) . (1)

So P is simply the mean preference strength end is the usual input to &
Thurstonean or Bradley-Terry-Luce analysis. No attempt will be made to describe
these procedures here in detail, since they are well documented and summarized
elsewhere (Thurstone (1927), Mosteller (1951), Luce (1959), Bradley and Terry
(1952), David (1963), Torgerson (1958), Bock and Jones (1968)). For a treat-
ment of the trichotomous case, see Glenn and David (1960) and Greenberg (1965);
for en analysis of variance approach to graded pair comparisons, see Scheffé
(1952) or Bechtel (19T76). We shall discuss two types of generalized Thurstonean
analysis in section 3. There we algo need the matrix K, which contains the

so-called comparatal dispersions.

The remainder of the paper will be devoted to techniques to anslyse the

matrix U, defined as follows:

U5 = ;1?2{ (pgll{) - p}(cg)) . (2)
Thus uij indicates to what extent subject i prefers J to the other objects. The
table U will be referred to as the matrix of utilities and the uij as the
individual utilitiee (these are sometimes called preference orders or indivi-
duel (affective) values). The fact that we reduce the pgi) to U implies

that we are willing to accept intrensitive choices. We do not model them; if

intrensitivity is around, it just introduces ties or a decrease of variance in



the rows of U. Of course, the individual utilities may be collected by any
ordering or rating scale method right from the start. Transitivity is assured

then and we might reconstruct the other matrices by the rule

) (3}

where F is a suitably chosen monotone increasing function.

3. Multidimensional analysis of comparatal dispersions.

3.1. Why comparatal dispersions?

According to the Thurstonean model for pairwise choices, the set of objects
corresponds with a multivariate normal discriminal process {U1, Ups «oe > Un},
with parasmeters M5 (3 =1, vev , n) and °jk (juk =1, .. 5 n). Thus it is
assumed that any two choice objects, j and k, give rise to partly overlapping

normal utility distributions (see figure 2).
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figure 2, Marginal utility distributions
{'discriminal processes') for j and k.

Assume that, in & pairwise choice, the object with the larger utility is

always preferred; more precisely, if j and k are compared, the subject samples
from the process and prefers j to k if Uj > Uk‘ By standard statistical results,
the difference process {Uj - Uk} will be normally distributed with mean uj - W

and variance

S =05 tog - 20y . (%)



Following Gulliksen (1958), we call the Kk comparatal dispersions (the o are
called discriminal dispersions). Let the probebility that the utility of j is
larger than the utility of k be denoted by "jk’ then

Y, -
Mo = ¢(—JK_—”k) , (5)
Jk

where ¢ is the univariate standard normal distribution function. Furthermore,
- . _ oa=1 . . .

if Pix estimates ok and 235 ® (p,jk) is the corresponding unit normal
deviate, we get

Y Bl N (6)

This is Thurstone's Law of Comparative Judgment (Thurstone (1927)). A basic
difficulty in the model is that there are too many unknowns. We may attempt to
resolve this difficulty in at least two different ways:

&. by imposing restrictions on the parameters, such ss that all comparatal
dispersions are equal (cese V), or that all covariances are equal and
the variances are almost equal (case IV).

b. by deriving more equations accounting for the same experimental data
(using tetrachoric correlations between pairs) or slightly different

" equations accounting for slightly different experimental data ( category
Judgments of size of difference).

The first epproach is by far the most popular. In its usual form, however, it
has two major drawbacks. As Mosteller (1951) and Torgerson (1952) have pointed
out, statistical tests for the goodness-of-fit of these highly restricted
models are insensitive to violations of the assumption of equal comparatal
digpersions. Unequel dispersions may or msy not cause high chi-square values.
So we have nothing to evaluate the seriousness of faulty assumptions. In the
second place, we might have theoretical and practical reasons to be interested
in the comparatal dispersions themselves. This position has been advocated
strongly in the work of Sjdberg (1975a,b).

Remember that the probability of choosing one object over the other is a
function of both the mean difference in utility and the standard deviation

of the differences. Now, consider the distributions of utility differences
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figure 3. Three distributions of utility differences.

{UJ. - U} in figure 3. In 3a, the mean utility difference uj-uk is positive

and the proportion of minority votes ﬂkj corresponds to the shaded area, the
proportion of majority votes to the unshaded part. There are two quite dif-
ferent mechanisms whereby the relation between minority and majority votes

may be changed. The first is illustrated in figure 3b. By a change in the mean
utility difference the proportion of minority votes has decreased. Here the
model simply says that the more popular an object gets, the moré votes it will
obtain. This is so close to common intuition that we cannot expect to learn
many qualitative new things from a cage V analysis alone (nor could we from
the various alternatives that have been proposed, which assume different dis-
tribution functions but stick to unidimensionality and, by the way, arrive at
virtually indistinguishable estimates of the utilities, cf. Mosteller (1958)
and Noether (1960)),

Now consider figure 3c. Again the proportion of minority votes has decreased,
but for a completely different reason. The mean utility difference has remained
the same, whereas the variance of the distribution has diminished. If we want

to understand this effect, one possibility is to assume

2 .2 2 ' :
S = o5 * o s (1)




i.e., the usual case III assumption of zero correlations between discriminal
processes. A possible interpretation of 03 and 0; is in terms of ambiguity

and the model now says that the object in the majority will gain votes from

a decreased ambiguity of one or both objects, whereas the object in the minority
will lose by it. Certainly, this is only one possibility; we will treat others
later, It is clear that we get a richer theory of preference behaviour if we

do not restrict the more interesting parameters in the model so heavily.

The second approach is not using restrictions but deriving more equations. This
is exemplified by the work of Sj8berg. At first, he suggested that the tetra-
choric correlations between pairs contain information about the correlations
between the utility distributions (SjSberg (1962)). Although it was found that
they do give some useful information, SjSberg (1967) remarks that his methods
are cumbersome to use even with a moderate number of objects. He therefore
switched over to an snalysis of graded pair comparisons, which require the
subject to give a response richer in information, and proposed & method which
utilizes this increased information to obtain estimates of the comparatal dis-
persions up to a constant. In the next section we will review Sj8berg's method
and some of his empirical findings. After that, we will discuss a new méthod
which uses the restriction approach again (but with a more general class of

restrictions).

3.2. Comparatal dispersions and similarity.

The procedure proposed by Sjoberg (1967) calls for preference ratings on all
possible pairs of objects. It is not assumed that Pgli{) and pl({? add up to some
congtant for all j end k, as is usually done; this would ruin the possibility

to estimate the dispersions. The experimental set-up typically runs as follows.
Subjects are instructed to consider for each pair first which object they prefer.
Then they are asked to check to what extent they like the chosen object better.
A possibility of checking a category of equal preference is mostly provided. So,
if seven categories of size of difference are used, the subject is asked to

mark one of the figures in the string

il 17-6-5-4-3-2-1-0-1-2-3=-4b-5-6-7 |k

(i)
Jx
case several matrices {lpjk} which indicate the proportion of times that j is

If the raw data are collected in the matrix {p }, then we may derive in this
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figure U, The effect of a threshold parameter.
is preferred to k at least the amount t, (L=1, ..., r). The number of 'thres-

hold' parameters t, may be chosen in accordance to the presumed judgement accu-~
racy of the subjects (in the exsmple sbove, r = T), To get a rough idea sbout
the way the method works, we will consider the case r = 1 (this is analogous to
trichotomous pair comparison data, it allows for the judgments j > ky k > j and
indifference).

Consider figure U4, Here we have the unit normal cumulative distribution function;
on the y-axis we have the usual proportions pjk and pkj’ vwhich are symmetrical
around 0.5 and on the x-axis we have their corresponding unit normal deviates

Zig = (uJ. - uk)/icjk and Zy; = (uk - uj)/icjk, which are symmetricael around 0.0.
Now, we assume that the effect of the threshold parameter will be to decrease alil
utility differences Uj = Uy by an amount t (this implies that utility differences
have to be bigger to produce the same proportion of preference votes). This de~
crease doesn't affect the variance of the utility differences, but it does affect
their mean. For the new normal deviates we get

He = -t )
(B = -.-L.._.ul.i___ , (8a)
Jk K,jk

e = H: -t
o = (@)

Subtracting (8b) from (8a) gives us:




adding (8a) and (8b) gives

=2t

z2, + .= =, (10)
175k 1sz Kjk

Por identification purposes, we may set t = 1 and estimate the comparatal

dispersions by

- - 2
g, = ——"— (11)
gz Py

and the mean utility differences by

' . - Z.
u:_\uk = —Lzlﬂ__"._-:]_-l]z . (12)
125k 7 1%k

Once the differences are known, it is a routine matter to find the mean utilities
themselves. In the general case, we add r parameters and find that the nunmber of
equations has been multiplied by 2r! This gives us &a strongly overdetermined

system which is solvable by standard methods.

In line with the view that the estimation of comparatal dispersions wouldn't be
of much theoretical interest if we couldn't connect them with other characteris-
tics of the choice objects, Sjdberg and his collaborators (Sjdberg, 1975a,b;
Sjdberg and Capozza, 1975; Franzén, Nordmark end SjSberg, 1972) sought empirical
evidence for the conjecture that correlations between utility diestributions
correspond to rated subjective similarity. This notion is motivated by the gene-
ral asrgument that two objects which are considered to be very similar by many
people are often found to be correlated in many attributes, so their utility
distributions should be correlated too. Similarity Jjudgments in some form are
taken as a basic approach to finding a 'cognitive map', which in turn is supposed

to influence the preferential choice process.

In the studies cited sbove, the estimated comparatal dispersions are teken to be
'inversely related to the correlations'. So instead of the case III assumption

of constant covariances, as in (7), it seems that constant variances are assumed.
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I.e., if, according to (5),

k2. = g2 + g2 - 20.0 (13)

gk - % T % i%%Psx

where pjk is the correlation between the utility distributions of j and k, then

some assumption like
02 = g2 = g2 (1%)
is necessary to arrive at a (linear) inverse relation

K.zjk = 0(1 bl Djk) » (15)

for some constant c. However, the way in which Sjdberg e.a. try to verify the

conjecture suggests an alternative reparametrization of the k.. 's. For, they

Jk
perform s multidimensional scaling analysis both on the estimated Kjk's and on

the estimated similarities, say s. . This means that they try to represent the

choice objects as points in p-spa?:l;, in such a way that small interpoint dis-
tances correspond to small comparatal dispersions (cq. large similarities), and
larger distances correspond to larger dispersions (cq. smaller similarities).
If Y is the p-dimensional cognitive map derived from the similarities data and
X the p-dimensional representation of the choice objects derived from the com-

parestal dispersions, then the conjecture may be stated as X = Y.

The slternative repareametrization thus would be, to write the dispersions as a
function of X. This is possible, because the variance-covariance matrix {o‘jk}

may be decomposed into the form

n
ojk = 851 xjaxka . (16)

as can be done with any positive semi-definite matrix, and therefore

n 2 n N n
ik T a£1 ¥t a£1 *a ~ 2a£1 *58%a

n
I (g, - %)% = ad (0 o

e~1
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So the comparatsl dispersions may be interpreted as distances between points
in n-space. This new system is still unrestrictive , but as usual we throw
away n-p dimensions. This means that we replace the in(n-1) parameters ng by
the n.p parameters xja' Thus the comparatal dispersions are accounted for by a
p-dimensiohal representation X, which should resemble the p-dimensional cogni-

tive mep Y obtained from other data.

As an illustration, we tske a study of political preference in Italy by Sjoberg
and Capozza (1975). The choice objects were the seven political parties listed
in teble 1.

1. PCI (communist party)

2. PSI (socialist party)

3. PSDI (social democratic party)
L. PRI (republican party)

5. DC (christian democratic party)
6. PLI (liberal Party)

T. MSI (national right wing)

teble 1. Choice objects from Sjdberg
and Capozza §12:[§2.

The subjects were 195 students of the university of Padua, Italy. The relevent
experimental tasks were similarity rating on a seven-category rating scale and
preference rating on a fifteen-category rating scele, both for all pairs of

parties. The estimated comparatal dispersions are given in table 2. The derived

PCI PSI PSDI PRI DC PLI MsI

PCI - 1.78 2.03 2.04 2.64 2.37 2.05
PSI 1.78 1.50 1.45 1.90 1.97 1.91

PSDI 2,03 1.50 - 1.10 1.21 1.36 1.h7
PRI 2,04 1.k5 1,10 - 1.16 1.05 1.12
DC 2.64 1,90 1.21 1.16 - 1.07 1.22
PLI 2.37 1.97 1.36 1.05 1.07 = 0.79
MSI 2.05 1.91 1.47 1.12 1.22 0.79 -

table 2, Stendard deviations of utility differences,

total group (Sjdberg and Capozza, 1975).

two-dimensional structure is given in figure 5A (the multidimensional scaling

program TORSCA was used), and the two-dimensional cognitive map derived from
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pspr ST DC
PSDI
D& prr : *PLT * #5I
LT M1 *pRT
AT PCI * ke

figure 5. TORSCA structures for standard deviations of

utility differences (A) and mesn similarity (B) (source:

Sjdberg and Capozza, 1975).

the mean similarity Judgments in figure SB, Clearly, the two structures are
globally the same, as conjectured, although figure 5A appears to be a bit more
- 'bended' version of the usual political left-right dimension.

3.3. A new fo'mula.tion: restricted multidimensional scaling.

We now return to the reétriction approach for the general Thurstonean model,
using (17) or a similar assumption. We suppose the z5 are given numbers satis-
fying 23 = “Zj» 8nd we want to fit the model (cf. (6)):

2, =l (18)
Jk djk(x) i

where the djk are euclidean distances defined on the rows of X. Such a para-~
metrization implies that the restrictions should be imposed on the xja’ instead
of directly on the c,jk' This gives us the adventage that we obtain s much
broader class of models compared with the classical 'cases'. In the first place,
if X is any n x P matrix, we have a case very similar to the one in the last

section., Furthermore, if X is n x n and diagonal, we get

W) =xds e, (19)

‘¥—
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corresponding to the usual case III assumption. And if we restrict X to be

of the form

T vee D

»
[}
>

we obtain a model

' common' (Xc) and

n-1

O 00O

]

(20)

in which the comparatal dispersions are associated with both

'unique' (xj) dimensions. With X of the form

(21)

we obtain & simplex model comparsble with Bloxom (1972). In this case, the

matrix of squared distances exhibits the pattern (for n = U):

0
2
s
2
+
x1 + X2 X3

i.e., if we move successively

increase.

N

+
el

] o X
WeN s g )

[l

g e [\)xN_IN

wnN

+ X

N~

+ X

w“»i\) [N O
we

o

further from the

Many more special structures may be imposed on

we

(22)

main diagonal the distances

X, giving just as many new 'cases’

for Thurstone's Law. To fit this family of cases, we will first symmetrize (18)
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by teking sbsolute values; we define

A 0 = Juy - wl s (23)

i.e., Ajk(u) is the distance between the mean values on the utility continuum.

Furthermore, we define

Vi = |ij| . (2k)
This gives us the transformed model of preference strength
A (W)
_ _Jk
Vik = djk(x5 ’ (25)

which still incorporates the two basic mechanisms mentioned in section 3.1.
Note that the choice objects are associated with two sets of parameters: U and
X. Increase in distance on the utility continuum (involving 1) heightens the
preference strength, whereas increase in distance on the cognitive map (invol-
ving X) lowers it. A loose way of stating the relationship between these mecha-
nisms is, that '{ncomparables tend to be confused, even though their utilities
may differ a lot' and 'things that are alike tend to be contrasted when one

has to choose between them'. The direction of preference strength only involves
U (we have to be & bit careful here, because 'the direction' of the one-dimen-
sional continuum implied by (23) is not determined; mostly, however, a quick
look at the endpoints will suffice to identify the 'good' and the 'bad' side).

For estimation purposes, we now use the least squares loss function

n n
L(Xw = § I (v,é

2
L 0 = A 0007 (25)

which can also be written as

n A, (n)
(X,u) = } Z v2 (25 (X) -2 (26)
J=1 k=1 Jk vjk

This is a function of two sets of parameters and we can use the alternating
least squares (ALS) principle to minimize it. The ALS principle is a general

Adlaaan. 000
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rule to tackle least squares problems. It says that we first have to find a
partition of the total set of parameters into 'nice' subsets, such that the
minimization of the loss function over each subset alone, with the remaining
parameters regarded as fixed, is relatively simple. Then we may cycle through
8 series of simple least squares subproblems and repeat that process until
convergence. For a general discussion of ALS in a somewhat different context,

see de Leeuw, Young and Tskane (1976). .

In our case, the ALS principle tells us that we must alternate the minimization
of two subproblems: minimization of L(X,u) over u for fixed X and minimization
of L(X,u) over X for fixed y. For convenience, we suppress reference to the

set of fixed parameters end state our two subproblems as:

sin ;21 1:21 (Ve = g ()2 (21)
and

) non 315 )

m]}.(n J£1 kZ‘] VJk (dJk(X) ) v,jk) | (28)

The first subproblem is the unweighted, metric, one-dimensional case of a
Multidimensional Scaling problem; i.e., we want to find M such that the (one-
dimensional) distances Ajk(u) are as much as possible equal to the quantities
vjkdjk' The second subproblem is a weighted, metric, restricted Multidimensional
Scaling problem; i.e., we want to find X such that it satisfies conditions

like (19), (20) or (21) and at the same time the distances djk(X) should be

ag much as possible equal to the quantities Ajk/vjk’ where the deviations from
perfect match are weigthed by vgk. Both subproblems can be conveniently solved
by exploiting the general multidimensional scaling approach of de Leeuw and
Heiser (1979).

'To illustrate some of this, we use another set of data collected by Sjdberg
(1967). It regards the nine choice objects listed in table 3. These were
Judged by 106 psychology students on the attribute 'immorality' (graded peir
comparisons on a 20-point scale). To remove the grading and the indifference
Judgments, we used (9) and got the proportions listed in tsble L. Two analyses
were done with the APL program PAIRS. One utilized assumption (18) with X
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1. A drunken driver hit a person and left him
in the road.

2. Foster-parents mistreated the four~year-old
boy 'to teach him a lesson'.

3. A motorist refused to take & victim of a
traffic accident to the hospital in his car. 1

4, A swindler sold the same house to eight per-
s0Nns.

. A teenager smashed up a 'borrowed' car.
. He made his living on moon-shining.

5
6
T. A congressmen kept a watch he has found.
8. A farmer shot a deer out of season.

9

. An elderly person stopped in a 'no-parking'
zone to put a letter in a mail box.

table 3. Nine choice objects from SjSberg 1967.

1 2 3 Y 5 6 7 8 9

—_

.500 k17 .488 .785 .972 .832 .976 .957 .98k
.583 .500 .611 .879 .981 .936 .991 .989 .999
.512 ..380 .500 .739 .913 .849 .960 .957  .989
.215 121 ,261 .500 .935 .T79 .976 .949 .976
.028 .,019 .087 .065 .500 .319 .T719 .64h .928
.168 064 .151 .221 .681 .500 .877 .811 .963
.02k .009 .ok0o .02k .281 .123 .500 .h6L .849
.043 ,011 .0k3 .051 .356 .189 .536 .500 .851
.016 .001 .011 .02k .0T2 .037 .151 .149 .500

O oo~ O\ ow N

table 4. Proportion of times j was judged being more

immoral than k (reconstructed from SjSberg, 1967).

two-dimensional ('case I'), the other (19) ('case III'). We have listed the
obtained mean utility values in table 5, together with the values reported by
Sjéberg and the ordinary case V values based on table L. For ease of comparison,

all scales are linearly transformed such thet the most immorsl action gets a
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1 2 3 i 5 6 7 8 9

Sjdberg 0.927 1.000 0.902 0.700 0.373 0.516 0.220 0.270 0.000
Case V 0.866 1.000 0.840 0.722 0.356 0.533 0.21% 0.264 0.000
Case IIT | 0.910 1.000 0.897 0.678 0.416 0.54L7 0.303 0.326 0.000f

Case I 0.913 1,000 0.904k 0.439 0.163 0.321 0.093 0.12k 0.000
33 0.296 0.248 0.317 0.147 0.120 0.179 0.15% 0.182 0.27

table 5. Estimated mean utility values and dispersions.
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figure 6. Utility scales from table 5.

value of 1 and the least immoral one a value of 0. An alternative representation
of these results is given in figure 6. The discriminal dispersions which we

get from the analysis under the case III assumption are elso listed in table 5,
and the two-dimensional configuration X which best reproduces the comparatal

dispersions is displayed in figure T.

A global interpretation of these results is, that all utility scales show the
same order of actions, the discriminal dispersions seem to increasse with extreme—
ness of utility in both directions, and that the cognitive map contrasts physical
harm with material damage on the one hand, reckless actions with intentional ac-
tions on the other. There are some interesting details too. If we compare the
case III utility values with those of case V,‘it seems as if the extremes have
been pushed awsy. This is 'compensated for' by higher values of the discriminsal
dispersions for these actions (which appear in the denominator of (2L)). Maybe

this gives us & somewhat nicer interpretation of the scale: actions 2, 1 and 3
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figure 7. Cognitive map cbtained for the immorality
judgments in table 5 (L(X,p) = 0.0511).

are really bad, action 9 is no offence at all, but &s to how far this is right
there is controversy among the subjects. A similar reasoning applies to the

case I values, where we have, say, th2 unforgivable things against accepted
offences, and correspondingly increased distances (petween 2, 1, 3 and the
others) on the cognitive map. A more subtle interpretation arises here if we
consider two pairs which are sbout equally distant on the utility scale. Compare
for example the pairs 1,2 (dmmken driver vs foster—parents) and 4,6 (swindler
vs moon—-shining). Action 2 is a bit worse than 1, as is 4 compared with 6; but
the proportion of times that swindler has been judged worse than moon—shining

is much greater (.TT9) than the proportion for foster-parents and drunken dri-
ver (.583), due to the fact that swindler and moon-shining are much more com-
parsble on the cognitive mep. Similarly, motorist and drunken driver sre sbout
as much worse than teenager, but drunken driver is judged more umenimously worse
(p15 = ,972 versus P35 = .913), because for both drunken driver and teenager

sbout the same recklessness is involved.

Finally, we want to compare figure T with figure 8, which shows another cognitive
mep, derived from the comperatal dispersions as estimated by Sjdberg (for this

purpose we used SMACOF-1, a metric multidimensional scaling program described
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figure 8. Cognitive map obtained from Sjdberg's estimates of

the compsaratal dispersions (metric stress = .172LL).

in de Leeuw and Heiser (1977)). The reckless versus intentional contrast seems

to be the same, but this time we do not have physical harm contra material
demage, but something like physical harm - material damage — no damage. Note
that the extreme position of elderly person corresponds with an increased dis-
tance between 9 and the others on the Sj8berg-scale of figure 6, compared
with the case I scale.
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4., Decomposition technigues.

L.1. The concept of a multidimensional joint utility space.

It is not always plausible to assume that the individual subjects in & prefe-
rence study essentially all sample from the same underlying process; to put
the matter more strongly, sometimes we are convinced that individual choices
are not-alike because individual utilities are not alike in some fundamental

sense,

Imagine a bunch of friends who have decided to go to the wintersports together.
On their first preparsatory meeting, they settle upon the characteristics of the
ideal skiing resort: it should be high, but not too high; there should be at
least 70 kilometres of skiing tracks; the place should be cosy, not too crowded,
cheap, sunny and there should be other skiing possibilities in the immediate
neighbourhood.They also want to stay in a comfortsable chalet, close to the cen-
tre of the village, not too expensive, etc, Where to g0? One of them then asks
several travel agencies for information and comes out with eight possibilities,
none of which is completely satisfactory, of course. To make up their mind, they

all compare all resorts in peirs and perform a Thurstonean analysis.

This is a perfectly sensible thing to do. The objects here are selected and seen
as imperfect approximations to one ideal. Consequently, the subjects are supposed
to utilize the same appropriateness-jbrhthe—wintersports eontinuum, on which

each resort gets a scale value indicating its distance from the ideal. In fact,
their task is to estimate and combine all kinds of subtle differences; the use
of a probabilistic choice model reflects the expectation, that these subtle
differences are estimated differently by different subjects.

A completely different situation arises if we consider the preference behaviour
of, say, all customers of one particular travel agency on one particular dsy,
who ask for information regarding wintersports. Suppose that the travel agency
gives them all the same travelling guide-book, which comprises information
about eight wintersport resorts. Moreover, suppose that we ask the customers to
read and think a while and after that to give us all their rairwise preferences.
Certainly, the present subjects are & much less homogeneous group and the pre-
sent objects show a much less restricted range of characteristics compared

with those in the first situation. Some people prefer sophisticated places to




- 21 =

simple ones, others don't; some want to meke fast descents, others primarily
went to make tours; some like 'curling' and do not intend to ski at all, others
like skiing in virgin snow and do not intend to stay in the village at all; for
some, the more disco's the better, for others the other way round, etc. All
these different requirements will result in different preferences. How can we

degecribe these individual differences?

We might conveniently imagine that each object can be represented by an appro-
priately selected point in a space of one, two, three or more dimensions. We
don't know yet, how many dimensions this space should have and where the points
representing objects will be located; we want the data to give us a clue to

that. To capture the individual differences in the model, we use the notion of
an isochrest (this is in anology with 'isobar' or 'isotherm'; Carroll (1972)

uses the word isopreference contour, an unfortunate name, because preference

ig usually defined in terms of pairs of points). An isochrest is & curve which
connects boints of equal utility. Consider the psychologicel map of eight resorts

presented in figure 9.

Kitzbihel

les deux Alpes ~~_

2

k)

figure 9. Psychological map of wintersport

regorts, with isochrests.
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We will not psy attention to the way in which this particular location of
points was chosen (it certainly does not correspond to a geographical map).

An imeginary subject told us, that among these eight places his first choice
would be: Sélva or Obergurgl; his second: Saas Fee, Cervinia or les deux Alpes;
his last choice would be: Gerlos, Kitzbithel or Chamonix (for case of presenta~
tion, we gratefully acknowledge the presénce of ties). The isochrests labelled
1, 2 and 3 represent these choices. Of course, for another subject we would

have to draw other curves.

In general, we could teke any arbitrary location of points and represent any
series of utility values by drawing & set of isochrests. This would portray

the data, but in a disorderly and trivial way. So we want to tighten up the
model, such that it imposes restrictions on the data. This can be done in seve-
ral ways. All of them involve the idea that the isochrests should be a family

of regular curves, defined on one unique configuration of points:

a. the vector model: each subject is represented by a vector and his
isochrests are parallel lines (planes, hyperplenes) perpendicular
to his vector, in the order (and spacing) of his utilities.

b. the wnfolding model: each subject is represented by a point and his
isochrests are concentric circles (spheres, hyperspheres) around
this point, in the order (and specing) of his utilities.

c. the weighted unfolding model: each subject is represented by a point
and his isochrests are concentric ellipses (ellipsoids) around this
point, in the order (and spacing) of his utilities.

d. the compensatory distance model: each subject is represented by a
point snd his isochrests are parallel lines (plenes, hyperplanes)
perpendicular to the line connecting this point with the origin of
the space. This time the utilities are reflected by the distances

between the subject point and the parallel lines.

The joint space of object points {yja} and subject points (or vectors) {xia}

we will call (multidimensional) joint utility epace (Coombs (1964), who intro-
duced the concept, just calls it 'joint space' or 'joint gcale'). For the

first two models it is possible to devise a decomposition technique, which
constructs from a given table of utilities a multidimensional joint utility
space such that the requirements of the model are as much as possible fulfilled.

We will discuss these techniques in more detail-in sections L.2 through L.5.
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figure 10. The mapping of preference and utility data.

We will concentrate on applications (because so few have been published) and
refrain from technicalities. The weighted unfolding model is discussed in
Carroll (1972) and the compensatory distance model in Coombs (1964) and Roskam
(1968). For both, however, no reliaeble decomposition techniques are available

and we omit any further discussion.

Our development is summarized in figure 10. As Bechtel (1976) has pointed out,
the representation of subjects and objects in multidimensional joint utility
space is in the testtheoretic tradition of joint or dual parametrization, which
emphasgizes rather than obliterates information about individual and intergroup
differences. The decomposition models as we treat them here do not contain
probabilistic notions, they are in a sense just 'the deterministic bridge' be-
tween individual utilities and joint utility space. If we were willing to accept
distributional assumptions, we could connect joint utility space directly with

the individual preferences (cf. Zinnes and Griggs, 19Th4).

4.2. The vector model.

In the vector model, the subjects are represented by vectors, which reproduce

a family of parallel isochrests. This is illustrated for one subject in figure 11.
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figure 11. Wintersport map with parsllel

isochrests.

From this figure we may infer that this particular subject (in the same map

as before) orders the wintersport resorts as: les deux Alpes, Obergurgl, Selva,
Chemonix, Cervinia, Sass Fee, Gerlos and, finally, Kitzbithel. The subject vec~
tor not only implies & particular order among the object points, but also a
specific spacing between each of them, which corresponds with the distance
between the isochrests along the subject vector. If we move the vector in figure
11 a bit, we get the same order but a different spacing (e.g., with respect to
the dotted vector, Selva and Obergurgl are more separated, whereas Cervinia and
Seas Fee nearly coincide). In fact, if we go on moving around the vector (keeping
the map fixed), we will encounter 56 different orders, but an infinite number of
differently spaced orders. More generally, the number of different orders that
can be 'explained' by the vector model (with any non-degenerate configuration
of points) is finite, depends on the dimensionality of the space and the number
of points we want to accomodate in it, and is very small compared with the total
number of different orders that may be formed (Bennett, 1956).

Let's now look at the structure of the model more closely. Mathematically, the
model mey be expressed as
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u.. = E Xe Ve (27)
1] a=1 18 Ja
where U 5 denotes the utility of subject i for object j, the {x cee s xip}
are the coordinate values of the vector representing subject i and the
ny1, cee g yjp} the coordinate values of the point representing object j. To

simplify the discussion, we will confine ourselves now to two dimensions and
consider one subject only, with utilities {u1, cres Ugs el un}. This sim-
plifies (27), and we get the system

15 X9 F XY,

+

2 = XVt XV

. . (28)
u, = Y- + X.v.
J x4 31 2y32

un = X1yn1 + x2yn2

where {xl, x2} is the subject vector. To see how the isochrests come in, it is

convenient to tranform (28) into

- 1 -

Y2 T W~V
= L

Yop = Uy = V ¥y,

e
1]
o
1
<
]

yn2 n Vyn1

which is a series of n parallel straight lines through the points {y. 51 y }
with slope v = x /x and shift uﬁ = u /x . Clearly, if for two obJects ud = w s
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then u"j = u.;{ and they will come out on the same straight line.

In the same way, another subject is associated with another set of parallel
straight lines or, equivalently, with another direction in utility space. If
we regard the coordinate axes as fixed 'psychological dimensions', we msy say
that each subject weights these dimensions differently to arrive at his wbilities.
In this reasoning, all subjects 'use' all dimensions of joint utility space,
but in a different way (or to a different degree). This implies the idea of
compensation: two objects may be far apart, but if this happens in (a) direc-
tion(s) perpendicular to the vector of subject i, that particular subject still
gives them equal utility (compare in figure 11 Selva with Obergurgl, which have
nearly equal utility, with Selva and les deux Alpes which are closer together
but more saliently differentiated). On the other hand, suppose two objects get
the same utility (u'j = uk), then using (29)

Vip ¥ VY5 T Vo Y Vs (30)
which implies

Tin = ¥
e k2 (31)

Ye1 7 V34

In words, (31) says that a dominance of J over k on the second dimension is

compensated by a dominance of k over J on the first one.

Another interpretation of the model could be that each subject selects just

one direction in joint utility space and disregards all p - 1 other ones. Accor-
ding to this point of view, we need not to commit ourselves to an interpretation
in terms of projections on some set of coordinate axes, but may look at 'the
picture as a whole' and use notions like contiguity vs separation (clustering)
and cireular ordering as well. Consider for example another possible map for
the skiing resorts in figure 12. This structure could very well arise in prac-
tice. After all, Chamonix in many respects resembles Kitzbillhel but it is more
stylish and you can ski there in summertime; les deux Alpes is less expensive
than Chamonix and more sttractive for the 'young' jet-set; Cervinia does not
have that many 'aprds-ski' possibilities and is less attractive for beginning

skiers than les deux Alpes; in Selva you don't have summerski possibilities as
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figure 12, Alternative wintersport map showing

a circular ordering (circumplex structure).

in Cervinia, but better touring possibilities; Obergurgl is attractive for
people of all ages, but there are less 'cross—country’ possibilities thean in
Selva; Gerlos is more attractive for beginners than Obergurgl, but less sporting;
in Saas Fee there are’less touring possibilities compared with Gerlos, but more
skilifts; and again‘Kiﬁibﬁhel is bigger and has more 'cross-country' than Saes
Fee, but it is also tiore expensive. Of course, these qualifications should not
be taken too seriously, they only try to illustrate the idea of a circular
order (circumplex structure): neighbouring points share many aspects and differ
in & few; if two points are far awsy along the circle, they share very few as-
pects and differ in a lot. In a case like this, it is not so natural, or even
very difficult, to pick out two orthogonal psychological dimensions for inter-
pretation, whereas the ordering without beginning or end msy be perfectly con-
vineing on its own. The vector model here says, that each subject mey have an
ideal combination of aspects somewhere upon the circle, and that his utility

decreases evenly in both directions.

We now turn to the matter of estimation. We want to be brief about it. Many
techniques have been proposed, primarily differing in generality and elegance
of presentation (see Guttman (19L46), Slater (1960), Tucker (1960), Carroll end
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Chang (196L), Hayashi (1964), Benzécri (1967), de Leeuw (1968), Bechtel (1969),
Carroll (1972), de Leeuw (1973), Kruskal and Shepard (1974)). For our purposes,

it suffices to say that they all seem to amount to minimizing the loss function

(u. .- E xiayja)z (32)

L(X,Y) =
1M a1

i

ne-1g
| o1

1 3=

under certain normslisation requirements. Thus, for given {uij} we want to find
both {xia} and {yja} such that L(X,Y) is as small as possible. In its simplest
form, this problem can be solved by routine methods; the solution for X and Y
will be unique up to a joint rotation, which mostly will not bother us. A more
general spproach to handle the problem can be found in van Rijckevorsel and de
Leeuw (1979).

4.3, Applications of the vector model.

A number of succesful applications of the vector model have been published. In
the area of marketing resesrch, see Green and Rao (1972); in political science,
see Daalder and van de Geer (1977) or de Leeww (1973); in experimental psycho-
logy, see Mc Dermott (1969); in clinical psychology, see Slater (1965); for
several applications in the french literature, concerning esthetics, sports and
education, see Benzécri (1976); in the area of population studies, see Delbeke
(1968). We will asnalyse a fresh example here, which is adopted from Dijkstra
(1978). The data concern the motivation to work in an academic setting; each of
47 subjects from the Department of Philosophy and Social Science of the Technical .
University Eindhoven indicated their preference order among ten aspects of job

satisfaction (these asre summarized in table 6). We analysed these utilities with

Participation (PART)

Security prospects (SECU)

Important work (IMPO)

Provocative work (PROV)

Heavy responsability (RESP)

Right department head (HEAD)
Pleasant work setting (PLEA)
Possibility to meke one's way (MAKE)
Good salary (SALA)

Right welfare facilities (WELF)

SV @OV EWN =
.

—_

table 6. Ten aspects of job satisfaction.
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figure 13. Two-dimensional MDPREF solution for job satisfaction
data (explained variance 58%).

the MDPREF program (Carroll and Chang, 1968). Using standard options, we get
the two-dimensional solution of figure 13. The subject vectors extend over a
range of sbout 215 degrees, due to the fact that WELF and PLEA are generally
being judged low and never chosen first. Still, there is considersable inter-
individual variation, but we have to be careful: the vectors just indicate di-
rections in utility space (for some reason MDPREF standardizes all vectors to
have equal length) and don't tell us whether or not a particular subject fits

in well or badly. Therefore, we did the analysis over again, this time in eight



S

solution for job satisfaction data.

dimensions (the maximum number of dimensions allowed for in MDPREF), which gives
a nearly perfect fit to the data. We may then look at the first two dimensions
again (see figure 1k4). First of all, the configuration of object points has re-
mained the same, because the program produces standardized and mutually ortho-
gonal coordinate axes. The subject vectors, however, are projections out of
8-space into 2-space and their length may be interpreted as the percentage of
variance in the individual utilities accounted for by the first two dimensions

(their 'communality'). Thus we see that subject 47 does have quite a different
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point of view, but most of all he is pointing in still enother direction out
of this 2-space (his first choices are SALA, WELF and SECU, but his last three
HEAD, MAKE and PLEA). For similar reasons, subjects 2k, 34, 32, 16, 4, 2, 5
and 35 spparently also don't fit in well.

Dijkstra (1978) suggests that PART, IMPO, PROV, RESP and MAKE are intrinsie,
whereas SECU, HEAD, PLEA, SALA and WELF are extringic motivations. This dicho-
tomy comes out nicely along the horizontal axis. The vertical axis could be
something like oriented to the future (MAKE, PROV, HEAD) versus oriented to the
present (IMPO, RESP, PLEA). This is not very satisfactory and we may look st

something else,

Note that the configuration of points vaguely exhibits a horseshoe form: we
could look at it as a curved dimension, on which the points are ordered as PLEA,
WELF, SECU, SALA, HEAD, MAKE, PROV, PART, RESP, IMPO. Also note that the subject
vectors predominantly point into the direction (north-)west. It turns out that
the mean utility values of the objects (computed here as mean rank numbers, and
very closely related to Thurstone case V velues) along the horseshoe are: 7.9,
7.7, 6.5, 5.0, 5.3, 4.8, 3.3, 3.9, 5.0, 5.5. Thus, starting with PLEA (7.9) and
going counter-clockwise, the mean values first decrease down to the most popular
PROV (3.3) and then rise again. We may argue that this direction of mean utility
(a direction in space approximately going from PROV to PLEA) certainly represents
something (common opinion, norm, academic hypoecrisy), but also obscures the

typical nature of the individual differences.

We can remove the effect of mean utility by teking deviations from colum means.
Analysis of these deviation scores (again in eight dimensions to get interpre-
table subject length's) gives us the result in figure 15. The intrinsic-extrin-
si§ dichotomy is still there, but there are changes on the vertical axis (IMPO
and RESP are more Qifferentiated, as well as PROV and PART; WELF and SALA are
closer together, as are PLEA and HEAD). The pleasing thing about the distribution
of subject vectors is, that they now cover the whole range of directions. We

have marked four sections in figure 15 which divide the totsal group into four

typical subgroups:

The modest (1): SECU, WELF and SALA are evaluated relatively high in this group,
IMPO and PROV relatively low. These people are Jjust meking a living and some of
them probably have settled down in university for the rest of their lives.

Opportunists (I1): here MAKE is relatively high and RESP is relatively low. This

group is more ambitious than group I, but they want to keep away from duties.
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figure 15. Job satigfaction dats in deéviatiocn from c¢oélumn

means (MDPREF, first 2 out of 8, expl.var. 51%).

The_hopeful (II1): typically, PROV and IMPO are important and 'material things'
are not. They are eager to meke their own way in science.
Managers (IV): here RESP, PART (and IMPO) are dominsent » whereas SECU and MAKE

are not. These probably are the people in high positions (or a certain class

of paid students).

It is possible to accomodate most subjects in these four groups. Some of the

subjects which don't fit in very well actually conform to the general norm
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{cf. subjects 1, 10, 11, 21 in figure 14); others are in fact differentiated
in the third dimension of the deviation scores solution (this direction con-
trasts IMPO, SALA, MAKE with PROV, HEAD, PART and the two little subgroups are
subjects 4 and 5, the autonomous careerists, versus 14 an 16, the dedicated
8cholara).

This rather exhaustive interpretation of the obtained joint utility space
would require validation through careful examination of background characteris-
tics of the subjects. Also, reanalysis on subsets of the set of objects or on
particular subgroups of subjects could prove to be useful, but this would lead

us outside the scope of this paper.

4.4. The unfolding model.

In the vector model, the family of isochrests was characterized by vectors
pointing in different directions. This kind of representation has its roots

(or was borrowed from) the long-winded Spearman/Thurstone factor-enalytic tra-
dition within psychology or, quite independently, in the french data-snalytic
tradition called Analyse des Correspondencee (Benzécri, 1976). It yields a very
strong kind of model and there have been several attempts to generalize it. One
of these was to specify the family of isochrests as a set of parallel curves
(carroll, 1972), but the properties of this polynomial model have never been

worked out in detail.

A completely different proposal originated with Coombs (1952, 196h4). It starts
from the idea, that the dimensions of joint utility space should correspond to
fundamental dilemma's. If we were to consider a collection of cars which differ
on two attributes only, say price and safety, any 'rational' man would choose
a car which is cheap and safe over an expensive and unsafe one. But the very
thing which generates individual differerices and which mey be of practical or
theoretical interest, is the trade-off between opposing benefits (Cooumbs and
Avrunin (1977) dicuss this in terms of so-called approach-spproach, approach—

avoidance and avoidance-avoidance conflicts).

The assumption that people do maske different trade-off's (which in the example
is reflected by the amount of money they are willing to pay for safety) leads
to the concept of a point of maximum utility or Zdeal point. An ideal point
corresponds with an imaginary object which would be preferred to all other

available ones. This subjective ideal need not to be ideal in an absolute sen-
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figure 16. Wintersport map with circular

igochrests.,

se, but it represents the best possible compromise., And joint utility space,

as conceived here, will not reflect all attributes which characterize the objects
at hand, but only the ones that are relevent in the sense of urging people to
meke different trade-off's. Furthermore, if a particular subject is confronted
with two objects, he will prefer the one which is closest to his own ideal; put
differently, joint utility space is constructed such that the individual utili-
ties are reproduced by the distances between the object points and the ideal
point. In two dimensions, the model implies that the family of isochrests con-
sists of sets of concentric circles. In figure 16, one subject is put in with

an ideal point very close to Selva; the order of his utilities apparently is:
Selve, les deux Alpes, Obergurgl, Saas Fee, Cervinia, Chamonix, Gerlos, Kitz-
bihel. If we move around the ideal point a little bit, the order doesn't change
but the intervals between reproduced utilities do, A set of points whlch all
generate the same order of utilities is called an igotonic region. With enough
object pointsrelative to the nunber of dimensions, isotonic regions tend to be
compact and very small, at least in the interior of space. On the exterior, they
are fan-shaped and extend to infinity. This gives us a geometrical hint that the
unfolding model is a generalization of the vector model. For, if we imagine an

ideal point moving outwards, then beyond a certain limit circular isochrests
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figure 17. Equivalence of cicular and straight

isochrests when subject point moves outwards.

generate the same order of utilities as parallel straight lines perpendicular
to a vector pointing at the ideal point do. This is illustrated in figure 17T.

For clarity, only four isochrésts have been drawn.

Some results concerning the maximum number of preference orders generated by

n objects in r dimensions can be found in Coombs (1964) or, more completely,
in Good aﬁd Tideman (1977). In our example, with n=8 and r=2, this number turns
out to be"351. Thus the unfolding model accommodates much more preference or-
ders than the vector model does, but etill a lot less than the number of pos-

sible orders (n!).

We have said that in the present model utilities are reproduced by distances.

More specifically, the composition rule is mostly assumed to be euclidean:

853 =\/§1 (x5 = ¥5a) (33)

where Gij denotes the disutility of object J according to subject i, related

to the corresponding utility value by
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515 = H(uij) s (3k4)

where H is a suitsbly chosen monotone decreasing function. In metric unfolding,

we usually teke

Gij = T?zc (uij) - Yy (35)
In sympathy with the general strategy of Coombs (1964) to treat all data in the
social sciences under the wesakest possible assumptions, unfolding virtually has
been equated with row-conditional non-metric unfolding: one wants to reproduce
the rankorder of the utilities only, and moreover is not willing to assume in-
tersubjective comparsbility of these ranknumbers. This leads to & modification
of (34) into

where h are optimally chosen monotone decreasing functions. Although there
have been many settempts to find satisfactory algorithms for this relaxed version
of the model, these do not seem to have been very succesful (ef. Krusksel and
Carroll, 1969; Heiser and de Leeuw, 1978). Here, we will consider the more

tractable metric case only.

The a.ssumptlon of euclidean distance is vital to arrive at circular isochrests;
i,e., if we lock st a&ll points for which (dis)utility is constant, (33) tells

us that in two dimensions

2 _ 2 2
et = (x:i1 - yj1) + (xi2 - yjz) s (37)

which is the general equation of a circle with centre {x. 110 %y } and radius c.
In case we had chosen a non-euclidean composition rule, such as the so-called

eity-block metric

%15 ° 21 %5 = ¥5al 5 (38)

a set of square instead of circular igsochrests would have come out. Furthermore,
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note that the idea of compensation in general no longer holds, as yj2 in (37)
cannot be regarded as a single-valued function of yj1.

In the unfolding model, (im)popularity of objects is represented as eccentricity:
popular objects will be close to the centroid of the ideal points, controversisal
ones nearby the edge. To see this, consider the mean squared disutility of ob~

Jjeect §:
m
1 8%, (39)

which we may take as a measure of impopularity. Applying (33), we get

Bi-

. _
1 f (%, =-y.)%. (40)

p; =
J 18=1 18 TJe

i

We will now assume without loosing generality that the configuration of subject
. . . - . 2
points is centered, i.e. ina = 0, and that its sum of squares ggxia equals

1
some unknown velue m.E. We get

(41)

L}
oy
+
[ 4o ]
e
N

Thus if an object is very popular, P; will be low and according to (41} the sum
of squares of its coordinate values will be relatively small; if an object gets
more controversial, its pj value will be higher and its distance to the origin
increases, ete. If there happens to be an object which is alweys dominated by
almost all other objects, it usually 'needs a dimension on its own' (it might be
better to discard it for further enalysis).

Two kinds of decomposition techniques have been proposed to estimate the para-
meters of the metric unfolding model. One of these uses an algebraic analysis
of the squared distances implied by (33). This approach goes back to a conjec-
ture of Coombs and Kao (1960); other contributors are Ross and Cliff (196k),
Schénemann (1970) and Gold (1973). The second kind of technique tries to mini-
mize the least squares badness—-of-fit function
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m n E 2
L(x, ¥) = 121 321 (aij - {a(xia - yja) }

Pl

)2 (42)

over X and Y, by means of a specialized multidimensional scaling algorithm
(cf. Heiser and de Leeuw (1978), who compare three different algebraic methods
as to their suitability to provide a good initial configuration for the itera-

tive minimization of (42), in their program SMACOF-3).

We conclude this section with the remark that the name tunfolding' plastically
describes the problem which the decomposition technique has to solve: imagine
joint utility space depicted on a handkerchief; pick it up in the ideal point

i and pull it through a ring. The object points will come through in the order
of the utilities of subject i; thus an individual preference order is produced
by joint utility space, folded at point i. Obviously, the decomposition problem

is to unfold all preference orders simultaneously.

4.5. Applications of the unfolding model.

Unfortunstely, not many applications have been reported in the literature. There
are some small pioneer studies such as Coombs (1964), Roskam (1968) and Schine-
mann (1970), and some more substantial ones such as Daalder and Rusk (1972),
Green and Rao (1972), Davison (1977) and Delbeke (1978). Some of the reported
results exhibit suspiciously 'degenerate' clusterings of points, probably due
to the fundamental weakness of the non—métric unfolding approach. We think this
disappointing state of affairs can be remedied to some extent by adopting a
metric approach or by imposing restrictions on the parameters of the model. Ve
will discﬁss two analyses with the metric program SMACOF-3, using data from

Gold (1958) and Delbeke (1978).

The first example concems the evaluation of power characteristics by eight
different groups of middle-class american children. Among other things, Gold's
stu&y yielded the datamatrix reproduced in table T. The groups are labelled

A - H; the details of data collection and group composition do not bother us
here. The 17 row objects represent possible properties of children which, when
valued highly in a group, supposedly contribute to the social power of children
which possess them. Thus, IDEAS, FRIEN and PLAYS are very important to exercise
power in group A, whereas GOPER, DOING and GAMES are required in group B, etc.

PR e T T M‘ “ N
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f A B C D E F G H
1. SMART: Smart at school 13.5 13 17 15 16 17 17 16
2. IDEAS: Good ideas how to 1 17 13 6 6 10 9 4

have fun
3. MAKIN: Good st making things 13.5 6.5 12 15 13 12,5 15 1L
k. GAMES: Good st games with 16.5 17 17 1 13 13
running and throwing
5. FIGHT: Knows how to fight 12 i 11 15 14 15 16 12

6. STRON: Strong 9.513 15 13 12 16 1 15
T. FRIEN: Acts friendly 2 15.5 3 3 5 2 2
8. GOPER: A good person to do 9.5 1 Y oo1n 6 6 9

things with

9. ASKIN: Asks you to do things 5.5 5 1 Y 4 2 1 5

in a nice way

10. NOTEA: Doesn't start fights 5.5 1 T.5 1 T 1 Y T

and doesn't tease

11, HOWTO: Knows how to act so 15 13 5 2 2 8 5 3

people will like him

12. PLAYS: Plays with you a lot 3 8.5 9 10 8 9 11 6

13. LIKES: Likes to do the same 5.5 6.5 10 5 1 8 1

things you like to do

14, NICEL: Nice looking 1 10 T.5 12 15 14 10 17

15. HAVIN: Has things you'd like 16.5 15.5 16 T 10 12.5 12 10

to have

16, GIVIN: Gives you things 8 8.5 6 9 11 3 T 11

17. DOING: Does things for you 5.5 2 2 8 5 Y 3 8

table T. Ranks of items by per cent
important'; low value % most important., From Gold (1958).

of times they were rated 'very

Note that SMART and STRON are never appreciated very much and we expect that
they will turn up at the edge of joint utility space.

The result of the SMACOF-3 analysis is presented in figure 18. As expected,
SMART and STRON are far awsy from the centroid of the group points. Further-
more, the so-called soctal-emotional resources FRIEN, GOPER, ASKIN, NOTEA,
HOWTO and DOING are all close to the centroid of the group points (with NOTEA,
HOWIO and FRIEN far awsy from B and GOPER and HOWI'O far away from A). A tenta~

tive interpretation of the configuration of object points might be based on
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HAVIN

NICEL GIVIN

NBGTER  HoWTO

Goren  DOING E

EXPERT/COERCTVE

STRON

SMART

figure 18. Map of power reésources '(Gold, 1958) ; obtained
with SMACOF-3 (stress = 0.0299).

the concepts of French (1956) and French and Raven (1959). Reward power is based
on the ability of the actor to administer positive valences and to remove or
decrease negative valences. Clearly, HAVIN, GIVIN » NOTEA and HOWTO exemplify
this. Referent power is based on s liking or identification relationship; LIKES,
PLAYS and IDEAS are typical (but SMART and STRONG also). The third direction in-
dicated in the figure concerns expert— and coercive power, based on the belief

thet someone has greater resources (knowledge or information) within a given




- 41 -

aree (SMART, MAKIN, GAMES) or mediate punishments (FIGHT, STRON). The obtained
Joint utility space could be used to check whether children which are independent~
ly characterized as powerful within their group do indeed exhibit group-typical

power properties.

The second example is a reanalysis of Deibeke's (1978) data concerning prefe-
rences for family composition. The objects here are all combinations of number
of eons and number of daughters, ranging from O to 3. Thus (2,1) indicsates two
sons a.hd one daughter, (0,3) no sons and three daughters, and so on. In the
theory regarding family composition preferences (Coombs, McClelland and Coombs,
1973), two new variables are defined in terms of the old ones, viz. number of
children and sex bias (cf. teble 8). The theory now says, that each subject
employs two unimodal utility functions over the natural order of these charac-
teristics and that his overall utility for family types masy be obtained by
simple summation (up to a monotonic transformation). So, if a subject has a
sex bies -1 and nunber bias 5, he might order the family types as in table 9.
Note that there are several 'perfect' orders possible, depending on the scale
of the two utility functions. In each column of the table, disutility decreases

(and eventually rises again, as in column 3); the same is true for each row.

For this kind of data, we expect unfolding tp do well if we assume different
weighting of dimensions to be neglectable. The result of SMACOF-3 for 82 subjects
(psychology students at Leuven University) is plotted in figure 19. In this

number of children

0 1 2 3 4 5 6
(3,0)
b
bias (2,0) (3,1)
(1,0) (2,1) (3,2)
o | (0,0) (1,1) (2,2) (3,3)
'1 (031) (1’2) (2’3)
irl
ﬁzs -2 (0,2) (1,3)
..3 (0’3)

table 8, Family composition in terms of two
independent cheracteristics.
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3 13
10 9
1 15 " b
0 16 8 T 2
-1 n 3 1 |
-2 6 5 S
-3 12 l

table 9. Example of a perfect order for

family types. . !

figure 19. Map of family compositions (Delbeke, 1978), obtained

’ with SMACOF-3 (stress = 0.0382).
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figure 20. Map of femily compositions, obtained with the non-metric
program MINIRSA,

figure we have connected the points with Zgobias- and i8osizecontours. The
expected grid comes out well, except for the point (0,0), which is very un-
popular among these belgian students (only 3 first choices of male biased per-
sons). Overall, there is a bias towards larger femilies and towards males. We
mey compare this with the results obtained by Delbeke with the non-metric pro-
gram MINIRSA (Roskam, 1975), given in figure 20. Here the grid doesn't come
out at all; most subjects are clustered together inside the triengle in the
middle of the plot and their utilities are (monotonically!) treansformed into
constants for all objects except (0,0). Stress approaches zero in this case,

but the solution is not very informative.
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5. Projection techniques.

5. 1. Mapping the utilities into a known structure.

The techniques to be discussed in this section share the common characteristic,
that they assume the configuration of object points to be known in advance. The
task which remains, then, is to connect the utilities with this known configura-
tion. Altough any respecteble researcher 'should know something' sbout the ob-

Jects under study, frequently this something is not enough to specify the exact
position of the object points in p-dimensionel space. That's why we have speci-

fic kinds of applications in mind, such as:

- trade—off studies: suppose we have a collection of objects known to differ
on two negatively correlated desirable traits, e.g. a set of insurance policies
different in prize and in cover. We now may want to characterize subjects in
terms of safety bias on the basis of their utility judgments.

- multidimensional peychophysice: suppose we have a collection of objects chosen

as to differ on two physicel attributes, e.g. & set of taste mixtures, say
alanine and glutamic acid combined in various concentrations, which are to be
Judged as to their sweet-sourness; or a set of odour mixtures, say jasmin and
bergamot in various concentrations, to be judged on their hedonie tone.

- tmpregsion formation studies: here the objects are varied on psychological

attributes; typically, one confronts the subject with hypothetical 'stimulus

persons’', differing on, say, intelligence and dominance and asks for a judge-
ment of overall likeablenees. A large amount of research has been dedicated
to the discovery of the rule by which a subject combines different pieces of
information into one final impression (see Rosenberg, 1968, van der Kloot,

1975).

In all these applications we need not necessarily to assume monotonicity of
utility with each of the independent (i.e., varied or selected by the experimen-
ter) varisbles. Moreover, we will be primarily interested in questions like:
"what is the psychological effect of simultaneous variation?" or "what kind of
individual differences will turn up under simultaneous variation?". Applications
of a slightly different type are:

- digeriminant and convergent validation studies: suppose we have at our dis-

posal a psychological or cognitive mep of the objects (e.g., derived from a
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previous multidimensional scaling analysis of judged overall similarity);
we now mey ask ourselves how well the utilities can be connected with this
particular configuration (cf. Abelson, 1955; Jaspars, ven de Geer, Tajfel
and Johnson, 1972). Another possibility is, that we have a previously derived
Jjoint utility space and want to connect it with background variables of the
subjects, or with actual characteristics of the idealized objects (e.g., in
the Gold study (see figure 18), we may ask whether children which are inde—
pendently chosen to be powerful within group B are indeed better at games
with running and throwing, at meking things etc. and no good in knowing how
to act so that people will like them).

- cross-validation studies: we may split up our original sample into two ran-

domly chosen subsamples (or consider two independent samples right away). We
then derive a joint utility space for the first (sub)sample and regard the
obtained configuration of object points as fixed for the second one {cf.
Bechtel (1976), p. T4 = T7). This provides us with a check whether the ob-

tained configuration does indeed accommodate all possible individual utilities

In the next section we will consider some elementary techniques for displaying
individual utilities in two-dimensional space. After that, we will discuss mul-
tiple linear regression as a general class of techniques to fit more specific

"models in possibly more dimensions.

5.2, Elementary technigues in two-dimensional space.

The most obvious way to display individual utilities in a known configuration
of points is to label all points according to their corresponding utility
value. A somewhat nicer representation is obtained if we plot isochrests. Note
that, in contrast with the situation in sectidn 4.1., this is no longer trivial
as the configuration of points is no longer free to vary. Would the isochrests
show up in a disorderly or criss-cross way, this would simply mean that our

conjecture sbout the coherence between utilities and object mep is falsified.

To illustrate this procedure, we take the data of one particular subject from
a study by van Asten (1979) sbout the attitude towards taskdifferentiation in
primary schools. The relevant tasks are summarized in table 10. There are two
kinds of data: similarities between pairs of tasks and utility ratings for all

tasks separately (also given in teble 10, for one subject). First we computed
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BB: writing on the blackboard (3)

DA: taking care of domestic affairs (5)
DB: stimulating desirsble behaviour (2)
EA: teking care of educational appliances (5)
ET: showing expression techniques (3)

GR: building up & good relation (1)

HD: hearing and drilling (6)

IF: informing the pupils (1)

IS: instructing the pupils (2)

KB: keeping the books (T)

KO: keeping order (6)

LA: drawing up the learning activities (1)
LI: being engaged in the library (5)

IM: collecting learning material (1)

LP: eveluating the learning performence (4)
MA: dealing with meil (7)

SL: correcting spoken language (2)

ST: setting tasks (1)

SU: supervising pieces of work (4)

TE: telephoning (T)

TP: correcting test papers (U4)

WA: watching over the pupils (6)

teble 10. Tasks used in van Asten (1979);

utilities of one subject in parentheses.

an individual cognitive map with the program SMACOF-1, plotted in figure 22;
we then drew isochrests, aided by computing for a lot of points, regularly
spaced on a grid, the interpolated utility

n u.
w = 1 o + d’.k) ’ (43)
J= Jd

1 a

where a and b are suitebly chosen constants. In words, (43) says that the utility

of an arbitrary point k in the map may be obtained by a weighted average of the
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figure 22. Individuel cognitive map of educational tasks.

utilities of the fixed points, with the weights inversely related to the distan-

‘ces to these points.

There are several things to note about this rather exhaustive description of an
individual case. In the first‘place, the north/south direction seems to contrast
non-professional versus professional tasks; those on the right/below involve all
kinds of superpising sctivities, those on the left/sbove all kinds of prelimina-
ries. The tasks in the cemtre (LA, ST, IS, SL, TP, SU, DB, GR) apparently are

seen as the core of the Jjob. Furthermore, the isochrests indicate that the pro-
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fessional/nonprofessional distinction is primarily responsible for the differ-
ences in utility, but not monotonically (HD and LP may be typical, but not very
pleasant). Note that, although the psychological distances between the pairs

(LM,LI) and (LM,ST) or (IF,WA) and (IF,GR) are roughly the same, their utility
differences are very different; this msy be seen as a possible source of atress
or cognitive dissonance. Finally, note that TP and SU are 'out of place'; they

lie in an area of utility 3, whereas their actual value is b4, 'disharmony' again.

Whether this kind of representation, though plausible, has any practical or
theoretical velue is open question. It certainly needs replication to arrive

at a relisble map.

The second technique we want to demonstrate is to delineate isotonic regions,

i.e., regions in the map which account for one particular rankorder of utilities.
We will utilize a smaller set of dissimilarities and utilities, borrowed from
Jaspars, ven de Geer, Tajfel and Johnson (1972); for an other secundary analysis
of this materisal, see Bechtel (1976). The purpose of the Jaspars e.a. study was
to clarify the development of national stereotypes and attitudes in children,
with notions from Heider's theory of cognitive balance. We will use only part

of their data here, in an attempt to represent it more thoroughly.

The essential ingredients are again a SMACOF-1 scaling solution and a rank order
of utilities (see figure 23). The objects are: the Netherlands (N), England (E),
the United States (A), France (F), the USSR (R) and Germany (G); the subjects
are second-grade dutch children and the overall rank order of their utilities
N-E-A~-F-R~ G. According to Jaspars e.a., nationaliem implies that one's
own country is perceived as closely resembling the most ideal country. If this
is true, it follows that the more a country is perceived as different from one's
own country, the less it is preferred over other countries. This conjecture was
checked by computing the correlation between the utility of the five 'other'
counti'ies (Thurstone case V values) and the distance from the Netherlands in the
cognitive map., For this particular subgroup the correlation is close to zero,

which need not surprise us in view of figure 23.

If we just want to describe the rankorder N - E ~ A - F - R - G in terms of any
ideal point or an isotonic region in the cognitive map, we should look somewhere
in region I, which is the set of points which are closer to the Netherlands than
to any other country. But the remaining part of the utility order (E - A- F - R
- G) can be represented perfectly by all points in region II, which is disjunct



.

region IT

figure 23. Second-grade children's cognitive mep

of nations with three isotonic regions.

from region I; so we may not hope for a good representation of the complete
rank order (we could say: disregarding the Netherlands, which is chosen first
anyway, an ideal point can be located anywhere in region II, reflecting a
World War II direction). Alternatively, we could lock for a 'perfect' anti-
idealpoint; it turns out that every point in region III (including Germany)

has & renk order of distances G- R= F - A - E - N, precisely the reverse uti-
lity order. This implies that the utility order doesn't reflect nationalism,

but anti-Germaniem.

For the other subgroups in the Jaspars e.a. study, comparable conclusions can
be reached with this kind of approach. For larger problems (more objects, more

subjects, or both) or if our cognitive map has more dimensions, the method gets
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bothersome and we need a mathematical formulation of the problem.

5.3. Fitting & family of isochrests by linear regression.

In this section we will first discuss the problem of finding one ideal point

in a fixed p-dimensional configuration of object points; the procedure can be
repeated for any number of ideal points. After that, we will briefly indicate

the possibilities of fitting other families of isochrests and discuss some appli-
cations in section 5.3. A complete account of the present topic can be found in
Carroll (1972), who introduced it under the name external analysis of preference
data, and Bechtel (1976); also see Davison (1976a,b).

We start with en assumption like (36) in section U4.L4., which says that the dis-
tance between ideal point i and object point j is a monotone decressing function
(specific for subject i) of the utility of object j, according to subject i. As
we are dealing with just one subject here, we suppress reference to the subscript

i and specify as our decreasing function:
5, = (8 - u) ¥ (b4)
J o J :

vwhere o and B are arbitrary constants (provided that o > O and B > max (uj)).
The choice of this particular decreasing function is no coincidence; it allows

us to write
uj = B - ot6§ (45)

and to get rid of the square root in the euclidean composition rule (33), by
which we get

= 2

B -a {a,z x2 + 21 y§a -2 E xayja} . (46)

1 a=1

Here the uj and yj& are known and the o, f and xa are the unknown parameters.
Now the second basic trick in this approach is to introduce the change of
variables:




- 51 -

Z30 =1, (b7a)

zja =—2yja s a=1, ... , D (th)
2

“pe1) © g Tja (b7e)

a=1
for a1l j = 1, ... , n and the reparametrization:

P

YO =B -~ q Z X: s (1488.)
a=1

Ya =-axa, a=1, ... 4 P (48b)

Yp+1 =,- a , (L48c)

which meskes it possible, using (46), to arrive at the transformed model

<
"

. + § P .
37 To Tk Yatia T Ypra®i(pe)
p+1

I vz . (L9)
a=p 8 98

This is a set of n nonhomogeneous linear equations in p + 2 unknowns, which in
general has no solution, but may be spproximately solved, resorting to the least
squares principle again, by standard multiple regression methods. Once estimates
of the y's have been found, (48) may be invoked to find estimates of the original

parameters.

Before we proceed with some elaborations of the transformed model, we want to
remark that the name projection techniques derives from the geometrical inter-
pretation of multiple regression implied by (49), and is meant in contrast with
decomposition techniques. In its simplest form, the geometry of multiple regres-
sion is illustrated in figure 24. We have only two independent varisbles here,

z1 and z2, which are represented as vectors and 'span' the subspace . In general,
the dependent varisble u need not {and most likely will not) be in the plane span-
and z,.; then the least squares approximation of u will be U, the

1 2
perpendicular projection of u onto .

ned by z

AMlternatively, we could imagine the 25 85 D points in (p+2)-space, in which we
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figure 24, Least squares linear regression.

want to find a direction (vector) y such that the projections of the {z } onto
Y are approximately equel to the {u }; i.e., we fit the vector model to a fixed
set of transformed coordinate va.lues. This way of looking at the approach imme-
diately suggest how we would fit in a vector for each subject instead of an

ideal point: by not tranforming the coordinate values!

Now consider a family of isochrests consisting of concentric ellipses instead
of circles: in one direction utility decreases faster than in the other one. In

terms of a composition rule:

63. = 921 wo(x, - yja)2 . (50)
Carroll calls this the weighted unfolding model: each subject may weight the
axes differently. We can use a change of variables and the corresponding repara-
metrization again to transform the problem into the form (49); instead of two
extra variables we will now get p + 1 extra varisbles in the regression. An
even more general model is obtained if we allow each subject to have his own
orientation of ellipses: the general wnfolding model. It is tempting to call
this 'Carroll case I', as the number of parameters here easily outgrows the
number of independent detavalues. Indeed, Carroll emphasizes the fact that the

various models form s hierarchy, in which each simpler model is a special case
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of all the more genersl ones, obtained by imposing restrictions on their para-

meters.,

This brings us to a final remark concerning the problem of connecting a set
of utilities with a known configuration of object points. In principle it is
possible to combine a decomposition technique with a projection technique: our
objective would be to decompose a matrix of utilities under certain restric-
tions upon the configuration of object points. An exsmple of this sapproach can
be found in Heiser and de Leeuw (1979).

5.4, Applications of projection techniques.

Carroll's hierarchy of models is implemented in the program PREFMAP (Carroll
and Chang, 1967). Applications (sometimes using other programs) include Green
and Rao (1972), Funk, Horowitz, Lipshitz and Young (1974), Bechtel (1976), Del-
beke (1978) and van Asten (1979). »

We will first discuss fitting in vectors, using data from Funk e.a. (1974), con-
cerning stereotypes sbout ethnic groups in the U.S.A. For this purpose, we use

a cognitive map obtained with SMACOF~-1, which appears to be more informative
than the one obtained by Funk e.a. (an essentially three-cluster structure). It
is presented in figure 25, together with seven directions, computed with PREFMAP,

which represent the independently obtained rating scale data in teble 11.

& X
o 2 FE 95?69?

o < {,\’00 e;?ﬁ’ x;yo ‘b&k K)éf\' xf.?
AN - Anglo 2.4 3.2 3.2 2.5 3.2 2.3 2.6
BL - Black 3.0 1.h 3.1 2.6 2.1 1.4 1.9
CH - Chinese 1.1 1.9 1.7 1.b 2.8 1.5 2.3
GE - German 1.4 2.6 2.2 1.8 2.9 1.9 2.8
IN - Indian 1.9 0.7 1.9 1.6 1.9 1.5 1.9
IR - Irish 1.5 2.1 2.3 2.6 2.6 1.9 2.1
IT - Italian 1.6 1.9 2.3 2.9 2.4 1.9 2.0
JA - Japanese 1.3 2.1 1.6 1.4 3.2 1.6 2.k
JE - Jewish 1.8 3.2 2.4 2.5 3.1 1.7 2.8
ME - Mexican 2.0 0.8 2.1 2.4 1.7 1.3 1.6
NE -~ Negro 2.8 1.3 2.7 2.6 2.1 1.6 1.8
PO - Polish 1.3 1.6 1.6 1.8 2.3 1.7 1.8
PU - Puerto-Rican 1.8 0.9 2.3 2.3 1.8 1.4 1.6

table 11. Mean ratings of ethnic groups on T attributes.
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. figure 25. Cognitive map of ethnic groups with

seven attribute vectors.

Fourty-nine University of North Carolina students were subjects in this study.
The seven attributes were selected so as to cover a wide range of personal im-
pressions. In the figure, the. length of the vectors agein is proportioneal to

the goodness-of-fit (indicated by multiple correlations here). The attributes
seem to fall into two groups (activist, agressive, emotional) and (affluent,
patriotie, industrious) inopposite directions, with intelligent in between. Note,
however, that some groups are high on all attributes (AN), others low everywhere
(CH, IN). If we interprete this as an overall judgment effect, we may teke devia-
tions from the row means (after standardisation of colums to make the scales
comparable). The deviation scores are given in teble 12. In an attempt to improve
fit and interpretsbility, we use the three-dimensional SMACOF-1 solution (fig. 26).
Note that AN for example is typified most strongly now by intelligent and not so

much by affluent or agressive, on which others have high scores too. The First
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industrious .87

.69
4 A patriotic .93
affluent
.69
intelligent
emotional
.67
aggressive
.89
.69
ME g7 1 intelligent
emotional
[T GE
Po
.69
N patriotic

industrious .87

affluent
b AN .93
aggressive &

.89 B 3

activist

.89

figure 26. Three-dimensionsl solution for Funk e.a.

(first dimension horizontal, second vertical sbove,

third vertical below). Deviation scores, table 12.
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& &’ <
) C (2 “y
% SO SO AR
<5$ €;§> 4;&9 > 8§? K§Q> 469
& & ¥ & S
AN - Anglo -.130 .07k .122 -,229 -.013 .255 -.079
BL -~ Black 2502 =.219 401 ,163 -,270 -.354 —.224
CH - Chinese -.225 .,166 -.177 ~.303 .317 -.039 .260
GE ~ German -.322 ,165 -.141 -,323 ,126 .136 .359
IN - Indian 249 -, 173,015 -, 110 -.088 .0k1 .066
IR - Irish -.236 ,028 -.047 ,165 .002 .173 -.085
IT - Italian -.182 ~.038 -.043 ,338 -.102 .177 -.149
JA - Japanese -.198 .164 -.305 -.374 .461 -.005 .258
JE - Jewish -.241 258 -, 14k -0k 118 -,190 .243
ME - Mexican 281 ~,156 .110 .322 -,213 -,186 -.158
NE - Negro 434 -.222  ,207 194 -.239 -, 113 -.262
PO - Polish -.092 .096 -.199 -.043 .082 .206 -.0L48
PU ~ Puerto-Rican. | ..160 -.142 .201 .24k -,181 -.103 -.180
table 12. Deviation scores from table 11.
A ? T
¥ *
»
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. figure 27. Ideal points of Delbeke subjects in the a

priori defined family composition space.
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figure 28. Weights for the dimensions in the
PREFMAP-phase 2 solution for the Delbeke data.

two dimensions of the three-dimensional solution are roughly the same as the
two-dimensional one, as are the attribute directions. The third dimension contrasts
ME and PU with NE and BL on the 'coloured' side of space with a typical difference
on the attribute emotional. It contrasts IT and GE (PO) with AN and JE on the 'white'
side, with accompanying effects of intelligent and affluent.

As an example of fitting the weighted unfolding model, we will use the data of
Delbeke (1978) again. We take the varisbles number of children and sex-biae as
" our known configuration of object points and want to scale subjects not only in
terms of an ideal family, but also with respect to the dominance of either of both
variables. The results obtained with PREFMAP are given in figures 27 and 28. Sub-
Jjects indicated with arrows tend to get low weights on both dimensions. All mul-
tiple correlations are above .80 and the pattern is globally the same as in figure
19. Note that in figure 28 subjects with W, > w, tend to have low weights for both

dimensions.

In conclusion, the picture is not very revealing. One reason, as Delbeke already
pointed out, is that the estimates of the weights are not independent of the esti-
mates of the ideal points. Strictly speaking, the only interesting thing is the
ratio w1/w2 and unfortunately the present model does not incorporate this as a

restriction on its parameters.
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