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Abstract 

We formulate multiple correspondence analysis (MCA) as a nonlinear multivariate analysis method 
that integrates ideas from multidimensional scaling. MCA is introduced as a graphical technique 
that minimizes distances between connecting points in a graph plot. We use this geometrical ap- 
proach to show how questions posed of categorical marketing research data may be answered with 
MCA in terms of closeness. We introduce two new displays, the star plot and line plot, which help 
illustrate the primary geometric features of MCA and enhance interpretation. Out approach, which 
extends Gifi (1981, 1990), emphasizes easy-to-interpret and managerially relevant MCA maps. 

Multiple correspondence analysis (MCA) is weil on its way to becoming a popular 
tool in marketing research (Hoffman & Franke, 1986). For example, Green, Krie- 
ger, and Carroll (1987) use MCA to analyze the relationship between consumers' 
choice profile predictions from a conjoint task and consumer demographic char- 
acteristics. In a similar vein, Kaciak and Louviere (1990) illustrate how MCA may 
be used to analyze data from discrete choice experiments. Carroll and Green 
(1988) apply individual differences MDS to normalized Burt matrices (a principal 
data matrix in MCA) to determine the relationship between consumer demograph- 
ics and automobile characteristics with respect to number of cars in the house- 
hold. More recently, Valette-Florence and Rapacchi (1991) perform an MCA on 
the attributes-consequences-values matrix derived from a laddering task to con- 
struct a product positioning map and Hoffman and Batra (1991) apply MCA to 
study the association between television program types and audience viewing be- 
haviors. 

*The authors thank J. Douglas Carroll, Don Lehmann, Donald Morrison, and two anonymous 
reviewers for their helpful comments on a previous version of this manuscript.  
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We focus in this paper on the interpretation of MCA maps. The fundamental 
issue concerns the appropriate way to represent both the objects corresponding 
with the rows and variables corresponding with the columns of the data matrix in 
the same map. This problem has become increasingly more important because the 
three major statistical packages now have MCA modules in which the choice of 
scaling of row and column coordinates is left largely to the user (BMDP 1988; 
SAS Institute Inc. 1988; SPSS Inc. 1989). In addition, the variety of commercially 
available PC-based programs offer numerous options but little guidance to the 
user (BMDP 1988; Greenacre 1986; Nishisato and Nishisato 1986; SAS Institute 
Inc. 1988; Smith, 1988; see also Hoffman (1991) for a review). 

We present a geometrical approach to MCA that provides for enhanced repre- 
sentation and interpretation of MCA maps. Our work extends the treatment in 
Girl (1981, 1990) by placing increased emphasis on the geometry. Two new in- 
terpretive maps are introduced: star plots and the variable line plot. MCA is de- 
veloped as an MDS method that minimizes the distances between connecting 
points in a graph plot. We feel that these additional geometric properties make 
MCA easier to understand. 

1. Correspondence  analysis  as a model  

What is multiple correspondence analysis? The French literature (see, for exam- 
ple, Benzécri et al. 1973) discusses it in the context of metric multidimensional 
scaling suitable for frequency matrices, contingency tables, or cross-tables. Oth- 
ers formulate MCA as factorial analysis of qualitative data using scale analysis 
(e.g., Nishisato 1980) or principal component analysis (e.g., de Leeuw 1973) per- 
spectives. 

We formulate MCA in terms of connecting objects, brands say, with all the 
variable categories they are in and use a least-squares loss function as the rule to 
do this. Then, interpretation sterns not from terms of chi-square distance or pro- 
files (cf. Hoffman and Franke 1986), but rather, follows from le principe bary- 
centrique, the centroid principle, which says that brands close to each other are 
similar to each other. Our approach thus emphasizes the geometrical aspects of 
multiple correspondence analysis. 

2. M C A  as an MDS method 

The concept of homogeneity serves as the basis for our development of multiple 
correspondence analysis. Homogeneity refers to the extent to which different 
variables measure the same characteristic or characteristics (Girl 1981, 1990). Ho- 
mogeneity thus specifies a type of similarity. There are different measures of ho- 
mogeneity and different approaches to find mäps; the particular choice of loss 
function defines the former and the specific algorithm employed determines the 
latter. 
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Suppose we think of a rectangular data matrix as a multivariable representat ion 
(i.e., as a joint map of  the brands and the variable categories) in two-dimensional 
Euclidean space. The map will be more appealing if brands are close to the cate- 
gories of the variables that they occur  in. This is the basic premise of  multiple 
correspondence analysis. By the triangle inequality this implies that brands with 
similar profiles (i.e., brands that are offen in the same categories) will be close, 
and categories containing roughly the same brands will be close as well. We now 
formalize these ideas by defining a suitable loss function to be minimized. 

2.1. Maximizing variable homogeneity 

Let  the data be m categorical variables on n objects,  with the jth variable taking 
on k i different values, its categories. We code the variables using indicator matri- 
ces to allow for easy expression in matrix notation. An indicator matri× is a binary 
matrix (exactly one element equal to one in each row) that indicates the category 
an object is in for a particular variable. Thus, if variable j has kj categories,  then 
Gj, the indicator matrix for this variable is n × k~ and each row of Gj sums to one. 
More specifically, consider the example of G = [Gj] . . . IG,,] in table 1, with 
m = 4, n = 24, kl = 3, k2 = 5, k3 = 3, and k4 = 3. Here,  the objects are 24 small cars 
that Consumers Union judged by degree of  crash protect ion (Consumers Union, 
1989). These judgments are based on Consumers Union's analysis of National 
Highway Traffic Safety Administration crash-test data. The two occupant  protec- 
tion variables indicate how well the car protected a driver dummy and a passenger 
dummy during crash tests. Structural integrity indicates how weil the passenger 
compar tment  held up to the forces of a crash; bet ter  performance is associated 
with a greater chance of avoiding injuries other  than those caused by the imme- 
diate forces of a crash. The remaining categorical variable indicates car body 
style. 

The purpose of multiple correspondence analysis is to construct  a jo in t  map of 
cars and variable categories in such a way that a car is relatively close to a cate- 
gory it is in, and relatively far from the categories is it not in. By the triangle 
inequality, this implies that cars mostly occurring in the same categories rend to 
be close, while categories sharing mostly the same cars tend to be close, as well. 
The extent to which a particular scaling X of  the cars and particular scalings Y« of 
the categories,  satisfy this is quantified by the loss of  homogeneity, a least squares 
loss function: 

~r(X;Y, ..... Ym) = Zj S S Q ( X - G f f )  (l) 

where SSQ(.) is shorthand for the sum of  squares of  the elements of a matrix or 
vector. The loss function in (1), giving the sum of  squares of  the distances between 
cars and the categories they occur  in, measures departure from perfect  homoge- 
neity or similarity. Quite simply, muRiple correspondence  analysis produces the 
map with the smallest possible loss (Girl 1981; 1990). 
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Table I. lndicator matrices constructed from C o n s u m e r  Union's  judgments  on crash protection 
for 24 small cars 

Occupant  protection b 
Car make Structural 
and model Body style" Driver Passenger  integrity c 

1 2 3  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  

A c u r a l n t e g r a  1 0 0  1 0 0 0 0  1 0 0 0 0  0 1 0 0 0  
Daiha t suCharade*  1 0 0  0 1 0 0 0  1 0 0 0 0  0 1 0 0 0  
Dodge Colt 0 0 1  0 0 0 0 1  0 1 0 0 0  0 1 0 0 0  
Eag leSummi t  0 1 0  0 0 0 1 0  0 1 0 0 0  1 0 0 0 0  
Ford Escort* 1 0 0  1 0 0 0 0  1 0 0 0 0  1 0 0 0 0  
FordFes t iva*  1 0 0  0 0 1 0 0  0 1 0 0 0  0 1 0 0 0  
HondaCiv ic*  1 0 0  0 1 0 0 0  1 0 0 0 0  0 0 1 0 0  
Hyunda iExce l*  1 0 0  0 0 1 0 0  0 0 1 0 0  0 1 0 0 0  
Hyunda iExce l  0 1 0  0 0 1 0 0  1 0 0 0 0  0 1 0 0 0  
I s u z u I - M a r k  0 1 0  0 0 0 0 1  0 0 1 0 0  0 1 0 0 0  
Mazda323* 1 0 0  0 0 0 1 0  0 0 1 0 0  1 0 0 0 0  
MazdaRX-7* 1 0 0  0 1 0 0 0  1 0 0 0 0  1 0 0 0 0  
MitsubishiMirage  0 1 0  0 0 0 1 0  0 1 0 0 0  1 0 0 0 0  
Mitsubishi Starion* I 0 0  0 0 1 0 0  1 0 0 0 0  I 0 0 0 0  
N i s s a n P u l s a r N X *  1 0 0  0 0 0 1 0  1 0 0 0 0  0 1 0 0 0  
N i s s a n S e n t r a  0 1 0  0 0 0 0 1  0 1 0 0 0  0 !  0 0 0  
N i s s a n S e n t r a  0 0 1  0 0 0 1 0  1 0 0 0 0  1 0 0 0 0  
P lymouthCol t  0 0 1  0 0 0 0 1  0 1 0 0 0  0 1 0 0 0  
Pon t i a cLeMans  1 0 0  0 0 1 0 0  0 1 0 0 0  0 1 0 0 0  
S u b a r u J u s t y *  1 0 0  1 0 0 0 0  1 0 0 0 0  0 0 1 0 0  
Toyota Celica 1 O0 1 0 0 0 0  1 0 0 0 0  1 0 0 0 0  
Toyota Tercel* I O0 O01 O0 1 0 0 0 0  1 0 0 0 0  
VolkswagonGolf*  0 1 0  O01 O0 1 0 0 0 0  0 1 0 0 0  
Yugo GV* I O0 0 0 0 0 1  1 0 0 0 0  O01 O0 

Gj G2 Gj G 4 

"l = 2-door, 2 - 4-door, 3 = wagon; asterisk indicates a hatchback. 
bi = no injury or minor injury, 2 = possible moderate injury, 3 = certain injury-possibly severe, 
4 = high likelihood of severe or fatal injury, 5 severe or fatal injury virtually certain. 
~1 = rauch better  than average, 2 = bet tet  than average, 3 = average, 4 = worse than average, 

5 = much worse  than average. 

We link MCA to multidimensional scaling through the notion of d i s tanceJ  Sup- 
pose we were to per form a multidimensional unfolding on G, the super-indicator  
matrix. The MDS solution for unfolding requires a map in which the distance 
between a car point and a variable category it occurs  in is always smaller than the 
distance f rom that car to a nonchosen variable category point. The relation with 
MCA is obvious.  MCA plots a category point in the center  of  gravity of  the car 
points for those cars that choose  that category, with the consequence  that, over- 
all, car  points will be closer to the chosen variable categories than to the noncho- 
sen variable categories.  Interpretat ion of the cars is guided by the fact that we 
solve for X (with unit total sum of  squared distances) such that the within-category 
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squared Euclidean distances are as small as possible (or, equivalently, that the 
between-category squared Euclidean distances are as large as possible). Note  that 
this amounts to the same thing as performing multidimensional scaling on a sim- 
ilarity matrix S = {su} with s•= 1 if there is a match between the similarity of car 
i and variable category j, and 0 otherwise. The primary difference between MCA 
and MDS is that the MCA solution is obtained at the expense of  stronger nor- 
malization conditions and a metric interpretation of the data. However ,  MDS 
methods for unfolding make weaker  assumptions,  but also tend to produce degen- 
erate solutions. 2 

The MCA algorithm, implemented in the SPSS-X program CATEGORIES 
(SPSS Inc. 1989), is exceedingly simple and relies on alternating least squares (or, 
equivalently, reciprocal averaging (Hirschfeld 1935; Horst  1935)). The optimal 
variable category coordinates are computed as the averages or centroids of the 
(optimal) coordinates of  the cars in that category: 

v r : I ) # % ' x  (3) 

with Gj defined as above,  and Dj = G/Gj  the k~ x kj diagonal matrix containing 
the univariate marginals of  variable j. Similarly, the optimal car coordinates are 
the centroids of  the (optimal) coordinates of  the categories containing that car: 

X = m 1ZiG«Y j (4) 

3. Multiple correspondence analysis of the car data 

3.1. The graph plot 

Now let us apply MCA to the car data of table 1. We first present the post-treat- 
ment graph plot from the analysis. Each X point in the plots represents a car and 
each Y point a variable category. A graph plot connects  all cars with the category 
points they belong to and has a line for every element in the super-indicator matrix 
G equal to one. Out  graph plot illustrates the fundamental  idea behind MCA. 
After seventeen iterations, the post- treatment graph plot of figure 1 is quite or- 
derly as the lines connecting cars to their categories are as short as possible, and 
the fit is improved considerably (loss = 4.25 vs. 22.95 for the arbitrary initial so- 
lution). 

3.2. Geometrical features of  MCA maps 

In this section, we introduce star plots and line plots. These plots illustrate the 
primary geometric features of  MCA and enhance interpretation. We use the car 
data to illustrate the most important  geometrical  aspects of MCA maps. 
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X 

X 

Figure 1. Post-Treatment Graph Plot 

The MCA of the car data produces dominant eigenvalues of .587, .389, and .347. 
The eigenvalues are obtained as squared singular values from the simple value 
decomposit ion of D-'/-'CD -'/-' with C the matrix of all bivariate marginals (see Hoff- 
man and de Leeuw 1990). The eigenvalues suggest that three dimensions are nec- 
essary to explain the car data. We use only the first two to simplify explanation. 
Since the singular values from an MCA are canonical correlations, we interpret 
the eigenvalues as squared canonical correlation coefficients. Cars and variable 
categories are represented as points in a joint low-dimensional map. The two- 
dimensional joint map is simply the optimal graph plot drawn without the lines 
and appears in figure 2. 

The horizontal direction in the map separates cars on the basis of  occupant  
protection. Cars on the right are associated with injuries to the driver and passen- 
ger, while cars on the left are associated with no injuries to the passenger or driver 
and moderate injury to the driver. We might label dimension one severity of in jury 
(but note that the relationship is distinctly nonlinear). This dimension also dis- 
criminates between cars on the basis of body style with two-door cars on the left 
and four-door and wagon styles on the right. The vertical dimension differentiates 
cars on the basis of how well the passenger compar tment  stood up to the forces 
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of a crash. Structural integrity is best for cars at the top of the map and worsens 
(to average) as we move to the |ower left. 

The distance between two car points is related to the homogeneity (i.e., the 
similarity) of their profiles, or more generally, their response-patterns/Cars with 
identical patterns are plotted as identical points. This is iIlustrated in figure 2 for, 
among others, Plymouth Colt and Dodge Colt in the lower right and Eagle Summit 
and Mitsubishi Mirage in the upper right, which have identical profiles in G. Two 
very similar cars are the two Hyundai Excels near the center right of figure 2. 

Another feature of the map is indicated by the positions, for example, of the 
categories average structural integrity and wagon styte. These point locations in- 
dicate that a category point with low marginal frequency will be plotted towards 
the edge of the map, while a category with high marginal frequency (two-door 
style, no injury to passenger, and better structural integrity) wiil be plotted nearer 
to the origin of map. As a corollary, cars with response patterns similar to the 
average response pattern will be piotted more towards the origin (the two-door 
and four-door Hyundai Excels and Volkswagon GolD, while cars with unique pat- 
terns (for example, Mazda 323 and Yugo GV) appear near the edges. 

A distinct view of the variables is afforded by the variable line plot in figure 3, 
which depicts only the variables and their corresponding category coordinates. 
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Figure 3. Line Plot 

Table 2. The discrimination measures per variable per dimension 

Variable Dimension 

One Two 

Body Style .621 ,082 
Driver Protection .714 .750 
Passenger Protection ,642 .043 
Structural Integrity .373 .681 

h .587 .389 

The line plot illustrates the spread of the category points for each variable. A 
variable discriminates bet ter  to the extent that its category points are further 
apart. The line plot thus show how well each variable discriminates, as visualized 
by the sum of the squared distances between the category points for a variable 
and the origin. Discrimination measures are quantified as the squared correlations 
between the car coordinates X and the optimally t ransformed variables, G;Yj, and 
are interpreted as squared factor  loadings. We show them in table 2. The larger 
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the discrimination measure for a variable, the better the categories of that variable 
discriminate between the cars. Passenger protection and body style discriminate 
among cars on the first dimension, while driver protection discriminates well on 
both dimensions. Structural integrity discriminates mostly along dimension two. 
The average over variables of the discrimination measures are the diagonals of A. 
For each dimension, MCA thus ma×imizes the sum total of the discrimination 
measures, which means that MCA assigns category coordinates for each variable 
that have the maximum spread. 

Interpretation of category points is guided by the centroid principle: category 
coordinates are the weighted average of car coordinates occurring in that cate- 
gory. A variable's star plot illustrates this principle. The star plots are displayed 
in figures 4 and 5 for driver protection and structural integrity, respectively. We 
omit the star plots for body style and passenger protection in the interests of 
space. Each star plot maps a particular variable's categories with all the car points 
and shows loss for each variable. Relative loss in the two-dimensional solution is 
the sum of the squared distances between car points in a cluster and their average, 
the category point. We have drawn lines in the star plots to illustrate this. Since 
category points are the average of the car points that share the category, for each 
variable, categories of that variable divide the car points into clusters, and the 
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category points are the means of the clusters. For  example,  figure 4 depicts clearly 
four different clusters of driver protection; note how the categories of no injury 
and moderate  injury are very similar. Figure 5 displays the groups of cars classi- 
fied according to their degree of  structural integrity. Thus, the star plots visualize 
the homogenei ty of the cars, as the categories divide the cars into homogeneous 
subgroups. 

With respect to between-set  interpretation, cars are relatively close to cate- 
gories they are in and relatively far apart from categories they are not in. For  
example, Subaru Justy, Hondä  Civic, and Yugo GV are associated with average 
structural integrity; Mazda 323, Eagle Summit, and Mitsubishi Mirage are asso- 
ciated with a high likelihood of severe injury to the driver; the cars to the left of 
the map in figure 2 are associated with no or moderate  injury to the driver. In 
terms of  distance, cars in a particular category will (on average) have a smaller 
(squared) distance to that category than cars not in that category. Further,  if a 
category applies uniquely to only one car, then that car point and category point 
will coincide. The same is true when a category applies uniquely to a group of 
cars with identical response patterns.  It follows that cars mostly occurring in the 
same category tend to be close to each other and categories sharing mostly the 
same cars tend to be close as weil. 
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4. Discussion 

4.1. Graphical representation 

In our framework, distances corresponding to ls in G must be small (compared 
to distances corresponding to 0s), but this requirement alone is not sufficient to 
produce a map, since the trivial solution satisfies it. Hence, we need a normali- 
zation. A natural normalization would be to examine all the distances and simply 
minimize the between-set distances (i.e., the sum of squares) keeping all other 
distances fixed. Unfortunately, this always leads to a one-dimensional solution. 
Thus, we require something stricter, so we impose dimension orthogonality and 
normalization constraints. Which way we choose to normalize (i.e., normalize the 
objects X and leave the variables Y: free, or the reverse) is immaterial geometri- 
cally, since the problem is formulated in a joint space. However, choice of nor- 
malization affects interpretation. Therefore, the researcher must make a choice 
with substantive considerations the guide. 

The centroid principle defines graphical representation and interpretation of the 
MCA map. Its rationale lies in the inherent asymmetry of multivariate data. Al- 
most all of the applications of MCA that we have seen, and consequently almost 
all interpretations, are inherently asymmetric since multivariate data are by defi- 
nition row or column conditional. In other words, in the context of a specific 
marketing analysis, we treat rows and columns differently since each represents 
distinct entities we wish to characterize graphically. 

Consider the matrix with rows defined by a set of brands and columns a set of 
attributes describing the brands. Row conditionality implies that we primarily 
wish to emphasize the brands and scale them such that in the map, brands are 
closer together to the extent that they are more similar with respect to the attri- 
butes. This suggests that it is logical to think of ordering brands by attributes. 
Columns, i.e., attribute categories, are the center of gravity of the brands. Prac- 
tically speaking, choosing the normalization implied by row conditional data 
means that brands will be equally spread in all directions in the map, with attribute 
category points indicating the weighted averages of the brands in that category. 
In other words, brands are sorted into their respective categories of an attribute. 
This leads, as in our car data example, to a single map for the brands and a set of 
star plots for each separate variable. 

Thus, for row conditional data, we normalize the set of object coordinates X 
and leave the variable category coordinates y: free. We denote this Case 1. This 
means that the variable categories Y: are found by the centroid principle. In this 
case, the optimal scaling of a variable category (equation 3) satisfy Y~'DjYj = 
X'GjD:-~G/X and thus Y'DY = mX'P.X = mA, with P. the average of the 
GjDiIGj. Quite simply, in words, a variable category coordinate is the centroid of 
the coordinates of the objects in that category. Gift (1981, 1990) calls this the first 
centroid principle. 

Now consider that rows are consumers and columns are a set of categorical 
variables which the consumers have evaluated. Column conditionality implies 
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that we primarily wish to represent the variable categories as points in a map and 
scale them such that variables close together are more similar with respect to the 
consumers in the matrix. This normalization of MCA orders variables by these 
individuals. Then, we obtain a single map for all the variable categories and, if 
desired, a set of star plots for each individual with categories of all variables in 
the plots. Now, variable categories are equally dispersed in all directions and the 
centroid interpretation applies to the individuals. As applications in this context 
often involve very large numbers of individuals, we typically omit the star plots 
and focus research attention on the graph plot of variables only. Accordingly, we 
normalize the set of variables and teave the objects free. In this Case H, the X 
are found by the centroid principle and the optimal scaling of the objects (equation 
4) satisfies X'X = m-1Y'DYA = A. In words, the optimal coordinate of an object 
is the centroid of the coordinates of the variable categories the object occurs in. 
Girl (1981, 1990) calls this the second centroid principle. 

It will almost always be the case that primary focus is on either the rows or the 
columns, but not both equally. However, we may normalize according to Case 
III, in which both the objects and the variable categories are normalized. Some- 
times referred to as the French scaling, this option treats rows and columns sym- 
metrically and drops the centroid principle. Within-set relations are interpretable 
as chi-square distances, 4 but no between-set interpretation is possible. For ex- 
ample, Greenacre (1989) prefers to normalize according to Case III (symmetri- 
cally scaling both sets of points in principal coordinates) and emphasize the 
within-set chi square distances at the expense of any between-set interpretation. 
Carroll, Green, and Scharfer (1986) recommend a variant of Case III, the so-called 
CGS scaling, which they argue provides for interpretation of all distances (but see 
Greenacre (1989) for a dissenting view). What should be clear from out discussion, 
however, is that the aims of the investigation guide the researcher's choice of 
representation and interpretation. 

4.2. Concluding remark 

Our geometric approach suggests that MCA is fruitfully thought of as a nonlinear 
multivariate analysis method that seeks to minimize the distance between lines 
connecting objects with all the categories they are in, rather than as a method to 
represent chi-square distances. Out bias suggests that simple CA may be more 
naturally thought of as a special case of MCA with the number of variables equal 
to two than as a method to approximate within-set chi-square distance. Finally, 
we believe that if marketing researchers consider the relationship between corre- 
spondence analysis and multidimensional scaling through MCA (and the graph 
plot), rather than through CA (and the chi-square distance metric), they should 
have little difficulty interpreting the results from this powerful multivariate meth- 
odology. 
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Notes 

1. We can also reformulate the MCA problem in discriminant analysis or ANOVA terms. This 
development connects MCA to classical multivariate analysis. See Hoffman and de Leeuw 
(1990) for a fulter treatment. 

2. But see DeSarbo and Rao (1984, 1986) for a multidimensional unfolding solution, incorporating 
reparameterization, which avoids the degeneracy problem. DeSarbo and Hoffinan (1986, 1987) 
extend the model to binary data and compare the solutions with correspondence analysis. 

3. Note that the reverse will not necessarily be true. Two car points that are dose  together in a 
map of the first two-dimensions may be far apart in higher dimensionalities. 

4. The "chi-square" distance between two row points, say, is equal to the weighted sum of squared 
differences between row "profi le" values, with weights equal to the inverse of the relative fre- 
quencies of the columns. A similar definition holds for column points. These within-set dis- 
tances are denoted chi-square because if the data a r e a  contingency table, then the numerator 
creates squared differences between conditional row probabilities (the profilesL while the de- 
nominator weights the squared differences by inverse relative column marginals; thus. as Novak 
and Hoffman (1990) show, distances can be interpreted in terms of a) standardized residuals 
(components of chi-square), b) O - E~/E ~, observed minus expected counts under the log-!inear 
model of independence as a proportion of expected counts under independence, and c) "pro- 
files" (conditional probabilities). 
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