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An algorithm is described for fitting the DEDICOM model for the analysis of asymmetric 
data matrices. This algorithm generalizes an algorithm suggested by Takane in that it uses a 
damping parameter in the iterative process. Takane's algorithm does not always converge 
monotonically. Based on the generalized algorithm, a modification of Takane's algorithm is 
suggested such that this modified algorithm converges monotonically. It is suggested to choose 
as starting configurations for the algorithm those configurations that yield closed-form solutions 
in some special cases. Finally, a sufficient condition is described for monotonic convergence of 
Takane's original algorithm. 
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DEDICOM is a model proposed by Harshman (1978) for the analysis of  asymmet-  
ric data. For  an extensive description of  this model we refer to Harshman, Green,  
Wind, and Lundy (1982). A brief description of  the model will be given here. According 
to the DEDICOM model a square data matrix X, containing entries xij representing the 
(asymmetric) relation of  object i to object j is decomposed as 

X = A R A '  + N ,  (I) 

where A is an n by p (p < n) matrix of  weights for the n objects on p dimensions or 
aspects,  R is a square matrix of  order  p,  representing (asymmetric) relations among the 
p dimensions, and N is an error  matrix with entries n/j representing the part of  the 
relation of  object i to ob jec t j  that is not explained by the model. The objective of  fitting 
this model to the data is to explain the data by means of  relations among as small a 
number  of  dimensions as possible. These dimensions can be considered as " a s p e c t s "  
of  the objects.  The " loadings"  of  the objects on these aspects are given by matrix A. 
The entries in matrix A indicate the importance of  the aspects for  the objects.  The 
dimensionality of  R and A, and hence the number of  aspects to be determined, is to be 
based on some external  criterion, defined by the user. 

Several algorithms have been developed for fitting the DEDICOM model. A com- 
parison of  most of  these has been given by Harshman and Kiers (1987). Kiers (1989) has 
discussed properties of  a number of  these algorithms and concludes that his column- 
wise alternating least squares algorithm is preferable from various points of  view. 
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One of the methods discussed by Harshman and Kiers (1987) is a method proposed 
by Takane (1985). His method appeared to be very efficient in most practical cases, but 
turned out to be inadequate in some cases. Moreover, no general convergence prop- 
erties are known for this method. Therefore, this method has not been recommended 
for general use. In the present paper, it will be shown that a slight modification of 
Takane's method is sufficient to overcome these problems. 

Before describing the resulting modified algorithm, a brief description of the 
DEDICOM model will be given. Next, a new type of algorithm will be discussed from 
which Takane's method can be derived as a special case. Finally, it will be described 
how Takane's method is to be modified in order to obtain an efficient algorithm that 
does converge monotonically. 

A Monotonically Converging Algorithm for DEDICOM 

The DEDICOM model has to be fit in the least squares sense over matrices A and 
R of order n by p, and p by p, respectively. Without loss of generality matrix A is 
constrained to be column-wise orthonormal. The loss function that is to be minimized 
can be written as 

o'(A, R) = IIx - ARA'[[ 2. (2) 

Because A'A = Ip, the minimum of o- over R for fixed A is given by R = A'XA. 
Minimizing (2) over A, for fixed R, is equivalent to maximizing 

3~A) = tr A'XAA'X'A,  (3) 

over matrix A, subject to the constraint A'A = Ip. The algorithm to be presented here 
is based on the following results. 

Result 1. Let X and A be fixed matrices of appropriate orders, and let E be any 
matrix of the same order as A, then we have 

tr E'XEA'X'A >- - a  tr E'E, (4) 

if a is some scalar not smaller than the largest eigenvalue of the symmetric part of 
( - X  (~ A'XA), where ~) refers to the Kronecker product of matrices. 

Proof. In order to prove (4) we rewrite the left hand side of (4) as follows. Let e 
denote Vec (E), the vector with the elements of E strung out row-wise into a column- 
vector, then 

tr E'XEA'X'A = - t r  E ' ( - X ) E A ' X ' A  = - e ' ( - X  ~) A'XA)e. (5) 

It should be noted that ( - X  ® A'XA) is not generally symmetric. 
As is readily verified, for any square matrix C of appropriate order, we have 

e 'Ce  = e'L~ (C + C')]e  = e'Cse, (6) 

where Cs denotes the symmetric part of C. Let a be the largest eigenvalue of Cs, then 
it is well-known that 

Combining (6) and (7) we have 

e ' C , e  < ae ' e .  (7) 

e 'Ce  < ae ' e .  (8) 
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Obviously, this property is equally valid for any larger a. On the other  hand, since the 
upper  bound in (7) can be attained for certain vectors e, there is no lower a for  which 
(8) holds for every  e. Finally, substituting ( - X  ® A'XA)  in (8) for C yields the inequality 

tr E ' ( - X ) E A ' X ' A  = e ' ( - X  Q A'XA)e < ae'e = a tr E'E, (9) 

from which (4) follows immediately. [ ]  

Result 2. I f  B contains p columns that form an orthonormal basis for  the column 
space of  (XAA'X 'A  + X ' A A ' X A  + 2aA), where a is larger than or  equal to the largest 
eigenvalue of  the symmetric part of  ( - X  ® A'XA),  then f (B) >- f (A) .  

Proof. Let  g(A, B) be defined as g(A_B) -- tr  B'XBA'X'A.  It will first be proven 
that for  B0, a certain choice of  B to be defined later, we have g(A, Bo) >- f (A) .  Next ,  
we will prove that g(A, Bo) >-f(A) impl iesf(B 0) -> f (A) .  Finally, it will be shown that 
f(Bo) = f (B)  for  the choice of  B as stated in Result 2. 

We write B as B = (A + E),  where E = (B - A). Then g(A, B) can be rewritten as 

g(A, B) = tr (A + E) 'X(A + E)A 'X 'A  

= tr A ' X A A ' X ' A  + tr E'XEA'X'A + tr E'(XAA'X 'A + X 'AA'XA) .  (10) 

Using Result 1 for the second term in the right hand side of  (10) yields 

g(A, B) >- tr A ' X A A 'X 'A  - a tr E'E + tr E'(XAA'X'A + X 'AA'XA) .  (11) 

Let  the right-hand side of  (11) be defined as the function h(B). Upon substitution of  
E = (B - A) in the right-hand side of  (11) it follows that h(B) can be expressed as 

h(B) =f(A)  - a tr (B - A)'(B - A) + tr (B - A) ' (XAA'X 'A + X 'AA'XA) .  (12) 

Function h(B) can be elaborated as 

h(B) =f(A)  - a tr B'B + 2a tr B'A - a tr A'A 

+ tr B'(XAA'X 'A  + X 'AA'XA)  - tr A' (XAA'X 'A  + X 'AA'XA)  

= f ( A )  - ap + 2a tr  B'A - ap + tr B'(XAA'X'A + X 'AA'XA)  - 2f(A) 

= - f ( A )  - 2ap + tr B'(XAA'X'A + X 'AA 'XA  + 2aA). (13) 

Le t  a singular value decomposit ion of  (XAA'X'A + X 'AA 'XA  + 2o.,4) be given by 

(XAA'X'A + X 'AA 'XA  + 2aA) = PDQ'. (14) 

Define Bo =- PQ'. Then,  as is well-known (Green, 1969; ten Berge, 1983), B 0 maximizes 
h(B) subject to B'B = lp. Hence  we have h(B o) >- h(A). Also, from (12) it follows 
immediately that h(A) = f (A) .  Combining these results with (11) yields 

g(A, Bo) >-f(A). (15) 

Next  it will be proven that f(Bo) >-f(A)  by using (15) and the inequality 

IlB6Xeo - A ' X A I [  2 > 0.  ( 16 )  

Expanding (16) yields 

f(Bo) + f(A) > 2 g(A, Bo). (17) 
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Combining (15) and (17) yields f (B o) >-f(A). 
Above it has been proven that f(B0) -> f(A).  From the definition of B 0 it follows 

that B 0 contains columns that form an orthonormal basis for the column space of 
(XAA'X'A + X'AA'XA + 20_4). From the definition off(A) it follows thatf(A) = f (AT)  
for any orthonormal matrix T. Because B and B 0 contain orthonormal basis vectors for 
the same space, we have f(B) = f(Bo). Hence we have f(B) >- f(A),  which was to be 
proven. [] 

Based on Result 2, an algorithm for maximizingf(A) subject to A'A = It, is readily 
given. Updating matrix A as the Gram-Schmidt orthonormalized version of (XAA'X'A 
+ X'AA'XA+2~4) for any ot larger than the largest eigenvalue of the symmetric part of 
( - X  Q A'XA) always increases functionf. Moreover, it follows from ~ A ,  R) -> 0 that, 
subject to the constraint A'A = Ip, function f (A)  has an upper bound equal to tr X'X. 
Therefore, iteratively updating A in this way monotonically increases f (A)  and must 
converge to a stable function value of f .  

Modification of Takane's Algorithm 

The algorithm proposed earlier by Takane is closely related to the algorithm de- 
scribed above. Takane's algorithm consists of updating matrix A by choosing the new 
A as the Gram-Schmidt orthonormalization of (XAA'X'A + X'AA'XA). Obviously, 
Takane's algorithm is the special case of the algorithm described above with a chosen 
equal to zero. However, when the largest eigenvalue of the symmetric part of ( - X  (~) 
A'XA) is larger than zero, there is no guarantee that f (A)  will increase by means of 
Takane's method. As has been noted by Harshman and Kiers (1987), Takane's algo- 
rithm tends to be very efficient but does not always converge monotonically. 

The parameter a in the procedure for updating A can be seen as a parameter that 
might slow down convergence, because, the larger a, the more the update will resemble 
its predecessor. In order to take maximal advantage of the efficiency of Takane's 
method we propose the following algorithm. First compute the update B for A accord- 
ing to Takane's procedure; then evaluate f(B); only in case f(B) <--f(A) compute the 
update for A based on the generalized algorithm; repeat this procedure until f(B) ~- 
f(A).  This modified algorithm will also converge monotonically. 

In the following sections we will discuss some choices concerning the specific form 
of the algorithm to be used. 

Cases With Closed-Form Solutions for Maximizing f (A)  

Above we have described a procedure for maximizingf(A) by means of an iterative 
procedure. In some special cases, however, closed-form solutions for maximizingf(A) 
exist. These are the case where A has only one column, the case where X is symmetric, 
the case where X is skew-symmetric and the case where (X'X + XX') has rank p. 

In case the number of columns of A is 1, matrix A can be replaced by a vector a, 
and we havef (a )  = (a'Xa)(a'X'a) = (a'Xa) 2 = (½a' (X + X')a) 2 , which is maximal when 
a is the eigenvector corresponding to the largest absolute eigenvalue of (X + X'). 

When X is symmetric the problem of fitting the DEDICOM model basically re- 
duces to the problem of finding a reduced rank approximation of X. A closed-form 
solution for a reduced rank approximation of any matrix has been given by a theorem 
of Eckart and Young (1936). In case X is symmetric, this approximation R of X can 
always be written as 1~ = ARA', where R is the diagonal matrix containing the p 
eigenvalues of X that are the p largest eigenvalues of X in the absolute sense, on its 
diagonal and A contains the corresponding p eigenvectors of X. 
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When X is skew-symmetric it is useful to distinguish the case where p is even and 
the case where p is odd. When p is even a closed-form solution exists which is based 
on the fact that all nonzero singular values of a skew-symmetric matrix have even 
multiplicity, and every pair of left-hand singular vectors associated with a nonzero 
singular value consists of the right-hand singular vectors associated with the same 
singular value, in reversed order, and with reversed sign (Gower, 1977; Harshman, 
1981). According to Eckart and Young (1936) a reduced rank approximation of X is 
given by ~ = PpDpQ'p, where Pp and Qp are column-wise orthonormal matrices con- 
taining the first p left and right singular vectors of X, respectively, and Dp is the 
diagonal matrix containing the largest p singular values of X. Because all succeeding 
pairs of columns of Pp and Qp contain the same vectors, but in reversed order, and with 
reversed sign, a rotation matrix T (consisting of 2 x 2 blocks along the diagonal with a 
final unit diagonal element when n is odd) exists such that Qp = Pp T. Choosing A = Pp, 
and R = Dp T', shows that the reduced rank approximation can be written in the form 
of the DEDICOM model, X = ARA'. Therefore, the reduced rank approximation yields 
a closed-form solution for fitting the DEDICOM model to skew-symmetric data when 
A has an even number of columns. 

When X is skew-symmetric and p is odd, the solution for A with p - 1 columns can 
never be improved by a solution for A with p columns. This follows from the fact that 
skew-symmetric matrices have even rank (Gower, 1977), and that the DEDICOM 
approximation to a skew-symmetric data matrix X, given by • = AA'XAA', is skew- 
symmetric itself and hence has even rank (Harshman, 1981). Therefore, the rank of 
is smaller than or equal to p - 1, and the best rank p DEDICOM approximation of X 
is equal to the best rank p - 1 DEDICOM approximation of X. In conclusion, when p 
is odd, it suffices to fit the DEDICOM model for p - 1, because the approximation of 
X can never be improved by using the p-dimensional DEDICOM model. 

Finally, when (X'X + XX') has rank p, we have the following closed-form solution. 
Let (X'X + XX') = PAP' be an eigen decomposition of (X'X + XX'), where P'P = Ip, 
and A is a positive definite diagonal p x p matrix. Then the DEDICOM solution is given 
by A = P, and R = P'XP and yields a perfect fit of the data matrix (de Leeuw, 1983; 
see Takane, 1985). 

The Choice of a 

In the description of the generalized algorithm we mentioned that the algorithm 
converges monotonically whenever a is larger than the largest eigenvalue of the sym- 
metric part of ( -X  @ A'XA). However, this does not imPlY that a is to be chosen equal 
to this eigenvalue. It should be noted that this eigenvalue depends on the current 
version of A. Therefore, in order to set a to this value, the largest eigenvalue of the 
symmetric part of ( -X  @ A'XA) should be recomputed in every iteration where a is 
needed. To avoid this computationally expensive procedure one might use a different 
choice for a. That is, choosing any a greater than the largest eigenvalue of the sym- 
metric part of ( - X  @ X) guarantees monotonic convergence as well, because the 
largest eigenvalue of the symmetric part of (~-X (~) X) is never smaller than the largest 
eigenvalue of the symmetric part of ( -X  @ A'XA). The latter can be readily verified by 
noting that the largest eigenvalue of the symmetric part of any matrix C is equal to the 
maximum of e'Ce over e subject to e'e = l, see (6) and (7). 

The above alternative for choosing a is not the only possibly useful one. Some 
choices for a are computationally even simpler. Among these the largest singular value 
of (X Q A'XA) and the largest singular value of (X Q X) are of particular interest. The 
computation of these singular values is facilitated by the fact that the largest singular 
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value of a Kronecker product of matrices is equal to the product of the largest singular 
values of these matrices. It is readily verified that the values mentioned here are never 
smaller than the largest eigenvalue of the symmetric part of ( - X  ® A'XA). 

Apart from these choices of o~, the choice a = 0 is of particular interest. This is the 
case where the modified Takane algorithm and Takane's algorithm coincide. As has 
been remarked above, choosing o~ equal to 0 may jeopardize monotonic convergence. 
Although monotonic convergence may occur when a = 0, a sufficient condition for 
monotonic convergence is that the largest eigenvalue of the symmetric part of ( - X  (~) 
A'XA) is smaller than or equal to zero. The largest eigenvalue of the symmetric part of 
( - X  Q A'XA) is smaller than or equal to zero if and only if the symmetric part of (X Q 
A'XA) is positive semi-definite. Therefore, a sufficient condition for monotonic con- 
vergence of Takane's algorithm is that the symmetric part of (X Q A'XA) is positive 
semi-definite for every A that emerges during the iteration process. 

This sufficient condition for monotonic convergence of Takane's algorithm is not 
very useful, because it can only be evaluated during the iterations. Above, it has been 
remarked that the largest eigenvalue of the symmetric part of ( - X  Q A'XA) is always 
smaller than or equal to the largest eigenvalue of the symmetric part of ( - X  ® X). 
Therefore, monotonic convergence of Takane's method is also guaranteed when the 
largest eigenvalue of the symmetric part of ( - X  Q X) is smaller than or equal to zero. 
As a result, a sufficient condition for monotonic convergence of Takane's method is 
that the symmetric part of (X ~ )X)  be positive semi-definite. This condition implies that 
(X Q X) + (X' (~) X') is positive semi-definite. The latter condition may be used to 
assess in advance whether or not modifying Takane's algorithm is necessary. 

The Choice of a Starting Configuration and the Performance of the Algorithm 

The closed-form solutions described above are useful for choosing a starting con- 
figuration for the matrix of "loadings" A for the DEDICOM algorithm. We propose 
choosing a starting configuration for A which coincides with the closed-form solutions 
whenever they are available. Hence in cases with a closed-form solution no iterations 
will take place. This is achieved by choosing as a start for the matrix A either the matrix 
whose first p columns contain the eigenvectors of (X + X') corresponding to the p 
largest absolute eigenvalues of (X + X'), or the matrix whose first p columns contain the 
eigenvectors of (X'X + XX') corresponding to the p largest eigenvalues of (X'X + XX'), 
which are all nonnegative. Obviously, the former start yields the closed-form solution 
for the cases where matrix X is symmetric or a 1-dimensional solution is required, and 
the latter start yields the closed-form solution when matrix X is symmetric or (X'X + 
XX') has rank p. The latter start also yields the closed-form solution when X is skew- 
symmetric, as will be shown below. 

For the case where X is skew-symmetric, the singular value decomposition of X 
can be given by X = PnDT'Pn, where T is an orthonormal matrix with blocks of order 
2 × 2 along its diagonal and a final unit diagonal element if n is odd, D is a diagonal 
matrix containing the singular values of X, and Pn is a column-wise orthonormal 
matrix (Gower, 1977). It follows that (X'X + XX') = (PnTDP'nPnDT'Pn) + 
( P n D T ' P ' n P n T D P n )  = (PnTD2T'Pn) + (PnD2pn). Because of the special structure of 
T and the fact that the nonzero singular values of X and hence the nonzero elements of 
D have even multiplicities (Gower) T commutes with D. Because D has nonnegative 
elements only, T commutes with D 2 a l s o ,  hence we have TD2T ' = T T ' D  2 = D 2. It 
follows that (X'X + XX') = 2PnDZPn . This implies that the eigenvectors of (X'X + 
XX') are given by Pn" Therefore, the first p (p even) singular vectors of X are equal to 
the first p eigenvectors of (X'X + XX'). 
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The choice of starting configurations that coincide with closed-form solutions when 
these are known in not very useful in itself. In such cases it suffices to compute the 
closed-form solution directly. However, such starts may be very useful in cases where 
the conditions for existence of closed-form solutions are almost satisfied, for example, 
when X is nearly symmetric or skew-symmetric, or when (X'X + XX') has nearly rank 
p. 

The algorithm has been programmed on a CDC-Cyber main-frame computer. The 
algorithm has been tested by analyzing 17 random data sets and two empirical data sets 
(the "Word Association Data" and the "Car Switching Data"; Harshman et al., 1982). 
In all of these, using the two starting configurations described above resulted in quick 
convergence that did not even need the modification suggested for Takane's algorithm. 
There was no consistent difference in computation time depending on whether eigen- 
vectors of (X + X') or of (X'X + XX') were used, but overall the latter start resulted in 
slightly smaller computation times. 

In all the example data sets tested so far, there was no need for modification of 
Takane's algorithm when iterations started with either of the two above mentioned 
starting configurations ("rational starts"). However, when other starting configurations 
are used modification of Takane's algorithm is, in certain cases, necessary to obtain 
monotonicity. An example of such a (contrived) case is the following. Let matrix X and 
the starting configuration for A be given by 

X = 2 and 
1 

A = • 

The value of ~r is 9.00 at the start, 6.30 after one iteration and 6.72 after two iterations. 
Because of this increase of the function value, the modification procedure is needed in 
this step and, with a chosen equal to the first singular value of (X @ A'XA), it yields 

= 5.80; then again in the next iteration Takane's procedure results in an increase of 
cr, o- = 6.13, which is improved by the modified approach (o- = 5.70); the process 
continues in this way until convergence. It can be concluded that the modification is 
necessary in this case to guarantee monotonic convergence and is efficient. It should be 
noted, however, that using both of the rational starts results in quick monotone con- 
vergence of Takane's algorithm, for this contrived data. 

Discussion 

The algorithm described in the present paper is based on a technique that is called 
"majorization" (e.g., de Leeuw & Heiser, 1980). This technique essentially consists of 
minimizing a function by means of approximating it in each iteration by a different 
function which is always greater than or equal to the original function and coincides 
with it in at least one point. It can be shown that our algorithm can be presented as a 
method in which the loss function o" is minimized over A by means of minimizing a 
function of A that majorizes o-. 

The modification of Takane's algorithm by means of taking the Gram-Schmidt 
orthonormalized version of (XAA'X'A + X'AA'XA + 2aA) instead of that of (XAA'X'A 
+ X'AA'XA) is related to accelerating techniques such as discussed by Ramsay (1975) 
for slowly converging iterative processes. Ramsay's technique is based on adding a 
scalar (a damping parameter 0) times the matrix to be updated (Aot d) to the matrix 
update based on the original procedure (Au,). In case of DEDICOM this procedure 
would not work without making some adjustments, because (Aun + OAold) is not 
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necessarily column-wise orthonormal. Obviously, Ramsay's procedure differs from our 
procedure in that in our procedure (XAA'X'A + X'AA'XA) is used instead of Aun. 

In the present paper a modification has been proposed for Takane's algorithm. 
However, with the use of either of the rational starts discussed above, we have not seen 
any cases where this modification was actually needed. In practice, Takane's original 
algorithm appears to converge monotonically when rational starts are taken. However, 
no proof is available that Takane's algorithm will always converge monotonically when 
any of the rational starts is used. The main objective of our modification has been to 
provide an algorithm with guaranteed monotonic convergence in case Takane's original 
algorithm would not converge monotonically. 
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