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Abstract

We formulate multiple correspondence analysis (MCA) as a nonlinear multivariate analysis
method which integrates ideas from multidimensional scaling. MCA is introduced as a graphical
technique that minimizes distances between connecting pointsin a "graph plot." We use this geometrical
approach to show how questions posed of categorical marketing research data may be answered with
MCA in terms of the notion of closeness. We introduce two new displays, the "star plot" and "line plot,"
which help illustrate the primary geometric features of MCA and enhance interpretation. Our approach,

which extends Gifi (1981, 1990), emphasizes easy to interpret and managerially relevant MCA maps.

Key words: Graphical representation of Categorical Data, Homogeneity, Nonlinear
Multivariate Analysis.



Multiple correspondence analysis (MCA) is well on its way to becoming a popular tool in
marketing research (Hoffman & Franke, 1986). For MCA maps to be useful in marketing, rules for
representation and interpretation must be explicit and unambiguous. Consider this classic, if somewhat
hypothetical, example. Suppose we have a data matrix indicating which categories of various attributes
a series of automobile makes falls into. For example, one attribute may be "body style" with categories
two-door, four-door, and wagon. Thus, the data matrix has a 1 whenever a car falls into its category of
the attribute and a 0 otherwise.

We wish to pose four questions of these data: 1) What are the similarities and differences among
the automobiles with respect to the various attributes describing them?; 2) What are the similarities and
differences among the attributes with respect to the automobiles?; 3) What is the interrelationship
among the automobiles and the attributes?; and 4) Can these relationships be represented graphically
in a joint low-dimensional space?

As we shall develop it, MCA is an MDS method that answers these questions in terms of the
notion of closeness. This means that between automobiles, two automobiles are close together if they
share similar attributes, and between each attribute category, two categories are close if they occur in
the same automobiles to the same degree; it also implies that an automobile is close to an attribute
category if the automobile falls into that category.

One of the problems in graphically representing rectangular categorical data matrices is how to
construct an interpretable joint map of the row and column points. The fundamental issue concerns the
appropriate way to represent both the objects corresponding with the rows and variables corresponding
with the columns of the matrix in the same map. This problem has become increasingly more important,
because the three major statistical packages now have MCA modules in which the choice of scaling of
row and column coordinates is left largely to the user (BMDP 1988; SAS Institute Inc. 1988; SPSS Inc.
1989). In addition, the variety of commercially available PC-based programs offer numerous options
but little guidance to the user (BMDP 1988; Greenacre 1986; Nishisato and Nishisato 1986; SAS
Institute Inc. 1988; Smith, 1988; see also Hoffman (1991) for a review).

In this paper, we focus on a geometrical approach to MCA which provides for improved
representation and enhanced interpretation of MCA maps. Our work extends the presentation in Gifi

(1981, 1990) by placing increased emphasis on the geometry. Two new interpretive maps are introduced:



"star plots" and the variable "line plot." MCA is developed as an MDS method that minimizes the
distances between connecting points a "graph plot." We feel that these additional geometric properties

make MCA easier to understand.

1. Correspondence Analysis as a "Model"
What is multiple correspondence analysis? In this paper, we consider MCA as a mapping
technique, although other approaches to optimal scaling (Hoffman and de Leeuw 1991) will also lead

to the technique. The French literature (see, for example, Benzécri et. al. 1973) discusses it in the

context of metric multidimensional scaling suitable for frequency matrices, contingency tables or cross-
tables. Others formulate MCA as factorial analysis of qualitative data using scale analysis (Bock 1960;
Guttman 1941; Nishisato 1980) or prihcipal component analysis (Burt 1950; de Leeuw 1973; Greenacre
1984; Hayashi 1950) perspectives.

We formulate MCA in terms of connecting objects, automobiles say, with all the variable
categories they are in and use a least squares loss function as the rule to do this. Then, interpretation
stems not from terms of "chi-square distance" or "profiles” (cf. Hoffman and Franke 1986), but rather,
follows from le principe barycentrique, the centroid principle, which says that automobiles close to each
other are similar to each other. Our approach emphasizes the geometrical aspects of multiple
correspondence analysis and, and we will demonstrate shortly, admits simple correspondence analysis
as a special case of MCA.

In multidimensional unfolding, we start explicitly with a model formulated in terms of fitting
between-set distances to data. It is possible to formulate MCA as a. particular, although somewhat
peculiar, approximate solution to the unfolding problem (Heiser, 1981), but in general, MCA is not
thought of in this way. Rather, many marketing researchers think of MCA "merely" as a technique for
graphically representing a data matrix. It is precisely this lack of explicitness that leads to problems with
interpretation.

In the case of MCA, it seems natural for marketing researchers, perhaps owing to the popularity
of multidimensional unfolding, to concentrate on simple geometrical aspects of the MCA map (e.g.
interpoint distances), and observe what aspects of the data matrix they are trying to represent. This

means, of course, that we look at MCA as if it is, in some devious way, still trying to fit a model to the



interpoint distances. It merely does not make its loss function explicit, and thus it is inferior (at least
in this sense) to unfolding techniques.

We view MCA as a nonlinear multivariate analysis method which integrates ideas from
multidimensional scaling. MCA is the analysis of interdependence among a set of variables, as distinct
from the analysis of dependence (with pre-defined sets of dependent and independent variables). Our
geometric approach is particularly intuitive and should appeal to marketing researchers, borrowing, as
it does, concepts and terminology from discriminant analysis and analysis of variance. We emphasize
that we are trying to produce not only an aesthetically pleasing map, but one that is also easy to
interpret, and hence, managerially relevant. Using this framework, we shall have few interpretive

difficulties with the joint maps produced from MCA.

2. MCA as an MDS Method

The concept of homogeneity serves as the basis for our development of multiple correspondence
analysis (MCA). Homogeneity refers to the extent to which different variables measure the same
characteristic or characteristics (Gifi 1981, 1990). Homogeniety thus specifies a type of similarity. In
order to measure homogeneity, we need a measure for the difference or the similarity of the variables.
There are different measures of homogeneity and different approaches to find maps with some distances
smaller than others. The particular choice of loss function defines the former and the specific algorithm
employed determines the latter.

Consider the arbitrary map displayed in Figure 1, which we constructed from Table 2 by
connecting cars with categories of the variables they are in. Cars, represented by "X" points, are located
randomly in the map, while variable categories, the "Y" points, are positioned at the centroid or average
of all the cars in that category. Figure 1 contains the same information as the data matrix from Table
2, but is unappealing to the eye and difficult to interpret. There are n*m=96 lines and the figure is
messy because many of the lines cross. In addition, the map gives the impression that cars are as far
from the categories they occur in as they are from the categories they do not occur in. Thus, this

arbitrary representation of the data is unsatisfactory.

---—-Insert Figure 1 about here—---




Suppose we think of Figure 1 as a multivariable representation, i.e. as a joint map of the cars
and the variable categories, in two-dimensional Euclidean space. The figure will be much less disorderly
if the lines are as short as possible, that is, if cars are close to the categories of the variables that they
occur in. This is, in words, the basic premise of multiple correspondence analysis. We desire a map of
the data in low-dimensional Euclidean space such that the points connected by a line are relatively close
together (and the points not connected by lines are relatively far apart). By the triangle inequality this
implies that cars with similar profiles (i.e. cars that are often in the same categories) will be close, and
categories containing roughly the same cars will be close, as well. The resultant map will capture the
essence of Figure 1, but in a way that yields easier and better interpretation. We now formalize these

ideas by defining a suitable loss function to be minimized.

2.1 Maximizing Variable Homogeneity

Let the data be m categorical variables on n objects, with the j* variable taking on k; different
values, its categories. We code the variables using indicator matrices to allow for easy expression in
matrix notation. Note that the indicator matrix for variable j, G;, isn X k; and that each row of G; sums
to one. More specifically, consider the example in Table 1, with m=4, n=24, k;=3, k=5, k,=3, and
k,=3. Here, the objects are 24 small cars which Consumers Union judged with respect to degree of
crash protection (Consumers Union, 1989). These judgments are based on Consumers Union’s analysis
of National Highway Traffic Safety Administration crash test data. The two "occupant protection”
variables indicate how well the car protected a driver dummy and a passenger dummy during crash tests.
“Structural integrity” indicates how well the passenger compartment held up to the forces of a crash;
better performance is associated with a greater chance of avoiding injuries other than those caused by

the immediate forces of a crash. The remaining categorical variable indicates car body style.
----- Insert Table 1 about here—-—--
The purpose of multiple correspondence analysis is to construct a joint map of the cars and

variable categories in such a way that a car is relatively close to a category it is in, and relatively far from

the categories it is not in. By the triangle inequality, this implies that cars mostly occurring in the same




categories tend to be close, while categories sharing mostly the same cars tend to be close, as well. The
extent to which a particular representation X of the cars and particular representations Y; of the

categories, satisfy this is quantified by the loss of homogeneity, a least squares loss function:

(1) o(XY; . Y,) = 3, SSQX-GY)

where SSQ(.) is shorthand for the sum of squares of the elements of a matrix or vector. The loss
function in (1), giving the sum of squares of the distances between cars and the categories they occur
in, measures departure from perfect homogeneity or similarity. In words, Loss = Dist?(Acura,2-door)
+ Dist’(Daihatsu,2-door) + ... + Dist’(Volkswagon,better) + Dist’(Yugo,average).- A total of n*m =
24*4 = 96 squared distances are summed, and these squared distances correspond exactly to the 96 lines
in Figure 1. Quite simply, multiple correspondence analysis produces the map with the smallest possible
loss’.

We link MCA to multidimensional scaling through the notion of distance’. Suppose we were
to perform a multidimensional unfolding on G, the super-indicator matrix. The MDS solution for
unfolding requires a representation where the distance between a car point and a variable category it
occurs in is always smaller than the distance from that car to a "non-chosen" variable category point.
The relation with MCA is obvious. MCA plots a category point in the center of gravity of the car points
for those cars which "choose" that category, with the consequence that, overall, car points will be closer
to the chosen variable categories than to the non-chosen variable categories. Interpretation of the cars
is guided by the fact that we solve for X (with unit total sum of squared distances) such that the within-
category squared Euclidean distances, are as small as possible (or, equivalently, that the between-
category squared Euclidean distances, are as large as possible). Note that this amounts to the same
thing as performing multidimensional scaling on a similarity matrix S ={s;} with s;=1 if there is a

"match” between the similarity of car i and variable category j, and 0 otherwise. The primary difference

"More precisely, MCA is the minimization of loss function (1) over all Y, and over all normalized X (or over all normalized Y; and
all X). The reader is referred to Gifi (1981, 1990) for details.

2We can also reformulate the MCA problem in discriminant analysis or ANOVA terms. This development connects MCA to
classical multivariate analysis. See Hoffman and de Leeuw (1990) for a fuller treatment.
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between MCA and MDS is that the MCA solution is obtained at the expense of stronger normalization
conditions and a metric interpretation of the data’. However, MDS methods for unfolding make
weaker assumptions, but also tend to produce degenerate solutions®.

The MCA algorithm, implemented in the SPSS-X program CATEGORIES (SPSS Inc. 1989),
is exceedingly simple and relies on alternating least squares (or, equivalently, reciprocal averaging
(Hirschfeld 1935; Horst 1935)). The optimal variable category coordinétes are computed as the averages

or centroids of the (optimal) coordinates of the cars in that category:
3) Y, = D/'G/X

with G; defined as above, and D; = G/G; the k; X k; diagonal matrix containing the univariate marginals
of variable j°. Similarly, the optimal car coordinates are the centroids of the (optimal) coordinates of

the categories containing that car:
Equations (3) and (4) make clear the centroid principle.

2.2 Correspondence Analysis as a Special Case of MCA

Our approach allows us to specialize multiple correspondence analysis to the situation in which
there are just two variables; it then becomes identical to simple or two-way correspondence analysis
(Benzecri, et. al. 1973; Greenacre 1984; Lebart, Morineau, and Warwick 1984). See also Carroll, Green,
and Schaffer (1986). First, consider that, in general, MCA can be formulated as a type of categorical

PCA outlined by Guttman (1941) and Burt (1950):

‘mMcA approaches perfect fit, i.e. distance d{XY) between car point i and variable category point j equals zero, if g;in the indicator
matrix, equals one. This is a stricter requirement than in MDS, which requires that if g; = 0 and g; = 1 then dy(X)Y) = d/(X.Y).

*But see DeSarbo and Rao (1984, 1986) for a multidimensional unfolding solution, incorporating reparameterization, which avoids
the degeneracy problem. DeSarbo and Hoffman (1986, 1987) extend the model to binary data and compare the solutions with
correspondence analysis.

3If some of the categories are empty, then D;’ becomes D;*, where + denotes the Moore-Penrose inverse.
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(%) CY = mDYA,

with C = G'G the 3k, x Zk; "Burt matrix," so-called by the French; it contains the bivariate marginals
(cross-tables), where G = [G,|...|G,] is the super-indicator matrix’. D=diag(C) is the diagonal super-
matrix of univariate marginals. The variable category coordinates are given by the Y that satisfies (2),
that is the p eigenvectors with corresponding eigenvalues of C.

Now, suppose we have only two variables, i.e. m=2. Then G= [G:|G;] and G,'G, = F the
contingency table for these two variables. We write the univariate marginals for variables 1 and 2 along

the diagonals of D, and D,, respectively. For two variables, the Burt matrix C now has the very special

form:

Since two-way correspondence analysis is given by the SVD of D, “FD,* (cf. Hoffman and Franke 1986,
equation (11)), it is immediately seen that the SVD of D*CD*, with D containing D, followed by D, on

the diagonal, equal to the SVD of

| D, “FD,™*

D, “FD,” I
gives the same solution.

3. Multiple Correspondence Analysis of the Car Data
3.1 Graph Plots
Now let us apply MCA to the car data of Table 2. We first present the set of "pre" and "post-

treatment" graph plots from the analysis. Each "X" point in the plots represents a car and each "Y" point

SThe Burt matrix has a block structure, with each off-diagonal submatrix G; = G/G,, j # |, the cross-table of variables j and 1
containing the bivariate marginals across the n objects. Each diagonal submatrix D; = G/G; is the kj X kj diagonal matrix with the
univariate marginals of variable j.



a variable category. A graph plot connects all cars with the category points they belong to and has a
line for every element in the super-indicator matrix G equal to one. Our graph plots illustrate the
fundamental idea behind MCA.

Remember that the purpose of MCA is to produce a map with loss as small as possible and
where the lines connecting cars to the variable categories they occur in are as short as possible. The
graph plot in Figure 1, our original "arbitrary" solution, presents the initial (i.e. iteration 0) MCA
solution, based on Y, drawn in by the centroid principle and X arbitrarily normalized. Thus, Figure 1
is already a half-step in the right direction. The loss for this solution is 22.95. The initial solution is
highly unsatisfactory, as the graph plot has many crossing lines and is very cluttered. Since loss (i.e. fit)
is simply the sum of squares of the line lengths in the plot, the optimal solution, in keeping with the
principles of MCA, is the one where the line lengths are minimized.

After seventeen iterations, the post-treatment graph plot of Figure 2 is much more orderly as the
lines connecting cars to their categories are as short as possible, and the fit is improved considerably
(loss=4.25). Comparing these two plots shows clearly how much neater the map of the indicator super-

matrix G is now presented in two-dimensional Euclidean space.

-——Insert Figure 2 about here-----

3.2 Geometrical Features of MCA Maps

In this section, we introduce star plots and line plots. These plots illustrate the primary
geometric features of MCA and enhance interpretation. We use the car data to illustrate the most
important geometrical aspects of MCA maps, but remind the reader that the rules apply in general to
objects (rows) and variable categories (columns) of the scaled multivariate data matrix.

The MCA of the car data produces dominant eigenvalues of .587, .389, and .347. Since the
singular values from an MCA are canonical correlations, we interpret the eigenvalues (squared singular
values) as squared canonical correlation coefficients. Cars and variable categories are represented as
points in a joint low-dimensional map. The two-dimensional joint map is simply the optimal graph plot

drawn without the lines and appears in Figure 3.




-----Insert Figure 3 about here-----

The horizontal direction in the map separates cars on the basis of occupant protection. Cars
on the right are associated with injuries to the driver and passenger, while cars on the left are associated
with no injuries to the passenger or driver and moderate injury to the driver. We might label dimension
one “severity of injury" (but note that the relationship is distinctly nonlinear). This dimension also
discriminates between cars on the basis of body style with two-door cars on the left and four-door and
wagon styles on the right. The vertical dimension differentiates cars on the basis of how well the
passenger compartment stood up to the forces of a crash. Structural integrity is best for cars at the top
of the map and worsens (to "average") as we move to the lower left. The map clearly reveals
nonlinearities among the variables (e.g. structural integrity, driver protection) that the MCA has
"linearized" (see Hoffman and de Leeuw 1991).

The distance between two car points is related to the homogeneity (i.e. the similarity) of their
profiles, or more generally, their response-patterns’. Cars with identical patterns are plotted as identical
points. This is illustrated in Figure 3 for, among others, Plymouth Colt and Dodge Colt in the lower
right, and Eagle Summit and Mitsubishi Mirage in the upper right, which have identical profiles in G.
Two very similar cars are the two Hyundai Excels near the center right of Figure 3.

Another feature of the map is indicated by the positions, for example, of "average" structural
integrity and "wagon" style. These point locations indicate that a category point with low marginal
frequency will be plotted towards the edge of the map, while a category with high marginal frequency
("two door” style, "no injury” to passenger, and "better" structural integrity) will be plotted nearer to the
origin of map. As a corollary, cars with response patterns similar to the "average" response pattern will
be plotted more towards the origin (the two-door and four-door Hyundai Excels and Volkswagon Golf),
while cars with "unique” patterns (for example, Mazda 323 and Yugo GV) appear near the edges’.

A distinct view of the variables is afforded by the variable line plot in Figure 4, which depicts

"Note that the reverse will not necessarily be true. Two car points that are close together in a map of the first two-dimensions may
be far apart in higher dimensionalities.

5These statements, however, are only precisely true when considering all dimensions, and not necessarily the map for the first two
dimensions only.




only the variables and their corresponding category coordinates. The line plot illustrates the spread of
the category points for each variable. A variable discriminates better to the extent that its category
points are further apart. The line plot thus show how well each variable disciminates, as visualized by
the sum of the squared distances between the category points for a variable and the origin.
Discrimination measures are quantified as the squared correlations between the car coordinates X and
the optimally transformed variables, G}, and are interpreted as squared factor loadings. We show them
in Table 3. The larger the discrimination measure for a variable, the better the categories of that
variable discriminate between the cars. Passenger protection (Figure 7) and Body Style (Figure 5)
discriminate among cars on the first dimension, while driver protection (Figure 6) discriminates well on
both dimensions. Structural Integrity (Figure 8) discriminates mostly along dimension two. The average
over variables of the discrimination measures are the diagonals of A. For each dimension, MCA thus
maximizes the sum total of the discrimination measures. This means that MCA assigns category

coordinates for each variable that have the maximum spread.
----- Insert Figure 4 and Table 3 About Here----

Intepretation of category points is Lguided by the centroid principle: category coordinates are the
weighted average of car coordinates occurring in that category. A variable’s star plot illustrates this
principle. The star plots are displayed in Figures 5, 6, 7 and 8 for body style, driver protection, passenger
protection, and structural integrity, respectively. Each star plot maps a particular variable’s categories
with all the car points and shows loss for each variable. Relative loss in the two-dimensional solution
is the sum of the squared distances between car points in a cluster and their average, the category
point’. We have drawn lines in the star plots to illustrate this. Since category points are the average
of the car points that share the category, for each variable, categories of that variable divide the car
points into clusters, and the category points are the means of the clusters. For example, Figure 5 depicts
clearly the three different clusters of car body style, while Figure 8 displays the groups of cars classified

according to their degree of structural integrity. Thus, the star plots visualize the homogeneity of the

°In the perfect solution (loss equal zero), all car points will coincide with their category points, but there must be at least as many
categories as cars for this to happen.
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cars, as the categories divide the cars into homogeneous subgroups.
-—-Insert Figures 5, 6, 7 and 8 about here--—--

With respect to between-set interpretation, cars are relatively close to categories they are in and
relatively far apart from categories they are not in. For example, Subaru Justy, Honda Civic and Yugo
GV are associated with average structural integrity, Mazda 323, Eagle Summit and Mitsubishi Mirage
are associated with a high likelihood of severe injury to the driver, and the cars to the left of the map
are associated with no or moderate injury to the driver. In terms of distance, cars in a particular
category will (on average), have a smaller (squared) distance to that category than cars not in that
category. Further, if a category applies uniquely to only one car, then the car point and this category
point will coincide. The same is true when a category applies uniquely to a group of cars with identical
response patterns. It follows that cars mostly occurring in the same category tend to be close to each

other and categories sharing mostly the same cars tend to be close, as well”.

4. Discussion
4.1 Graphical Representation

In our framework, distances corresponding to 1’s in G must be small (compared to distances
corresponding to 0’s), but this requirement alone is not sufficient to produce a map, since the trivial
solution satisfies it. Hence, we need a normalization. A natural normalization would be to examine all
the distances and simply minimize the between-set distances (i.e. the sum of squares) keeping all other
distances fixed. Unfortunately, this always leads to a one-dimensional solution. Thus, we require
something stricter, so we impose dimension orthogonality and normalization constraints. Which way we
choose to normalize (i.e. normalize the objects X and leave the variables Y; free, or the reverse) is
immaterial geometrically, since the problem is formulated in a joint space and interpretation is not
affected. However, practical considerations require the researcher to make a choice, with substantive

considerations the guide.

Ymhis will only be true approximately in reduced dimensionalities.
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The centroid principle defines graphical representation and interpretation of the MCA map. The
rationale for choosing it lies in the inherent asymmetry of multivariate data. Almost all the applications
of MCA that we have seen, and consequently almost all interpretations, are inherently asymmetric as
multivariate data are, by definition, row or column conditional. In other words, we usually treat rows
and columns differently since each represents distinct entities we wish to characterize graphically. Put
yet another way, in the context of a specific marketing analysis, we define our data matrix as row or
column conditional and proceed from there.

Row conditionality implies that we primarily wish to emphasize rows and scale them such that
in the map, row points are closer together to the extent that rows are more similar with respect to the
variables making up the columns. This suggests that it is logical to think of ordering objects by variables.
Columns, i.e. variables, are the center of gravity of the rows. Practically speaking, choosing the
normalization implied by row conditional data means that objects will be equally spread in all directions
in the map, with category points indicating the averages of subgroups of objects. In other words, objects
are sorted into their respective categories of a variable. If our concern is primarily with the objects, as
it would be when objects are brands, for example, then objects are normalized and the centroid
interpretation applies with respect to the variable categories as weighted averages of the brands in that
category. This leads, as in our car data example, to a single map for the brands and a set of star plots
for each separate variable.

Specifically, we can normalize the set of object coordinates X and leave the variable category
coordinates Y; free. We denote this Case . This means that the variable categories Y; are found by the
centroid principle. In this case, the optimal scaling of a variable category (equation 3) satisty YD, =
X'GD;’G/X and thus Y’'DY = mX’P.X = mA, with P. the average of the GD;'G;. Quite simply, in
words, a variable category coordinate is the centroid of the coordinates of the objects in that category.
Gifi (1981, 1990) calls this the first centroid principle.

Column conditionality implies that we primarily wish to represent the columns as points in a map
and scale them such that columns close together are more similar with respect to the objects in the
matrix. In situations where the objects represent individuals, for example in the Q-technique, then this
normalization of MCA orders variables by these individuals. Then, we obtain a single map for all the

variable categories and, if desired, a set of star plots for each individual with categories of all variables
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in the plots. As applications in this context often involve very large numbers of individuals, we may omit
the star plots and focus research attention on the graph plot of variables only. Accordingly, we
normalize the set of variables and leave the objects frt;,e. In this Case II, the X are found by the centroid
principle and the optimal scaling of the objects (equation 4) satisfies X’X = m’Y’DYA = A. In words,
the optimal coordinate of aﬁ object is the centroid of the coordinates of the variable categories the
object occurs in. Gifi (1981, 1990) calls this the second centroid principle.

It will almost always be the case that primary focus is on either the brands or the variables, but
not both equally. However, should the latter situation arise, symmetric treatment of rows and columns,
may be the most appropriate. Thus, we may normalize according to Case I, in which both the objects
and the variable categories are normalized. This is sometimes referred to as the "French scaling." This
option treats rows and columns symmetrically and "drops" the centroid principle. Within-set relations
are interpretable as "chi-square” distances”, but no between-set interpretation is possible.

Greenacre (1989), for example, prefers to normalize according to Case I1I (symmetrically scaling
both sets of points in "principal” coordinates) and emphasize the within-set "chi square" distances at the
expense of any between-set interpretation. Carroll, Green and Schaffer (1986) recommend a variant
of Case III, the so-called CGS scaling, which they argue provides for interpretation of all distances (but
see Greenacre (1989) for a dissenting view). What should be clear from our discussion, however, is that

the aims of the investigation guides the researcher’s choice of representation.

4.2 Concluding Remark

Our geometric approach suggests that MCA is fruitfully thought of as a nonlinear multivariate
analysis method which seeks to minimize the distance between lines connecting objects with all the
categories they are in, rather than as a method to represent "chi-square" distances. Our bias suggests
that simple CA may be more naturally thought of as a special case of MCA with the number of variables

equal to two, than as a method to approximate within-set chi-square distance. Finally, we believe that

U The "chi-square” distance between two row points, say, is equal to the weighted sum of squared differences between row "profile”
values, with weights equal to the inverse of the relative frequencies of the columas. A similar definition holds for column points. These
within-set distances are denoted chi-square because if the data are a contingency table, then the numerator creates squared differences
between conditional row probabilities (the profiles), while the denominator weights the squared differences by inverse relative column
marginals; thus, as Novak and Hoffman (1990) show, distances can be interpreted in terms of a) standardized residuals (components
of chi-square), b) O - E//E/, observed minus expected counts under the log-linear model of independence as a proportion of expected
counts under independence, and c) "profiles” (conditional probabilities).
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if marketing researchers consider the relationship between correspondence an

scaling throu

gh MCA (and the graph plots), rather than through CA (and the ch

alysis and multidimensional

i-square distance

metric), they should have little difficulty applying this powerful multivariate methodology.
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Table 1
INDICATOR MATRICES CONSTRUCTED FROM CONSUMER UNION'S JUDGMENTS
ON CRASH PROTECTION FOR 24 SMALL CARS

Car Make Body Style® Occupant Protection® Structural
and Model Driver Passenger Integrity”
123 12345 123 123
Acura Integra 100 10000 100 010
Daihatsu Charade’ 100 01000 100 010
Dodge Colt 001 00001 010 010
Eagle Summit 010 00010 010 100
Ford Escort” 100 10000 100 100
Ford Festiva® 100 00100 010 . 010
Honda Civic’ 100 . 01000 100 001
Hyundai Excel’ 100 00100 001 010
Hyundai Excel 010 00100 100 010
Isuzu I-Mark 010 00001 001 010
Mazda 323 100 00010 001 100
Mazda RX-7 100 01000 100 100
Mitsubishi Mirage 010 00010 010 100
Mitsubishi Starion® 100 00100 100 100
Nissan Pulsar NX' 100 00010 100 010
Nissan Sentra 010 00001 010 010
Nissan Sentra 001 00010 100 100
Plymouth Colt 001 00001 010 010
Pontiac LeMans 100 00100 010 010
Subaru Justy’ 100 10000 100 001
Toyota Celica 100 10000 100 100
Toyota Tercel 100 00100 100 100
Volkswagon Golf 010 00100 100 010
Yugo GV 100 00001 100 001
G, G, G, G,

o] =2-door, 2=4-door, 3=wagon; asterisk indicates a hatchback.

b1 =no injury or minor injury, 2=possibly moderate injury, 3=certain injury-possibly severe, 4=high likelihood of severe or
fatal injury, 5=severe or fatal injury vittually certain.

<1 =much better than average, 2=better than average, 3=average, 4=worse than average, 5=much worse than average.
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Table 2
THE DISCRIMINATION MEASURES PER VARIABLE PER DIMENSION

Variable Dimension

One Two
Body Style 621 .082
Driver Protection 714 750
Passenger Protection 642 .043
Structural Integrity 373 681
A .587 .389
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Figure 2 : Graph Plot After Treatment
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FIGURE 3

Joint Plot
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Figure 4

Line plot Category Quantifications
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Figure 5

Star plot for Body Style
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Star plot for Occupant Protection Driver
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Figure 7

Star plot for Occupant Protection Passenger
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Star plot for Structural Stability
0.4
0.2
much better
0.0
[ —
better
-0.2 4
average

-0.4 ¥ T T T T T ¥

-0.4 -0.2 0.0 0.2 0.4

dimension 1

23



	z0001
	w0001

