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INTRODUCTION

Multiple correspondence analysis (MCA) is a popular tool in marketing research
(Green, Krieger, and Carroll 1987; Hoffman and Batra 1991; Hoffman and Franke 1986;
Kaciak and Louviere 1990; Valette-Florence and Rapacchi 1991). In this chapter, we
introduce MCA as a nonlinear multivariate analysis method which integrates ideas from both
classical multivariate analysis and multidimensional scaling (MVA and MDS, from now on,
respectively).

In MDS models, a geometrical representation of the brands, say, is derived from
informatidn about the dissimilarities among these brands. The brands are represented in a
metric map in such a way that dissimilar brands are relatively far apart, while similar brands
are relatively close. In most MDS approaches, the map is a low-dimensional Euclidean space
(Cooper 1983; Green 1975). Compare this with cluster analysis, which can be interpreted as
an MDS technique. However, the metric map in which we display the brands is now a tree or
some other combinatorial structure (Aldenderfer and Blashfield 1984). Nevertheless, it is
clear that MDS has a very strong geometrical orientation and that the key notion is one of
distance.

In these respects, MDS is quite different from MVA, at least in its usual formulations.
The traditional MVA approaches proceed either by constructing linear combinations of
variables with optimality properties defined in terms of correlation coefficients, or by specifying
structural models for correlated variables, which are usually assumed to be multinormally
distributed. In these classical formulations, the geometrical notions play a relatively minor
role, with the emphasis shifted to linear algebra in the form of matrix calculus. Distance in
low-dimensional Euclidean space, the key concept in MDS, is replaced by the vector inner
product in high—dimensional space. Nevertheless, it is critical to realize that the basic
mathematical structure used in most forms of MVA and MDS is identical. It is none other
~than the familiar Euclidean space with the inner product defining the angle, and the
accompanying Pythagorean distance measure. |

We draw this comparison because the basic similarity between MVA and MDS can be

impressively exploited.  Gifi (1981; 1990), for example, organizes the better known MVA




methods into a system which takes multiple correspondence analysis (MCA) as the basic
technique from which all others are derived as special cases. MCA, as defined there, and as
we shall develop it in this chapter (see also Hoffman and de Leeuw 1992), is an MDS method
for categorical variables in which the focus is on the distance among the points in a low-
dimensional map.

In MCA, our concern is primarily with the following: 1) What are the similarities and
differences among the brands, say, with respect to the various variables describing them?; 2)
What are the similarities and differences among the variables with respect to the brands?; 3)
What 1s the interrelationship among the brands and the variables?; and 4) Can these
relationships be represented graphically in a joint low-dimensional space?

As we shall develop it, MCA is an MDS method that answers these questions in terms
of the notion of closeness. This means that between brands, two brands are close together if
they share similar variables, and between each variable category, two categories are close if
they occur in the same brands to the same degree; it also implies that a brand is close to a
variable category if the brand falls into that category.

We organize our chapter as follows. First, we offer some philosophy, which serves to
fix ideas. We then present the theory underlying this philosophy, discussing in turn the
homogeneity loss function and computational aspects of our approach. Next, we focus on the
geometry of the loss function, which emphasizes interpretation through the links between
MCA and some of the better known MVA techniques. An empirical example is then presented
which illustrates the primary geometric features of MCA. The chapter concludes with a
discussion of the issues involved in representing brands and variable categories in the same

map.




Some Philosophy by Way of History

The French literature (see, for example, Benzécri et. al. 1973) discusses MCA in the
context of metric MDS suitable for frequency matrices, contingency tables or cross-tables.
Others formulate MCA as factorial analysis of qualitative data using scale analysis (Bock 1960;
Guttman 1941; Nishisato 1980) or principal component analysis (Burt 1950; de Leeuw 1973;
Greenacre 1984; Hayashi 1950) perspectives.

Key papers in the history of simple correspondence analysis (CA) are Pearson (1904)
and Hirschfeld (1935). The history is complicated and somewhat confused because the early
papers dealt with theoretical questions and not with actual data analysis. The first paper
applying CA in actual data analysis was Fisher (1940).

For multiple correspondence analysis, the situation is somewhat simpler. The
technique was introduced, from the start, as a data analysis method, and the first paper was
undoubtedly the one by Guttman (1941). Nevertheless, there are some predecessors. In the
very early days of psychometrics, Edgerton and Kolbe (1936), Horst, (1936), Richardson and
Kuder (1933), and Wilks (1938) derived principal components as a form of regression in
which the predictor is missing.

MCA is the analysis of interdependence among a set of categorical variables, as distinct
from the analysis of dependence (with pre-defined sets of dependent and independent
variables). The approach we present in this chapter is particularly intuitive and should appeal
to marketing researchers, borrowing, as it does, concepts and terminology from discriminant
analysis and analysis of variance. We emphasize construction of not only an aesthetically

pleasing map, but also one that is easy to interpret, and hence, managerially relevant.

THEORY
The data are m categorical variables on n objects, with the j* variable taking on k
different values, its categories. Consider the example in Table 1, with m=7, n=31, k,=4,
k,=4, k;=4, k,=5, k;=4, k=4, and k,=4. Here, the objects are 31 Swedish industries which

groups of customers rated in 1990 on seven variables tapping different aspects of satisfaction.
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The data we present are aggregated over hundreds of customer responses in each service or
product category to provide an average view of the levels of each variable in each industry.
As shown in Table 1, except for the Price Increase Tolerance variable, which was scaled using
five categories, all variables were scaled using four categories.

Price measures the perceived price level relative to quality, ranging from very
unreasonable to very reasonable. Quality measures the perceived quality level relative to price
ranging from very low quality to very high quality. Repurchase Intention evaluates how likely,
from very unlikely to very likely, it is that the next time the customer purchases in the
category, the purchase will be the same manufacturer or brand again. Price Increase Tolerance
assesses the tolerable price increase given quality before the customer is likely to switch,
ranging from very likely to switch to very unlikely to switch. Satisfaction measures the
customer’s overall satisfaction with the product or service from very dissatisfied to very
satisfied. Expectation of quality measures the customer’s prior expectations of the quality of
the product or service from very low to very high. Finally, Ideal measures how close the
product or service comes to the ideal in the category, from very far away to very close.

Sets of variables are hypothesized to measure different aspects relaﬁng to customer
satisfaction.  Thus, quality and price represent performance aspects of satisfaction.
Satisfaction, expectations, and closeness to the ideal indicate the satisfaction construct and
price increase tolerance and repurchase tap aspects of customer loyalty. Fornell (1992)
provides a fuller discussion of these data in the context of his Customer Satisfaction Barometer
project’.

Insert Table 1 about here

We code the variables using indicator matrices, which allow for easy expression in
matrix notation. An indicator matrix is a binary matrix (exactly one element equal to one in
each row) which indicates the category that an industry is in for a particular variable. Thus, if

variable j has k; categories, the indicator matrix G, for this variable is n X k. The rows of G

TWe thank Claes Fornell, Professor of Business Administration and Director of the Office for Customer Satisfaction
ﬁeseaxch, School of Business Administration, the University of Michigan, for graciously providing us with these
ata.

4




add up to one. The seven indicator matrices for our example appear in Table 2. Notice that

the variable Expectation of Quality is missing for the industry FOOD, as indicated by the zeros

for every category of that variable. The indicator matrix for this variable is thus incomplete.
Insert Table 2 about here

The purpose of multiple correspondence analysis is to construct a joint map of the
industries and satisfaction variable categories in such a way that an industry will be relatively
close to a category it is in, and relatively far from the categories it is not in. By the triangle
inequality, this implies that industries mostly occurring in the same categories tend to be
close, while categories sharing mostly the same industries tend to be close, as well.

Imagine for a moment an arbitrary map that we could construct from Table 2 by
connecting industries with categories of the variables they are in. We might locate industries
randomly in the map, while variable categories could be positioned at the centroid or average
of all the industries in that category. We could draw lines that show the connections between
the industries and the variable categories. Such a map would contain the same information as
the data matrix in Table 2, but would be rather unappealing to the eye and difficult to
interpret. There would be many lines in the map and they would cross every which way. Our
rule for constructing such a map thus means that the map would give the impression that
industries are as far from the categories they occur in as they are from the categories they do
not occur in. We would deem such an arbitrary representation of the data highly
unsatisfactory.

Now suppose we think of this map as a multivariable representation, i.e. as a joint map
of the industries and the variable categories, in two-dimensional Euclidean space. How can
we improve upon the map? The map will be much more useful to us if industries are close to
the categories of the variables that they occur in. This is, in words, the basic premise of
multiple correspondence analysis. We desire a map of the data in low-dimensional Euclidean

space such that the points connected by a line are relal:vely close together (and the points not

connected by lines are relatively far apart). By the triangle inequality thlS implies that

industries with similar profiles (i.e. industries that are often in the same categories) will be
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close, and categories containing roughly the same industries will be close, as well. The
resultant map will capture the essence of our original idea for a map, but in a way that yields
easier and better interpretation. We now formalize these ideas by defining a suitable loss

function to be minimized.

The Homogeneity Loss Function

The concept of homogeneity serves as the basis for our theoretical development of
multiple correspondence analysis. We use homogeneity in a data theoretical sense as being
closely related to the concept of data reduction. That is, homogeneity refers to the extent to
which different variables measure the same characteristic or characteristics (Gifi 1981; 1990).
Homogeneity thus specifies a type of similarity. In order to measure homogeneity, we need a
measure for the difference or the similarity of the variables. There are different measures of
homogeneity and different approaches to find maps with some distances smaller than others.
The particular choice of loss function defines the former and the specific algorithm employed
determines the latter. Note that when the variables measure more than one property or
characteristic, we may wish to proceed in order to find another, orthogonal, solution. This is
in keeping with the principle of data reduction which advocates that a small number of
dimensions should be used to explain a maximum amount of information contained in the
data.

The extent to which a particular representation X of the industries and particular
representations Y, of the categories, satisfy the axioms of multiple correspondence analysis is

quantified by the loss of homogeneity, a least squares loss function:
1) oX;Y;,... YD) = % SSQX-GYp

where SSQ(.) is shorthand for the sum of squares of the elements of a matrix or vector. The

loss function in (1), giving the sum of squares of the distances between industries and the

variable categories they occur in, measures departure from perfect fit. In words, Loss =
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Dist?(Airline 1, unreasonable) + Dist’(Airline 2, unreasonable) + ... + Dist*(TV Station 2, very
far away) + Dist’(TV Station 3, very far away). A total of n*m = 31*7 = 217 squared
distances are summed and these squared distances correspond exactly to the lines connecting
industries and variable categories in our original messy map. Quite simply, multiple
correspondence analysis produces the map with the smallest possible loss.

There are two sets of unknowns in the MCA problem: the n X p matrix of industry
coordinates X and the m matrices of variable category coordinates Y, each of order k; X p,
where p is the number of dimensions. We could say that multiple correspondence analysis is
a method that minimizes (1) over X and tfxe Y, but this would not be sufficient. In the first
place, we can set X=0 and Y, = O, for all j. ‘This gives loss equal to zero (i.e. the map is a
single point) and consequently, perfect homogeneity. In fact, more generally, taking all
elements of X equal to a constant ¢, and taking all elements of Y, equal to c as well, gives loss
zero. These trivial solutions are excluded by imposing suitable normalizations. As we discuss
subsequently, it is these normalizations which define a particular coordinate scaling. For now,
we choose to minimize over all ¥, and all normalized X, which means we require X’u = 0 and
X’X=nl, where u is a unit vector (all elements equal to one) and I is the identity matrix. A
matrix X satisfying these restrictions is said to be normalized. We now define multiple
correspondence analysis more precisely as minimization of the loss function (1) over all ¥; and

over all normalized X (or equivalently over all normalized ¥, and all X).
Computational Aspects: Reciprocal Averaging

Our algorithm, which is exceedingly simple, uses alternating least squares (or,
equivalently, reciprocal averaging (Hirschfeld 1935; Horst 1935)). This means that we start
with an arbitrarily normalized X and then compute the optimal Y,

@ . Y, = D;’G/X

with G, defined as above, and D; = G/'G, the k; X k; diagonal matrix containing the univariate
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marginals of variable . In words, the optimal coordinate for a variable category is the
average or centroid of the (optimal) coordinates of the industries in that category- Using these

new Y, we now compute new optimal X,
3) X = m'2GyY,

In words, the optimal coordinate for an industry is the centroid of the (optimal) coordinates of
the categories containing that industry. @ We now normalize X by Gram-Schmidt
orfhogonalization and go back to (2) until convergence. The algorithm is implemented in the
SPSS-X program CATEGORIES (SPSS Inc. 1989). Equations (2) and 3) make clear the

centroid principle.

GEOMETRIC ASPECTS OF MCA
To highlight interpretation we focus on the geometry of the loss function. Our
development proceeds from initially assuming that the industry coordinates, X, are normalized
and the satisfaction variable category coordinates, Y, are free. Loss function (1) has a natural
lower bound, because obviously 0(X;Y ... YD = 0, but no natural upper bound. The Y, can
be arbitrarily far from X, and thus o is really unbounded. This means that we have no
standard to compare loss with, and no factor to normalize it with. In order to remedy this,

we define the loss function

@ oK;*,...*) = min 10 A &)

which is the minimum of the homogeneity loss function (1) over ‘the variable category
coordinates. It is now easy to derive an upper bound for (4), because oX;*,...*) =

X;0,...,0) = m r(X’X) = mnp.

21f some of the categories are empty, then D," becomes D;*, where + denotes the Moore-Penrose inverse.
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MCA as Discriminant Analysis and ANOVA

We can restate the MCA problem in discriminant analysis or ANOVA terms. Suppose
we knew the industry coordinates, X. Each variable defines a partitioning of these industries.
This means we can compute the total variance of X, which is just the sum of the between and
within group (variable) variance. In matrix notation, this is simply T =B + W. We now
wish to scale the industries, that is, solve for optimal X, in such a way that W will be as small
as possible while keeping T equal to a constant; I, for example.

This leads to a trivial solution: ail industries in the first category of the variable are a
single point, all industries in the second category are another point, and so on. The location
of the points in the map is arbitrary, although W = 0 and B =T =L Butin MCA we have
more than one variable, so a trivial solution for one variable will not be a trivial solution for
another. This leads us to seek a compromise solution to the problem. For a given X, let us
define T., W., and B., which are averages over variables. Clearly, for all variables, T, the total
variance of X, is the same, and now we search for the smallest W, with T = T. = L This
defines MCA.

Substituting the optimal category coordinates from (2) gives

©) o(K;*,®) = 3 U XA - PX,
= mn(p - rX’PX/n),

with P; = G,D]"G,’ an n X n orthogonal projector matrix and P. equal to the average of the P,
Now, from equation (5), X’PX is the variance between categories of X for variable j, and X’(I-
P)X is the ‘variance within categories. Then X'X, which we fix at nl, is the total variance.

Thus, MCA maximizes the average between-category variance, while keeping the total
variance fixed (or, equivalently, minimizes the average within-category variance).
Consequently, the main difference between discriminant analysis and MCA is that with the
former we have one categorical variable and X must be of the form ZA, with Z known and

weights A unknown. In MCA, the number of variables m is greater than one and X is
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completely unknown (or Z = D.

MCA as a Dual Eigenproblem

This development shows that multiple correspondence analysis of X normalized and

the Y, free solves the eigenvalue problem:
©) PX = XA.

where A,(P.) = ... 2 A, (P.) are the p largest nontrivial eigenvalues of the average projector
P. We use "nontrivial' because P. always has a largest trivial eigenvalue AP = 1,
corresponding with the trivial eigenvector u = 1. All other eigenvectors can consequently be
chosen such that X’u = 0. The optimal coordinates for the industries in p dimensions are
given by the p eigenvectors, with corresponding eigenvalues, of P. The corresponding
optimal coordinates for the categories of variable j are then Y; = D,"G,’X, as in equation (2)

and follow from the centroid principle.

MCA as Categorical PCA

MCA is also identical to a form of principal component analysis of categorical data
outlined by Guttman (1941) and Burt (1950). To show this clearly, suppose that we
normalize Y by %¥/D)Y,; = nl and 3Y/Du = 0 with the condition that X is free. Thus, we
alternatively define the MCA problem as minimizing (1) over free X and normalized Y; As a

first step, we examine the loss function:

D o(*Y,..Y) = ;nn o(X:Y,,., Y

Then we find, after substituting the optimal industry coordinates from (3), that MCA amounts

to solving the eigenvalue problem:



38) CY = mDYA,

with C = G’G the 3k, x Sk "Burt matrix," so-called by the French; it contains the bivariate
marginals (cross-tables), where G = [G,|...|G,] is the super-indicator matrix. The Burt
matrix has a block structure, wherein each off-diagonal submatrix Gy = G/G, j=l, is the cross-
table of variables j and 1 containing the bivariate marginals across the n industries. Each
diagonal submatrix D; = G/G; is the k; X K diagonal matrix with the univariate marginals of
variable j. Then D=diag(C) is the diagonal super-matrix of univariate marginals. The optimal
coordinates for the variable categories in p dimensions are given by the p eigenvectors with
corresponding eigenvalues of C. The corresponding optimal industry coordinates are then X
= m"E,G,Y,. as in equation (3),'and follow from the centroid principle.

The dual eigenproblems in equations (6) and (8) amount to a singular value
decomposition (SVD) of the matrix m™*%GD™. It can be shown (van Rijckevorsel and de Leeuw
1988) that both problems have the same eigenvalues; the eigenvectors of interest are then the
left and right singular vectors of m*GD™ Moreover, the SVD of this matrix also solves the
problem of minimizing the loss function (1) over all normalized X and all normalized Y.

Computing this SVD effectively performs a correspondence analysis on G.

Correspondence Analysis as a Special Case of MCA

Our approach allows us to specialize MCA to the situation in which there are just two
variables; it then becomes identical to simple or two-way correspondence analysis (Benzecri,
et.al. 1973; Greéﬁacre 1984; Lebart, Morineau, and Warwick 1984). See also Carroll, Green,
and Schaffer (1986). We have already shown above that, in general, MCA can be formulated
as a type of categorical PCA.

Now, suppose we have only two variables, i.e. m=2. Then, G = (G,|G,] and G,G, =
'F, the contingency table for these two variables. We write the univariate marginals for
variables 1 and 2 along the diagonals of D, and D,, respectively. For two variables, the Burt

matrix C now has the very special form:
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F D,

Since two-way correspondence analysis is given by the SVD of D,*FD,* (cf. Hoffman and
Franke 1986, equation (11)), it is immediately seen that the SVD of D*CD™, with D

containing D, followed by D, on the diagonal, equal to the SVD of

I D, “FD,*
D, “FD,* I

gives the same solution.

MCA as an MDS Method

We can also link MCA to multidimensional scaling through the notion of distance.
Suppose we were to perform a multidimensional unfolding on G, the super-indicator matrix.
The MDS solution for unfolding requires a representation where the distance between an
industry point and a variable category it occurs in is always smaller than the distance from
that industry to a "non-chosen" variable category point. The relation with MCA is obvious.
MCA plots a category point in the center of gravity of the industry points for those industries
which "choose" that category, with the consequence that, overall, industry points will be closer
to the chosen variable categories than to the non-chosen variable categories.

Interpretation of the industry points is guided by the fact that we solve for X (with unit
total sum of squared distances, X’X) such that the within-category squared Euclidean
distances, X’(I - PpX, are as small as possible (or, equivalently, that the between-category
squared Euclidean distances, X’PJX, are as large as possible). The primary difference between

MCA and MDS is that the MCA solution is obtained at the expense of stronger normalization

conditions and a metric interpretation of the data. That is, MCA approaches perfect fit, i.e.
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distance d;(X,Y) between industry point i and variable category point j equals zero, if g, in the
indicator matrix, equals one. This is a stricter requirement than in MDS, which requires that if
g =0 and g, = 1 then 4;XY) = d,(X.Y). However, MDS methods for unfolding make
weaker assumptions, but also tend to produce degenerate solutions’.

Our MDS interpretation repeats the multivariate analysis development, which is in
terms of variance, and reformulates it in terms of distance. The variance interpretation has
appeal for those researchers familiar with discriminant analysis, analysis of variance, and
principal component analysis, while the distance interpretation should appeal to those more

comfortable with multidimensional unfolding. Both interpretations, however, are correct.

Handling Missing Data

A distinct advantage of nonlinear multivariate analysis in general, and multiple
correspondence analysis in particular, is the treatment of missing data. Because all variables
are treated as categorical, missing data may always be considered as a separate and bona fide
category: the "missing category.” Thus, there is no need to impute, estimate, or otherwise
insert substitute information for the missing datum. This also means there is no need to
discard observations with missing data.

In the context of multiple correspondence analysis, there are three general approaches
to handle missing data. In the first place, we may leave the indicator matrix incomplete and
proceed with analysis. Gifi (1990) refers to this as missing data passive. For our example, this
means that we do not alter the four zeros in Table 2 for the variable Expectation of Quality
for industry FOOD. If we choose this option for missing data, the missing values are not
ﬁuantiﬁed.

A second treatment for missing data completes the indicator matrix with a single

additional column for each variable with missing data. This is called missing data single (Gifi

.1990)._ Missing data single has. the effect of treating missing data as if they are in a category

3But see DeSarbo and Hoffman (1987) for a multidimensional unfolding solution for G, incorporating
reparameterization, which avoids the degeneracy problem.
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by themselves. If we were to choose this option for our example, we would add a single
column to the indicator matrix in Table 2 and enter a single 1 for the industry FOOD, to
reflect that it had a missing datum for one of the variables. If further industries had missing
data for that variable, they too would have 1's entered in that additional single column. This
option therefore treats industries as if they are in the same category with respect to what
generated the missing data. Put another way, the process assumed to underlie the occurrence
of missing data is assumed to be homogeneous (across industries) for each variable. Such a
treatment produces a scaling for the missing data that is the average industry score for
industries with missiﬂg data on a variable.

The third option requires the indicator matrix to be completed by adding to G, as many
additional columns as there are missing data for the j* variable. Gifi (1990) refers to this as
missing data multiple. In this case, as many extra columns as there are industries with missing
data on the j* variable are added to G to complete it, and each such column has only a single
1. The treatment of missing data with the missing data multiple option assumes that
whatever process generated the missing data differs for different industries. Each missing
value receives the scaling of the associated industry.

Not surprisingly, if there are not too much missing data and they are randomly
distributed over row objects and variable categories, the differences among the three
treatments will be minor, with highly similar interpretation of the resulting solutions.
However, if missing data seem to collect at some objects or variables, the results can be highly
different. Treating missing data as a category in its own right allows special study of those

objects with missing values.

EXAMPLE
In this section, we offer a detailed example based on the multivariate indicator matrix
of customer satisfaction variables presented in Table 2. The reader is referred to Anderson
and Sullivan (1993) for an insightful substantive treatment of these data. We use this

example to illustrate the most important geometrical aspects of MCA maps, but remind the
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reader that the rules apply in general to objects (rows) and variable categories (columns) of

the scaled multivariate data matrix.

Customer Satisfaction Across 31 Swedish Industries

Remember that the purpose of MCA is to produce a map with loss as small as possible
and where the distances between industries and the variable categories they occur in are as
small as possible. Our original idea for an "arbitrary" map discussed earlier actually represents
the initial (i.e. iteration 0) MCA solution, based on Y, estimated according to the centroid
principle and X arbitrarily normalized. Thus, this solution is already a half-step in the right
direction. The loss for this solution is .9650.

The initial solution is highly 'unsatisfactory, however, as the map (not shown in the
interests of space) is very cluttered. Since loss (i.e. fit) is simply the sum of squares of the
line lengths in the plot, the optimal solution, in keeping with the principles of MCA, is the one
where the distances connecting points are minimized. After ten iterations, the solution is
much more satisfactory as the lines connecting industries to their categories are as short as
possible, and the fit is improved considerably (loss=.2354). Although both solutions represent
the super-indicator matrix G, the final solution in two-dimensional Euclidean space is the
more appealing.

The MCA of the data in Table 2 produces dominant eigenvalues of .60 and .38. Since
the singular values from an MCA are canonical correlations, we interpret the eigenvalues
(squared singular values) as squared canonical correlation coefficients. Industries and variable
categories are represented as points in a joint low-dimensional map. This joint map appears
in Figure 1. Industries are represented by open circles and satisfaction variable categories by
closed circles. In this Figure, we leave the variable categories unlabeled for ease of
presentation.

e _ Insert Figure 1 about here

MCA requires industries corresponding to a certain category of a variable to have a
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position in the map in the direction of the associated category; other industry points will have
a position in the opposite direction. Stated differently, industries are relatively close to
categories they are in and relatively far from categories they are not in. Further, industries
mostly occurring in the same category tend to be close to each other and categories sharing
mostly the same industries tend to be close, as well’. Interpretation of category points is
guided by the centroid principle: category coordinates are the center of gravity, or centroid, of
industry coordinates occurring in that category.

The variable category points are plotted in Figure 2. In this Figure, we have omitted
the industries for ease of interpretation. Clear regions of customer satisfaction are revealed in
this plot. We can see that in the upper right quadrant are the variable categories associated
with the most extreme levels of dissatisfaction, price increase intolerance, unreasonable price,
negative repurchase intentions, low quality, low expectations of that quality, and far distance
from the ideal product or service in the category. Thus, industries in this area of the map are
associated with these categories. Looking back at Figure 1, we can see that this includes the
TV stations, telecommunications businesses with business clients, rail, police and the post
office packet service with public clients. Customers of these services and products are
decidedly unhappy! Perhaps not surprisingly, these services represent state-owned
monopolies.

Insert Figure 2

To a large extent, the analysis separates the extremely disenchanted (the upper right
portion of the figure) from the rest of the customers. We can examine Figure 2 further and
identify the region of extreme satisfaction slightly below and to the left of the origin.
Industries here include the airlinés, mainframe computers, pharmacies, automobiles, and food.
Moving up in the figure we identify another region of satisfaction, with the corresponding
industries of charter travel, both public and business banking, shipping, groceries, gasoline,

public_life insurance and mail order. In the lower center region of the map, we find those

“This will only be true approximately in reduced dimensionalities.
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variable categories indicating dissatisfaction. The industries associated with these judgments
include public and business insurance, furniture, business post office packets, clothing, public
and business post office letters, department stores, and public telecommunications.

Thus, the multiple correspondence analysis of Table 2 has clearly identified four
distinct regions relating to customer satisfaction. Notice also that the analysis has revealed
distinctly nonlinear patterns of satisfaction. That is, variable categories are not linear with the
dimensions of the space. This illustrates yet another advantage of nonlinear multivariate
analysis. By treating all variables as categorical, we may discover patterns in the data that
would be hidden by conventional linear multivariate analysis.

The "object plot" in Figure 3, simply the plot of industry points only, makes it easy to
see relationships among the industries. The distance between two industry points is related to
the homogeneity of their profiles, or more generally, their response-patterns’. Industries with
identical patterns are plotted as identical points. This is illustrated in Figure 3 for TV Stations
1 and 2 in the upper right, which as may be verified in Table 2, are identical in profile.
Industries which are very similar include the group in the upper left, comprised of mail order,
public life insurance, groceries, gasoline, shipping, and public banking. If a category applies
uniquely to only one industry, then the industry point and this category point will coincide.
The same is true when a category applies uniquely to a group of industries with identical
response patterns. For example, the price increase tolerance category “very likely to switch"
applies uniquely to the three TV stations, and their similar profiles mean these points are very
close to each other in the two-dimensional map.

Insert Figure 3 about here

Along the same lines, the position of "very likely to switch" indicates that a category
point with low marginal frequency will be plotted farther towards the periphery of the map,
while a category with high marginal frequency will be plotted nearer to the origin of the map

_______ (™very reasonable" and "reasonable" price). As a corollary, industries with response patterns

SNote that the reverse will not necessarily be true. Two industry points that are close together in a map of the first
two-dimensions may be far apart in higher dimensionalities.
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similar to the "average" response pattern will be plotted more towards the origin (mainframe
computers, airline 1), while industries with "unique" patterns (for example, post office letter
service for businesses and TV Stations 1,2, and 3) appear in the periphery. These statements,
however, are only precisely true when considering all dimensions, and not necessarily the map

for the first two dimensions only.

Star Plots
The star plots displayed in Figures 4, 5, and 6 for the variables quality, satisfaction and

distance to ideal, respectively, illustrate a number of important properties of MCA. Each star
plot maps a particular variable’s categories with all the industry points and shows loss for each
variable. Relative loss in the two-dimensional solution is the sum of the squared distances
between industry points in a cluster and their average, the category point’. We have drawn
lines in the star plots to illustrate this. The star plots also illustrate the centroid principle: that
the optimal category coordinates are centroids of industry points in those categories.
Insert Figures 4, 5, and 6

Since category points are the average of the industry points that share the category, for
each variable, categories of that variable divide the industry points into clusters, and the
category points are the means of the clusters. For example, Figure 4 depicts clearly the four
different clusters of product or service quality, Figure 5 reveals the corresponding levels of
satisfaction with these industries, and Figure 6 displays the groups of industries classified
according to how far away customers viewed them in relation to the ideal in that industry.

A variable discriminates better to the extent that its category points are further apart.
The discrimination measures, shown in Table 3, are quantified as the squared correlations
between the industry coordinates X and the optimally transformed variables, G;Y, and are
interpreted as squared factor loadings. Quality (Figure 4), Satisfaction (Figure 5) and Ideal

(Figure 6) discriminate best among industries on both dimensions.

%In the perfect solution (loss equal zero), all car points will coincide with their category points, but there must be
at least ‘as many categories as cars for to happen.
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Insert Table 3 about here

To better understand the discrimination measures, we begin by noting that the
covariances between the industry coordinates and the optimally transformed variables are
simply X’GYy/n, but, using equation (2), the optimally transformed variables G)Y; can be
expressed as GD;'G/X and this equals PX, where P, is the orthogonal projector matrix from
equation (5). Thus, the covariances can be written as X’PX/n and these are the covariances
of the optimally transformed variables, as well, since Y/DY/n = X’PX/n. Of course, our
normalization fixes X’X/n at I. Thus, for corresponding dimensions, the squared correlations
between the industry coordinates and the variables are written on the diagonals of X’PX/n.
It follows directly that the average over variables of the discrimination measures are the
diagonals of X’P.X/n which is eqﬁal to A. For each dimension, MCA thus maximizes the sum

total of the discrimination measures.

Horseshoes

It turns out that the map in Figure 1 exhibits what is called the "horseshoe" effect. It
has a quadratic structure, in the sense that industries are on or close to a second degree
polynomial in two-dimensions. That is, the second dimension is a quadratic function of the
first dimension, in this case contrasting satisfied and very dissatisfied groups of customers with
those very satisfied and dissatisfied. Because industries are on a horseshoe, and category
points are close to the industries occurring in them, the category points will tend to be on a
horseshoe as well. In this case, the star plots will tend to be (pieces of) horseshoes, and the
stars will be elongated along the structure.

In order to explain the idea of horseshoes, we use a technique described By Gifi (1990)
as gauging. In gauging, we use a mathematically defined data structure (that is, a model
which we call a gauge), apply the technique to the model, and observe how the known
properties of the model are reproduced by the technique. In our case, the technique is MCA
and there are various gauges we can select which lead to horseshoes.

The first gauge that is relevant is the multivariate normal distribution. If data are a
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sample from a multivariate normal, classified into a discrete number of categories, then an
MCA of these data (on a large enough sample), will show components which are linear,
components which are quadratic, components which are cubic, and so on. The horseshoe
corresponds with the case in which the first component (the one corresponding with the
largest eigenvalue) is linear and the second component is quadratic (the one corresponding
with the second largest eigenvalue). Multinormal data do not necessarily give horseshoes: it is
also possible that both the first and second components are linear with the original category
values. An example of this is given in Gifi (1990, pp.382-384).

Another famous gauge leading to horseshoes is tﬁe Guttman scale (Guttman 1950). If
individuals and categories can be jointly ordered in such a way that the indicator matrices
have a banded or parallelogram structure (each individual only gives positive responses to a
number of adjacent categories in the order), then again the first two dimensions will form a
horseshoe. This generalizes to various item-response models such as the Rasch model (Rasch
1966), the unidimensional unfolding model (Coombs 1964) unimodal structures used in
ecology (Ter Braak 1986), and so on. All such gauges will give horseshoes when MCA is
applied.

It is somewhat of a problem to decide if a horseshoe is desirable or undesirable. In
one sense, we should be happy with one, because it shows a strong underlying order structure
in our data. In effect, the horseshoe in multiple correspondence analysis is equivalent to the
general factor in principal component analysis. In this example, that underlying variable is
satisfaction. The first dimension dominates and the industries are ordered according to the
ordering in the data. On the other hand, we could also be unhappy, because the horseshoe
uses two linear dimensions to present this ordering. Basically, we use two dimensions to
present a one-dimensional structure, and any higher-dimensional information remains hidden.
For ways of dealing with this problem, we refer the reader to Bekker and de Leeuw (1988, pp.
29-30). - S ,

In some cases, horseshoe type structures can be decomposed, basically by collecting all

linear transformations in one solution (which then corresponds to the ordinary linear PCA
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solutions), by collecting all quadratic components in another solution, and so on. In other
cases, we require the transformations to be linear (or monotonic), which forces the MCA
solutions away from the horseshoe. This could be implemented, for example, in programs-
such as PRINCALS (SPSS Inc. 1989) or PRINQUAL (SAS® Institute Inc. 1988).

DISCUSSION

For MCA maps to be useful in marketing, rules for representation and interpretation
must be explicit and ‘unambiguous. Consider our example. There we had a data matrix
indicating wﬁich categories of various variables measuring satisfaction a series of Swedish
industries falls into. We observed from Table 1, for example, that each industry fell into one
of the following categories for the price variable: very unreasonable, unreasonable, reasonable,
and very reasonable. As we saw in Table 2, the data matrix had a 1 whenever an industry fell
into its category of the variable and a O otherwise.

The joint map produced from the MCA in Figure 1 has points for each industry and for
each variable category. A dimensional interpretation (as is typically done in factor analysis) is
problematic because we must identify constructs which can simultaneously describe both
industries and variables, and it is somewhat difficult to find constructs which can convincingly
do that job. On the other hand, interpretations in terms of closeness of the within-set
distances, i.e. between each industry and each variable category, are quite natural and
compelling. This illustrates one of the problems in graphically representing rectangular
categorical data matrices: how to construct an interpretable joint map of the row and column
points. The fundamental issue concerns the appropriate way to represent both the objects
corresponding with the rows and variables corresponding with the columns of the matrix in
the same map.

This problem is more important than ever, as the three major statistical packages have

MCA programs in which the choice of scaling of row and column cocerdinates is left largely to

the user (BMDP 1988; SAS® Institute Inc. 1988; SPSS Inc. 1989). In addition, the variety of

commercially available PC-based programs offer numerous options but little guidance to the
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user (BMDP 1988; Greenacre 1986; Nishisato and Nishisato 1986; SAS® Institute Inc. 1988;
Smith, 1988; see also Hoffman 1991 for a review).

Recently, this debate has raged in the marketing literature. Carroll, Green and
Schaffer (1986; 1987; 1989) and Greenacre (1989) provide an interesting and rather heated
discussion of this seemingly innocuous topic of scaling row and column points. It seems to us
that the points of view of CGS on the one side and Greenacre on the other reflect to some
extent the bias that each of these researchers brings to marketing.

Greenacre was trained in the "French" school, which appears to correspond nicely with
the fact that he takes simple correspondence analysis (CA) to be a more fundamental and
satisfactory technique than MCA. It also means that he tends to emphasize the so-called
“chi-square distance” interpretation of the within-set distances’. CGS have their starting point
in multidimensional scaling and unfolding theory, which naturally leads them to emphasize
between-set distance relations.

Although our "psychological” interpretation of the debate may be interesting, it does
little to resolve any practical or theoretical problems. Marketing researchers still wish to know
what is "best", or at least what they should do in any particular situation. Our geometrical
approach to MCA leads directly to a set of unambiguous rules for representation and

interpretation of MCA maps.

MCA as a "Model"
Let us consider distance models for a moment. In multidimensional unfolding, we start
explicitly with a model formulated in terms of fitting between-set distances to data. It is

possible to formulate MCA as a particular, although somewhat peculiar, approximate solution

7The "chi-square” distance between two row points, say, is equal to the weighted sum of squared differences
between row "profile” values, with weights equal to the inverse of the relative frequencies of the columns. A
similar definition holds for column points. These: in-set distances are denoted chi-square because if the data
are a conﬁnﬁﬁncy table, then the numerator creates squared differences between conditional row probabilities (the
Rmﬁles), while the denominator weights the squared differences by inverse relative column m s thus, as

ovak and Hoffman (1990) show, distances can be interpreted in terms of a) standardized residuals (components
of chi-square), b) O - E/E, observed minus expected counts under the log-linear model of independence as a
proportion of expected counts under independence, and c) "profiles” (conditional probabilities).
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to the unfolding problem (Heiser, 1981), but in general, MCA is not thought of in this way.

Rather, many marketing researchers think of MCA "merely” as a technique for graphically
representing a data matrix. Unfortunately, it is precisely this lack of explicitness that can lead
to problems with interpretation.

Selecting a specific model implies, at the same time, choosing a framework for
interpretation of the results. The results are interpreted within the model and are related to
its assumptions. The interpretations use the terminology in which the model is formulated.
‘MDS models, for instance, are formulated in terms of (dis)similarity and distance, and thus
MDS results are also interpreted naturally in these terms. Factor analysis is formulated in
terms of unobserved variables called factors, and consequently we can interpret a factor
analysis solution as soon as wé can interpret the factors. This imposed framework can be a
very positive aspect of the analysis: interpretation is unambiguous, key concepts are known to
many researchers in the field, and communication is made easy. But it can also be a great
hindrance to communication with other fields, as the history of factor analysis amply shows.
A model, like any cognitive map of the wotld, is a filter of reality. In many cases, such a filter
is needed in order to proceed; in other cases, some of the more important, stable, and
interesting aspects of the data may be filtered out or distorted by the imbedding in a rigid
framework.

In the case of MCA, it seems natural for marketing researchers, perhaps owing to the
popularity of multidimensional unfolding, to concentrate on simple geometrical aspects of the
MCA map (e.g. interpoint distances), and observe what aspects of the data matrix they are
trying to represent. This means, of course, that we look at MCA as if it is, in some devious
way, still trying to fit a model to the interpoint distances. It merely does not make its loss
function explicit, and thus it is inferior (at least in this sense) to unfolding techniques.

In our framework, distances corresponding to 1's in the indicator matrix must be small,
but this requirement alone is not sufficient to produce a map, since the trivial solution satisfies
it. Hence, we need a normalization. A natural normalization would be to examine all the

distances and simply minimize the between-set distances (i.e. the sum of squares) keeping all
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other distances fixed. However, this always leads to a one-dimensional solution. Thus, we
require something stricter, and so impose dimension orthogonality and normalization
constraints. Which way we choose to normalize (i.e. normalize the objects X and leave the
variables Y, free, or the reverse) is immaterial geometrically, since the problem is formulated
in a joint space. However, the choice affects the interpretation. Therefore, substantive

considerations will almost always guide the researcher’s choice of normalization.

Choosing the "Best" Normalization

Case 1. The first approach is to normalize the set of object coordinates X and leave the
variable category coordinates Y, free. Normalizing X means that the Y; are found by the
centroid principle. In this case; the' optimal scaling of a variable category (equation 2)
satisfies Y’D)Y; = X’PX and thus Y’DY = mX’PX = mA. Quite simply, in words, a variable
category coordinate is the centroid of the coordinates of the objects in that category. Gifi
(1981; 1990) calls this the first centroid principle.

Case II. The second approach is to normalize the set of variables and leave the objects
free. Normalizing the Y, means that X is found by the centroid principle. Here, the optimal
scaling of the objects (equation 3) satisfies X’X = m’Y’DYA = A. In words, the optimal
coordinate of an object is the centroid of the coordinates of the variable categories the object
occurs in. This is the second centroid principle (Gifi 1981; 1990).

Case III. Finally, we may choose to nommalize both the objects and the variable
categories. This is usually referred to as the "French scaling." This option treats rows and
columns symmetrically and drops the centroid principle. Within-set relations are interpretable
as chi-square distances, but no between-set interpretation is possible.

Cases I and II, the centroid principles, define graphical representation and
interpretation of the MCA map. We adopt Case I as convention, but note that which case the

researcher chooses is completely arbitrary, from a geometrical standpoint, as we can_switch

from one to the other without changing anything essential. MCA is an elegant multivariate

method because these two normalizations can be translated into each other, through the
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transition formula.

The rationale for choosing the centroid principle to guide normalization, as opposed to
Case III or any other normalization that one could devise, lies in the inherent asymmetry of
multivariate data.  All applications of MCA, and consequently all interpretations, are
inherently asymmetric as multivariate data are, by definition, row or column conditional. In
other words, we treat rows and columns differently since each represents distinct entities we
wish to characterize graphically. Thus, we define our data matrix as row or column
conditional and proceed from there.

Row conditionality implies that we primarily wish to emphasize rows and scale ﬂlein
such that in the map, row points are closer together to the extent that rows are more similar
with respect to the variables making up the columns. This suggests that it is logical to think

of ordering objects by variables. Columns, i.e. variables, are the center of gravity of the rows.

Practically speaking, choosing the Case I normalization, implied by row conditional data,

means that objects will be equally spread in all directions in the map, with category points
indicating the averages of subgroups of objects. In other words, objects are sorted into their
respective categories of a variable. If our concern is primarily with the objects, as it would be
when objects are brands, for example, then objects are normalized and the centroid
interpretation applies with respect to the variable categories as weighted averages of the
brands in that category. This leads, as in our industry data example, to a joint map for the
industries and variable categories and a set of star plots for each separate variable.

Column conditionality implies that we primarily wish to represent the columns as points

in a map and scale them such that columns close together are more similar with respect to the

objects in the matrix. In situations where the objects represent individuals, for example in the
Q-technique, then the Case II normalization of MCA orders variables by these individuals. In
this case, variables are normalized and the individuals are free. Then, we obtain a single map
____ for all the variable categories and a set of star plots for each individual with categories of all

variables in the plots.

These arguments make clear why Case III, with symmetric treatment of rows and
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columns, is the least defensible normalization, both from the geometric and substantive points
of view. It will almost always be the case that primary focus is on either the objects or the
variables, but not both equally. The aims of the investigation guides the researcher’s choice of
normalization.

Greenacre (1989) prefers to normalize according to Case III (symmetrically scaling
both sets of points in "principal” coordinates) and emphasize the within-set "chi-square"
distances at the expense of any between-set interpretation. Carroll, Green and Schaffer
(1989) recommend a variant of Case III, which despite their arguments -to the contrary, does
not allow for between-set interpretations. Quite simply, this 1s because the correspondence
analysis of the two-way contingency table and the MCA of the super-indicator matrix (what
CGS call the "pseudo-contingéncy table”) are well known to give equivalent parameter
estimates. As the researcher loses the centroid principle, fundamental to MCA and a critical
aspect of interpretability, in the symmetric Case III normalization or its variant, we do not

recommend it.

SUMMARY

In this chapter, we introduced multiple correspondence analysis as a nonlinear
multivariate analysis method which integrates ideas from both classical multivariate analysis
and multidimensional scaling. We formulated MCA as a graphical method which seeks to
connect brands, say, with all the variable categories they are in and uses a least squares loss
function as the rule to do this. Our approach emphasized the geometrical aspects of multiple
correspondence analysis. Considering MCA in this light leads directly to a set of unambiguous
rules for representation and interpretation of MCA maps.

As we saw, interpretation of the joint map stems not from terms of “"chi-square

distance" or "profiles," but rather, follows from le principe barycentrique, the centroid principle,

~ which says that brands close together are similar to each other. In keeping with this view, we

developed simple correspondence analysis as a special case of MCA with the number of

variables equal to two, rather than as a method to approximate within-set chi-square distance.

26




We also showed how MCA is related to a number of familiar MVA techniques,
including analysis of variance, discriminant analysis, principal component analysis and
multidimensional scaling. Our detailed example illustrated the most important geometrical
properties of MCA maps. We hope this chapter has demonstrated how MCA, a powerful

multivariate methodology, may suit many and varied applications in marketing research.
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Joint Map of Swedish Industries and Customer Satisfaction Variables
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Map of Category Quantifications for Customer Satisfaction Variables
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Star Plot for Quality

Figure 4




Star Plot for Customer Satisfaction
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Star Plot for Distance to Ideal
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TABLE 2

THE SEVEN DICATOR MA S T THE DATA IN TABLE 1
ATTRIBUTES
Industry Price Quality Repurch. Price Inc. Satis- Expectation Ideal
Intention Tolerance faction of Quality
Alrline 1 0100 0010 1000 00001 0010 0010 0100
Alrline 2 0100 0010 0100 00100 0010 0001 0001
Bank (8B) 0100 0001 0001 01000 0001 0010 0010
Insurance (B) 0010 0100 0100 01000 0100 0010 0100
PC (8) 0010 0001 0100 00010 co001 0010 0100
Postl (B) 0100 0100 o100 00001 0100 0001 0100
Postp (B) 1000 1000 1000 00010 0100 0001 0100
Telecommunication(B) 1000 1000 1000 00010 1000 0010 1000
Cars 0001 0601 0010 00100 0001 0001 0001‘
Charter-travel 0001 0001 0100 01000 0001 0100 0010
Cloth 0001 0100 Q001 00100 0100 1000 1000
Department Stores 0010 0100 0100 00100 0100 0100 1000
Food 0010 0001 0010 00010 0001 0000 0001
Food TR 0010 0010 0010 01000 0010 0010 0010
Furniture 0001 0100 0100 00001 0010 1000 0100
Mail 0001 0010 0010 00010 0010 1000 0010
Mainframe Computers 0010 0001t 0001 00010 1000 0001t 0100
Bank (P) 0100 0010 0001 01000 0001 0100 0010
Insurance (P) 0100 0100 0010 00010 0100 0100 0100
Gasoline 0100 0010 0001 01000 0010 0100 0010
Pharaacy o000t 0001 1000 00001 0001 0001 0001
tife Insurance (P) 0001 0010 0010 00010 0010 0100 0010
Police 0001 0100 0001 01000 1000 1000 1000
Postl (P) 1000 0100 000t 00001 0100 0010 0001
Postp (P) 1000 1000 0010 00100 1000 0010 0001
Telecommunication(P) 1000 1000 0100 00100 (o] 60 0100 0100
Rail 1000 1000 1000 00001 1000 1000 1000
'Ship 0010 0010 0010 00010 0010 0001 0010
TV Station 1 1000 1000 1000 10000 1000 1000 1000
TV Station 2 1000 1000 1000 10000 1000 1000 1000
TV Station 3 0010 1000 1000 10000 1000 0100 1000
G, G, Gy G, Gg Gg G,
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Table 3

THE DISCRIMINATION MEASURES PER VARIABLE PER DIMENSION

Variable Dimension

One Two
Price Given Quality .58 .01
Quality Given Price .83 57
Repurchase Intention .53 40
Price Increase Tolerance .56 .38
Satisfaction .74 61
Expectation of Quality .25 .07
Ideal (Distance From) ’ .72 .60
A .60 38

35




