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Abstract 

The problem studied in this chapter is the ranking of schools in terms of quality. There are many 

different ways in which we can quantify if and in how far a school is better than another one. 
One simple way is to compare means of student outcomes at the end of the school career. But 

this can be extremely misleading, because it does not correct the differences in school input. If 

we want to correct for background characteristics of students, in order to find out how well the 

school does with the input material it receives, then we have to use statistical models in order 
to make clear on what assumptions our corrections are based. 

We first study linear models with fixed regression parameters, such as ANCOVA and models 

with separate regression parameters for each school. In the first case the regression lines are 

parallel and the ranking of the schools is the same for all backgrounds. In the second case 
schools may be ranked quite differently for boys and girls, for blue collar and white collar 

children. and for high-IQ and low-IQ students. In our example, a 1959 data set of 1290 children 

in 37 schools in the city of Groningen, it turns out that indeed slopes differ, and thus rankings 

of schools differ for different backgrounds. We investigate how important and how real this 
effect is. 

More recently random coefficient models have been proposed for school effect analysis by 

Aitkin & Longford, Raudenbusch & Bryk, Mason, Wong, & Entwistle, De Leeuw & Kreft. 

and Goldstein. In these random coefficient models schools are considered to be a random 

sample from a population of schools, and we want to make statements about this population 

and not necessarily about the individual schools in our study, interpreted as subpopulations. In 

random coefficient models the residuals in the regression equations are not independent for 

students in the same school. As a consequence if we predict the outcome for a student in a 
particular school, we also have to take the other students in the school into account. This means 

that predictions will generally be more conservative than in fixed coefficient models (the so- 

called shrinkage to the mean). It is argued in the paper that random coefficient models are more 

appropriate for school effects analysis. Rankings of the schools in the example are also 
computed, both for random intercept models (which are the random coefficient version of 

ANCOVA) and for random slope models (which correspond with nonparallel slopes models). 

Criteria are discussed which one can use to decide which rank orders are the most appropriate 
ones. 
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Introduction 

The empirical example analyzed in this paper is from the field of school effectiveness 
research. The analysis model is a multilevel linear model. These two choices are not 
accidental. In educational research there is a clear link between substantial and 
methodological issues, and it is also clear that the validity of statistical inferences is 
enhanced when appropriate analytical models are used. Thus this chapter is about model 
building in educational research, and it is based on the knowledge we have about this field 
and about the way the data are collected. More specifically we are interested in ways to 
rank schools in terms of their effectiveness to train students. We shall see that the rankings 
do not only depend on the measured properties of the schools, but also on the model 

chosen to represent the differences between the schools. 
In this chapter we emphasize that a school effectiveness researcher has no other way to 

proceed than to base the choice of her analysis model on the knowledge she has about her 
data. In principle there are hundreds of possible ways to order schools from very sucessful 
to very unsuccessful. Moreover all these different ways of ordering arc not ncccssarily 
closely related with each other. On the contrary, as we will show, some may be negatively 
correlated or not correlated at all. It is obvious that with so many choices a researcher is 
able to satisfy who ever she wants, just by choosing one model over the many others that 
will be most pleasing to the audience. Although we are aware that school effectiveness 
research is more often than not policy oriented research (compare Kreft, lYX7). pleasing 

criteria should not guide the choice of the analysis model and thus the ways of schools arc 
ordered. What we need are more objective criteria. Criteria that enable us to choose the 

best analysis method. Rest in the sense that it provides us with the most reliable and useful 
estimates. 

In this chapter we give some criteria for making this choice in the field of school 
effectiveness research. The arguments are based on statistical as well as theoretical 
reasoning. in close interplay with each other. We argue that these two types of 
considerations should be in agreement. As a starting point we introduce some of the well 
known traditional linear models, such as analysis of variance and covariancc and multiple 
regression techniques. These three techniques have basically the same underlying 
assumptions. It will be made clear that these statistical tools can and in fact are applied 
here to situations for which they are not designed. and this makes them less than optimal. 
Later in this paper we introduce models that are designed for the school effectiveness 
situation in educational research. Since school effectiveness research is complicated, this 
will lead to a more complicated statistical model (see Aitkin 6r Longford. 1986; De Leeuw 
8i Kreft, 1986; Raudenbush & Bryk. 1986). 

Description of the Data 

All the different techniques we present have the same goal: to order schools from very 
successful to very unsuccessful. For our example we use the Dutch GAL0 data (described 
by Peschar, 1975). These data contain information about primary school leavers in 37 
schools in the city of Groningen in 1959. This is the same data as used in our 1986 article 
(De Leeuw & Kreft, 1986). In a sense this chapter is an extension of the earlier article, in 
which we compared different estimation procedures. It is also interesting to compare our 
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analysis with the similar work in the article of Aitkin & Longford (1986). We also compare 
different ways of analysis in order to show that these lead to different solutions. To do this 

we use variables which are measured at the pupil level. The dependent variable is advice 
(of the head teacher about the most appropriate school for a particular student after 
primary education) with seven categories (for the seven possibilities a student can choose 
from in secondary education in the Netherlands). The seven categories are scored 1-7, and 
the resulting variable ADV is used as a numerical variable. This is clearly not exactly 
appropriate, but given the availability of statistical techniques there is very little else we 
can do. As predictors for our operationalization of school success we used the three 
variables SEX, IQ and fathers occupation (SES and six categories, again treated as a 
numerical variable). Another predictor is the distinction between the 37 schools as 37 
groups. The number of students varies per school from as low as 11 to as high as 66 (see 

Table 3.la). 

Table 3. la 
Ranking of Schools by Variables 

## SIZE SEX IQ ADV SES 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

29 
33 
31 
66 
39 
45 
39 
31 
53 
31 
30 
36 
52 
29 
33 
65 
57 
31 
26 
27 
25 
27 
26 
36 
11 
27 
15 
27 
20 
32 
49 
57 
37 
39 
35 
28 
I6 

6 
1 

11 
30 
14 
7 
5 

24 
33 
21 

8 
19 
15 
10 
36 
28 
12 
32 
35 
20 
26 

4 
16 
2 

37 
25 
27 
29 
34 

3: 
22 
23 
17 
13 
1X 
9 

12 
34 
27 
32 

2 
8 

21 
13 
36 

6 
4 

15 
22 
25 

30 
16 
5 

14 
17 
23 
20 

3 
1 

24 
35 
10 
26 

3: 
37 
28 
33 
19 
11 
9 

6 
34 
30 
33 

4 
24 
25 
18 
29 

9 
7 

20 
23 
28 

:4 
31 
11 
12 
14 
5 

19 
21 

2 
1 

17 
26 

8 
22 
13 
32 
35 
27 
36 
15 
IO 
3 

9 

31 
19 
33 

8 
32 
28 

6 
25 
13 
18 
27 
22 
24 

7 
26 
35 

4 
11 
I4 
20 
21 
30 
10 

1 
16 
3 

15 
5 

I7 
36 
37 
34 
29 
12 
23 

2 
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Rank Correlations between Rank Orders 

SIZE I .ooo ~-. 104 .3X3 ,574 ,030 

SEX -.104 I .oou .15-l ,043 ~ .205 
10 .3X3 154 I .ooo .#I ,553 

AD\’ .574 ,033 .XXI I .ooo .71-l 
SES ,636 - ,205 553 ,714 I .ooo 

The First Ordering of Schools by Way of Means 

To rank order the schools we start in a very simple way. Wc simply take the outcome 
characteristic, in our case ADV, and we compute the averages for each school. These 
averages then produce the ranking of the schools. Actually we have done a bit more. Table 
3. la gives the rank numbers of the 37 schools on all four variables. Column 1 of Table 3. la 
gives the school number, column 2 the school size, and the remaining four columns the 
rank orders in terms of average SEX, IQ, ADV, and SES. Knowing that IQ and SES have 
a fairly direct influence on the advice of the head teacher it is not surprising that the 
ordering by mean advice in Table 3. la is closely related to an ordering by mean IQ or mean 
SES. This can be seen in Table 3. lb, which gives (Spearman) rank correlations between 
the columns of Table 3. la including school size (SIZE). 

Observe that Table 3. I b shows a significant positive correlation between SIZE and the 
three variables IQ, SES, ADV. This is clearly because of schools such as #2S, #27, #29, 
and #37. These are small schools. with low SES averages. They are presumably. inner city 
schools with many children of unskilled workers. 

The data can be used to illustrate another interesting phenomenon. At individual level 
the (Spearman) rank correlation between ADV and IQ is .743, while the correlation 
between mean ADV and mean IQ calculated at school level is ,881. This b/owing ~12 of the 
correlation coefficient when calculated over aggregated variabics is a well established fact. 
known as the Robinson effect, named after Robinson (1950). who was one of the first to 
describe and explain this. Another example is the correlation between SES and ADV, 
which is ,305 at the individual level and is blown up to ,714 at the school level. The higher 
correlations at the aggregate level explain why an ordering by mean ADV is also an 
ordering by mean SES, but even more so by mean IQ. 

It is clear from our results so far that the ordering of schools from highest to lowest mean 
advice is influenced by the student characteristics of the school population. If our goal is 
to see which schools are more successful than others, irrespective of the population, we 
have to correct the mean advice for the influence of IQ and SES. The conclusion that in 
order for schools to have better results they need to attract high SES and high IQ students, 
is a trivial one. If we want to know if schools have an effect on students next to and above 
their background characteristics, we have to control for these differences in individual 
backgrounds. 

Statistical Control for SES, IQ ad SEX 

Our use of averages can be formulated in terms of using linear models. This makes it 
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possible to talk about assumptions, and it also points our various natural alternatives. In 
our models index j is used for schools, index i is used for students, who are nested in 
schools. Throughout we use the convention of writing random variables in boldface 
notation. 

The first model we use is: 

yii = (Y] + 7. 
‘1 ’ (3.1) 

where the disturbances are normal, independent, centered, and homoscedastic (this last 
assumption means that they are assumed to have the same variance (T* for each individual). 
This is the one way analysis of variance (ANOVA) model, in which we have a single 
parameter 01, for every school. From the linear model point of view (3.1) is the null model 
in which coefficients for all predictor variables are set equal to zero, except for the 
intercept. Estimation of the parameters produces the ordering of schools by way of 
uncorrected school means, i.e. column ADV of Table 3.la. 

A method to test if schools by themselves have an influence on achievement is to partial 
out the influence of the individual traits and see if this leaves something to be explained by 
schools. In other words, does the difference between schools disappear if the influence of 
the student characteristics is taken into account. There arc several ways to do this. The first 
and most simple one is to perform an analysis of covariance (ANCOVA), where schools 
are the groups, and where SES, SEX and IQ are the covariates. Model (3.2) is the analysis 
of covariance model, with the dependent variable advice: 

Yij = “j + f3ISEX,, + PzIQij + P3SES,j + 7i,. (3.2) 

This is a substantial improvement over model (3.1) as far as the unexplained part of the 
variation is concerned, which is decreased from .SlS to .346. The estimated (Y’S can be used 
again to order the schools. We can use the residual variances, which are respectively 2.07 
and .8X, to test the difference between models (3.1) and (3.2), i.e., we can test the 
hypothesis B, = B2 = pi = 0 within the model (3.2). The likelihood ratio chi square is 1290 
x (In 2.07 - In 0.88) = 1103.44. With only three degrees of freedom this is clearly highly 
significant. 

If we compare the ANOVA and ANCOVA columns in Table 3.2a we clearly see a 
different order. The rank correlation between them is r = .667, indicating only a moderate 
agreement between the two orderings. The conclusion so far is that controlling for 

background characteristics does make a difference. Using only the aggregated means is 
misleading. But using ANCOVA as the way to avoid a bias in the direction of the school 
population characteristics has its own problems. 

The ANCOVA model is based on at least one critical assumption, which is a priori 
unlikely to be true. This is the homogeneity of slopes, i.e., the assumption that all 
regression lines are parallel in schools or that there is no interaction effect between school 
and student characteristics. If heterogeneity of slopes is more likely we can still control for 
student characteristics by fitting the same model as in (3.2), but now for each school 
separately (3.3). Thus model (3.3) allows each school to have its own estimates for the 
regression coefficients: 

yij = aj + P,jSEXij + P*jIQij + P,jSESij + 7i,. (3.3) 
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Table 3.2a 
Ranking of Schools by Fixed Models 

## SIZE ANOVA ANCOVA I S I-S, I+S_ I,S+ 

I 2’) 
2 33 
3 31 
4 66 
5 3Y 
6 45 
7 39 
x 31 
Y 53 

10 31 
II 30 
12 36 
13 52 
I4 29 
IS 33 
I6 65 
I7 57 
I8 31 
19 26 
20 27 
21 25 
22 27 
23 26 
24 36 
25 II 
26 27 
27 15 
28 27 
29 20 
30 32 
31 49 
32 57 
33 37 
34 39 
35 3.5 
36 2x 
37 I6 

6 5 2x 34 
34 32 8 16 
30 35 35 36 
33 2Y 73 23 
4 I7 77 15 

24 36 34 35 
25 30 25 27 
IX 31 36 29 
2’) Y 5 6 

Y I 6 II I3 
7 12 29 32 

20 23 31 26 
23 I3 IN 25 
28 33 20 2x 
I6 22 I7 30 
37 37 33 34 
31 24 I 5 
II IY IO 8 
I2 2x 32 31 
I3 20 24 7 
5 I IY I7 

IY IO 2 3 
21 IX 22 Y 

2 3 21 I8 
I 2 9 33 

I7 7 I2 22 
26 x 26 II 

8 II I3 20 
22 6 37 37 
I3 27 I5 1’) 
32 26 16 12 
35 25 6 2 
27 21 3 4 
36 34 14 IO 
I5 IS 7 I4 
I 0 14 30 21 
3 3 4 I 

3 
IO 
33 
75 
I8 
32 
22 
37 

0 
26 
IS 
31 

x 
71 

7 
36 

2 
I7 
24 
34 

I 
IY 
30 
II 
5 

I2 
20 
I6 
I4 
J 

28 
29 
23 
35 
13 
27 

6 

3 
23 
?S 
2.5 

3; 
22 
36 
IO 
29 
20 
28 
12 
31 
26 
37 

4 
8 

27 
II 

I 
I4 
I3 
6 

34 
I6 
J 

21 
1’) 
Y 

30 
1s 
IX 
33 
24 
I7 
2 

Table 3.2b 
Rank Correlations between Rank Orders 

ANOVA ANCOVA I s_ I-S, I+S l+S, 

ANOVA I.000 ,669 - ,036 - ,062 ,434 .3x3 
ANCOVA .66Y I .ofX) .257 .226 .624 .62l 
ILS_ - ,036 .257 I 000 ,734 ,450 ,315 
I-S+ - ,062 .226 ,734 I .ooo .OYY ,563 
I+S_ ,434 .624 .450 .099 I .ooo .SY8 
I+S+ ,383 ,621 ,315 ,563 .59x I .ooo 

If we fit this model the residual variance is .78, which means that the percentage of 
unexplained variance drops to .307. This corresponds to a likelihood ratio statistic (for 
testing the homogeneity of slopes) of 1290 x (In 0.88 - In 0.78) = 155.61, with 36 X 3 = 
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108 degrees of freedom. This transforms to a z-value of 3.24, which is quite small for a 
sample as large as this one, although significant. Although there is some evidence of 
heterogeneous slopes, it is not very strong. 

Let us ignore this statistical information for the moment, and act as if the slopes are 
different. If we allow slopes to differ per school the ordering of the schools becomes less 
simple. Some schools may be successful for high IQ students or for females while the same 
schools are not successful for low IQ students or for males. Since we have 2 (SEX) x 7 
(SES) X 85 (IQ from 60-144) = 1190 different conceivable students, the number of 

possible comparisons is large. To illustrate this we picked, rather arbitrarily, four different 
types of hypothetical students and ordered the schools according to their success with 
those students. This produces four different orderings. We code them by using I, for low 
IQ, I+ for high IQ, S for low SES, and S, for high SES. The first group (code IA S,) are 
girls with an IQ of 90 and a blue collar worker as father (SES-category 2). The second 
(IIS,) are girls with the same IQ, but fathers who are working as businessmen, or who own 
a small business (SES-category 4). The third (1,s~) and fourth (I+S+) ordering are girls 
with the same SES backgrounds, but with the difference that their IQ is now considerably 
higher (it is equal to 110). 

The columns in Table 3.2a give, next to the orderings from models (3.1) and (3.2), the 
orderings by using model (3.3) in the last four columns as follows: 

(1-S) predicted advice = “j + PI, (SEX = 2) + P2j(IQ = 90) + P,(SES = 2) 
(IIS,) predicted advice = ‘Yj + PI, (SEX = 2) + P2j(IQ = 90) + P,j(SES = 4) 
(1,s~) predicted advice = “j + pi, (SEX = 2) + P2,(IQ = 110) + P,,(SES = 2) 
(I+S+) predicted advice = ‘Yj + P,j (SEX = 2) + P:j(IQ = 110) + l33,(SES = 4) 

Replacing the 01’s and p’s with the different estimated values per school produces 37 
outcomes for the prediction of advice and thus for the rank order for all schools. The 
results are indeed different for different types of students, as we can see in Table 3.2a when 
comparing the last four columns. Each row in Table 3.2a contains the rank numbers for 
one single school over the six different methods of ordering. Table 3.2b has the 

(Spearman) rank correlations between the six rank orders. 
Some examples of the difference between rankings a school gets if we compare different 

students in those schools are: schools #l, #21 and #23 (see Table 3.2a). School #l scores 

high for the IQ-110 students (columns I+S_ and I+S+) by occupying a third place, but does 
poorly (28th and 24th place) for the IQ-90 girls (columns IIS and I-S,). The same is true 
for school #21, which scores high for lIO-IQ students but does a lot worse for 90-IQ 
students. It drops from being the best school in the last two columns to being an average 
school (number 19 and 17, respectively) in the I_ columns. School #23 also jumps around: 
it does fairly poorly on most scales but is up to 9th and 13th place for higher SES girls (see 
columns I-S, and I+S+). This shows an interaction effect between student characteristics 
and the school. 

The correlations between the orderings, with different students in model (3.3) as the 
ranking criteria, are moderate to low. The highest correlation is only ,734. This is the one 
between IIS and I-S,, the low IQ girls only differing in the occupation of their fathers. 
The association between ANOVA and ANCOVA is also somewhat higher than the 
others: r = ,669. The correlation between orderings for low-SES girls which only differ in 
IQ, orderings I-S-and I+S_ is r = .450. The largest discrepancy is between the orderings 
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l-S+ and I,.S_ of girls with different IQ’s and with fathers with different occupations, being 
as low as I = .099. The correlations between ANCOVA and the last four orderings is 
moderately high between the two groups with high IQ girls (P = .624 or r = .621), and low 
for the low IQ girls (r = .257 or r = .226). It is not surprising that ANOVA, the 
uncorrected means. has in general the lowest correlation with the other five. 

Especially different are the conclusions based on low IQ students, if compared with the 
other orderings. Partly this is related to the size of the school. For low IQ students the 
average predicted advice is negatively correlated with the size of the school, while for high 
IQ students there is a fairly strong positive correlation. This seems to indicate that small 
schools give relatively high advice to low IQ students, while large schools give relatively 
low advice. The orderings given by ANOVA and ANCOVA agree more with the high IQ 
orderings I+S_ and I+S,. This is unfortunate, since often research in school effectiveness 
is interested in the success of schools with under-privileged students. In our case, and 
probably in a lot of school effectiveness research, it is clear that neglecting this potential 
interaction effect, as the ANOVA and ANCOVA orderings do. can lead to different and 
biased conclusions about which school are more successful. The orderings based on model 
(3.3), taken together, will generally produce a more complete picture. In comparison the 
uncorrected means (ANQVA) seems to be the most biased and least informative way to 
order schools (of course its fits are also bad compared with the ANCOVA model). 

But still we encounter problems in using model (3.3). This is already clear from the fact 
that the differences between the slopes are not very significant (compare the likelihood 
ratio test earlier), while the ordering of the schools for the various typical individuals we 
have used is wildly different. If we order schools by way of estimating different models for 
different schools and compare outcomes we do that by taking the coefficients at face value. 
By doing so we ignore the fact that some estimates are more efficient than others (small 
versus large standard errors) and that some may even be biased as a result of small non- 
random groups and/or outliers. In our case the number of students per school differs 
markedly, which causes some schools to have more reliable estimates than others. School 
#2S, for instance. only has I1 students. It is ranked worst on IQ, ADV, SES. If we use 
ANCOVA to correct for background it moves up one place, but if we let the school 
determine its own regressions coefficients strange things happen. For high SES students 
this turns out to be one of the best schools there is, but of course high SES students do not 
really occur on this school. Taking such things into account lcads to the search for a better 
way to analyze the data. 

We start our search for a better model with an examination of the assumptions behind 
the traditional linear mod&. One of the assumptions of the fixed linear model is 
independent. sampling. We have reasons to doubt the validity of this assumption, which 
means that students are randomly sampled from an infinitely large population of students. 
This is shown in the equation of al1 fixed models where it is stated that the individual errors 
7,) are uncorrelated, have a mean of zero and a constant variance &. But in our case, as well 
as in educational research in general, we know that students are sampled from within a well 
defined population: a particular school. In fact usually it is not students that are sampled, 
but schools, and students are nested within them. This gives us good reasons to assume that 
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individual (student) error terms of students in the same group are correlated. The error 
term contains next to random measurement error various influences that are not 
measured, the influence of the variables not in the model (Kreft, 1987). Since students in 
the same class share a lot of hours per day of common experiences it is somewhat 
unrealistic to assume (as is done in the fixed models) that unmeasured influences are 
unsystematic. More realistic is to assume that the error term contains a systematic part 
which points in the same direction instead of cancelling out by being random. 

Another problematic aspect is the use of fixed effect models such as AN(C)O 
ANOVA as well as ANCOVA are analysis methods designed for the analysis of a fixed 
number of experiments. But schools are better thought of as a (random) sample from the 
population of possible schools, and not as a fixed number of treatments. What we need 
here is a random effects model. Starting from the traditional random effect model and 
comparing it with the fixed effect model we find that the main difference is that we are no 
longer dealing with means or point estimators, but with variance components. The 
variance due to treatment is estimated instead of estimating effects directly by taking 
differences of treatment means from the grand mean. In random coefficient models it is 
assumed that the errors within the same schools are correlated, and that schools are a 
random sample from the population of schools. The last assumption allows us to make 
inferences to other schools not in the sample, while the first assumption provides more 
reliable estimates. The estimates are no longer based solely on individuals independent of 

each other, but upon individuals in relation to each other when in the same group. The 
model as a whole is more reliable, since the coefficients are weighted in relation to their 
reliability, the size of the group and the correlation between the individuals within the 
group. This also makes the chance of type I errors in the random model smaller compared 

to the fixed models (see De Leeuw & Kreft, 1986; Raudenbush & Bryk, 1988). 
Since in the analyses of (co)variance, fixed or random, all analyses have slopes which are 

parallel between groups, by assuming no interaction between individual student and 
school characteristics, we have to adjust the traditional random effects model to 
incorporate the possibility of different slopes per school. As shown before when 
comparing the four orderings of schools for high and low IQ girls and for girls with blue 
collar workers as fathers and businessmen as fathers, the actual slopes for IQ and SES are 
very different for different schools. This makes allowing for the possibility that schools 
have different slopes a necessary first step. 

The random coefficient model is a special variance components model. Again there are 
several sources of variance in the dependent variable that are decomposed into a pupil 
variance component and a school variance component. This way the total variance is split 
into sampling variance and school level variance. The researcher will eventually try to tie 
this last variance to a school characteristic. We do not do that here since we merely try to 
order schools by their outcomes. Because the error structure in this model is much more 
complicated as a result of the weighting procedure used to estimate the different sources 
of variance, estimation of the residual variance is less straightforward than in the fixed 
model. The usual Least Squares (LS) procedures are replaced by maximum likelihood 
(ML) methods, closely related to Bayesian and empirical Bayes methods for linear models 
(see for details: Aitkin & Longford, 1986; De Leeuw & Kreft, 1986; Jennrich & 
Schluchter, 1986; Raudenbush, 1988). This results in more efficient and reliable estimates 
due to a shrinkage factor applied to schools that are far away from the grand mean. The 
improvement over LS estimates is especially large when samples are small, because a 
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Bayes shrinkage to the grand mean offsets the instability in coefficients which is a result of 
small groups (see Raudenbush, 1988). Each LS estimate Pj is weighted proportional to its 
precision. This improvement is greatest when much heterogeneity among micro 
parameters exists and least when sample sizes are large. If groups are large, LS estimators 
are more or less equal to ML estimators. Summarizing we can state that very small schools 
can be left in the analysis, because the estimation method makes the outlier problem and 
chance factors less disturbing. This is not the same as saying that small schools in the data 
set are an optimal condition. Small schools will be more subject to shrinkage to the mean 
(or shrinkage to a macro level variable, if this is in the model) than large schools. 

Most statistical software packages provide techniques to analyze random treatments 
designs (see for instance the SAS module VARCOMP for random analysis of variance 
model), but these are often not useful in education data analysis. The reasons are the 
limitations that are caused by the usual assumptions of equal slopes and equal error 
variances (or equal rz) between schools and uncorrelated error terms within schools. The 
new 5V module of BMDP can handle the data structures we have in mind (Schluchter, 
19&S), but for really large data sets the input handling is not very efficient. For our analyses 
we have used a Macintosh version of the VARCL program of L,ongford (19SS). which has 
been designed specifically to handle these random coefficient models. 

The estimates produced by the random coefficient models are more reliable and also 
more efficient. The standard error of the estimates are smaller than the errors around the 
estimates based on the other models. Standard errors are not only related to sample size 
and sampling variations, but also to the mean of the group and the deviation of the group 
parameters compared to overall mean. This makes the number of parameters to be 
estimated much smaller than in the separate models for the separate schools method. In 
the last method the schools are considered independent of each other and for each school 
separate and independent parameters are estimated. In our example of 37 schools, using 
model (3.3), this leads to 37 x 4 = 148 parameters (one intercept and three slopes for each 
school). With the error variance (r2 this leads to 149 parameters. In the examples in the 
next paragraph, with random coefficient models, we do not estimate parameters but 
distributions around a mean with a certain variance. In the random coefficient model with 
all four coefficients random this leads, in our case, to the estimation of only four means and 
four variances (for the intercept and the three slopes) plus an individual error variance, 
altogether giving ten estimates, a lot less than in the fixed model. Some models specify 
extra estimates for the covariance between the slopes and intercept, which adds maximally 
a total of 6 covariances to our model and brings the number of parameters to 16, still much 
less than in the fixed model above. The random coefficient model is more parsimonious 
than the fixed model in this sense. 

More Rankings 

If a researcher has reasons to believe, or if one insists, if she has a theory, that schools 
are just a sample from a well-defined population and secondly that slopes may be different 
between schools and error terms within schools are correlated, then the random 
coefficient model applies. For instance when a researcher wants to evaluate policy 
measures which have the intention to benefit specific minority groups of students a random 
coefficient model may have to be used in order to measure the effect of the school policy 
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on the slope of SES. In order to estimate the effectiveness of the schools in our own data 
we choose three models from the class of random coefficient models. 

We study the random coefficient versions of models (3.1), (3.2), and (3.3). The 
ANOVA model (3.1) becomes: 

Yij = ‘Yj + T,j. (3.4) 

Observe that we now use bold face for cx,, because it is random. It can be decomposed as: 

~j = (Y + Yj. (35) 

The assumption is that the disturbances yj, which are the same for all individuals in the 
same school, are normally distributed with expectation zero and constant variance o2 for 
all schools. It is also independent of the error term 7ij, and of the school level disturbances 
of other schools. If we substitute (3.5) in (3.4) we find: 

YI, = Ca + Yj) + Tij. (3.6) 

This implies that yij is normally distributed with mean (Y, and with variance u* + w*. 
Outcomes for individuals in different schools are independent, but for individuals in the 
same school they have a covariance of o*, and thus a correlation of p = 02/(u2 + w’). The 
model has only three free parameters (a, w’, a2), in contrast to the 37 + 1 = 38 free 
parameters in ANOVA (3.1). If we fit the model we find estimates of the two variances 
equal to 2.13 and 0.39, and thus a correlation of 0.39/(2.13 + 0.38) = 0.15. This deviates 
significantly from zero. 

We fitted also the random intercept (fixed slope) model, which makes a comparison 

possible with the fixed effect model ANCOVA. This is: 

Yij = (~ + yj) + l3,SEXij + P2IQil + P,SES,j + 71j. (3.7) 

Only the intercept (the overall effect) is random in model (3.7). This model only needs 
6 parameters to be estimated. For the estimates of cr* and w2 we now find .91 and .04, which 
is a correlation between errors of children in the same school of only .04 (still significant, 
though). For the fixed ANCOVA model the estimate of the individual level error variance 
was .88. Testing the random ANOVA within the random ANCOVA model, i.e., testing 
that p, = p2 = p3 = 0 in (3.7), produces a chi square of 4706.54 - 3572.24 = 1134.30, which 
is highly significant with three degrees of freedom (compare the chi square of 1103.44 
when comparing the fixed ANOVA and ANCOVA models). 

The most general model is the random coefficient analog of the heterogeneous 
regression model (3.3). It is: 

yij = aj + Pjl SEX,, + Pj2 IQij + Pj3SESij + T,,. (3.8) 

All regression parameters are now random. The random intercept and the random 
slopes consist of a fixed part and disturbances. These disturbances are again at the group 
level with expectation zero and independent of the individual error variances 7ij. This 
decomposition is shown in (3.5). 
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a; = cy + y,. (3.9a) 

P,h = Ph + rljh. (3.9b) 

If we substitute these terms in (3.8) we get the equation: 

YIJ = (a + ~1) + (PI + T~I) SEX,, + (Pz + LIZ) IQi, + (PJ + qlj) SES,, + ~11. (3.10) 

The number of parameters in this model is 4 (mean regression parameters) + 4 (variance 
regression parameters) + 6 (covariance regression parameters) + 1 (individual level error 
variance) = 15. Fitting this model produces an estimate of o’ of 0.89, which is not much 
smaller than the value of .91 for the random ANCOVA model. The likelihood ratio chi 
square for testing the random ANCOVA within the random heterogeneous slopes model 
is 5.85, which is clearly nonsignificant with 15 - 6 = 9 degrees of freedom. Again this 
indicates that there is no significant variation in the slopes in these data. The 
heterogeneous slopes model basically fits the same structure as the random ANCOVA 
model, but because of the additional parameters it does this with much less stability. 
Actually the estimated random slopes (the posterior means of the random effects) show 
very little variation around the origin, and this seems to have a detrimental effect on the 
estimating of the random intercepts as well. 

In Table 3.3a we show the new orderings obtained with the random coefficient models. 
The columns are defined in the same way as those in Table 3.2. Thus the first two columns 
are school number and school size. the third one is the random ANOVA (3.4), the fourth 
one the random ANCOVA (3.7). and the last four columns are for the general 
heterogeneous random slopes model (3.X). with ordering for I- S. I_ S,, I+ S_, and I+ S, 

girls. Table 3.3b gives the correlations between the seven rank orders. In Table 3.4 we 
compare the six rankings of the fixed model with the six rankings of the random model. 

It is very clear from Table 3.3b that the random coefficient model beautifully takes care 
of the variability of the school level regression coefficients, which caused the low 
correlations in Table 3.2b. Slopes really do not make a difference any more, and thus the 
rank order for our four types of girls is almost completely identical. We also see the 
remarkable fact that the four random slope rank orders now correspond more closely with 
the random ANOVA than with the random ANCOVA solution (which is a far better 
solution, both in terms of fit, and in terms of interpretability). This may be because 
allowing the slopes to vary forces the estimating procedure to shrink them towards zero, 
which makes (3.8) like (3.4), and not like (3.7). 

Comparing the correlations between some of these ‘same’ models leads to interesting 
conclusions. Comparing the fixed effect ANOVA with the random effect ANOVA shows 
a correlation of .999. The posterior means are virtually equal to the school means. The 
same thing is true for the fixed and random ANCOVA models, in which the correlation is 
.994. In Table 3.4 we once again see the serious defects of the heterogeneous slopes model 
in the case of fixed effects, and the reasonable performance in the case of random effects 
(although we then seem to fit the random ANCOVA model in a very inefficient way, 
making the resulting rank orders closer to random ANOVA, i.e., to the uncorrected 
means). From the point of view of fit, and interpretability, it is clear that both in the fixed 
and random case the ANCOVA model (or the random intercept model) are much to be 
preferred. Moreover they both seem to give basically the same information, in a somewhat 
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Table 3.3a 
Ranking of Schools by Random Models 

## SIZE ANOVA ANCOVA I-S- I-S, I+.% I+S, 

12 
13 
14 
15 
16 
17 
IX 
19 
20 27 
21 25 
22 27 
23 26 
24 36 
25 11 
26 27 
21 15 
28 27 
2Y 20 
30 32 
31 4’) 
32 57 
33 31 
34 39 
3s 35 
36 2X 
37 16 

29 
33 
31 
66 
39 
4.5 
39 
31 
53 
31 
30 
36 
52 
29 
33 
65 
57 
31 
26 

6 

33 
30 
34 

4 
24 
25 
1X 
29 

9 
7 

20 
23 
2X 
16 
37 
31 
11 
13 
14 
5 

19 
21 

13 
26 

8 
22 
12 
32 
36 
27 
35 
IS 
10 
3 

4 
31 
3s 
32 
I7 
36 
29 
30 

6 
16 
12 
25 
13 
33 
22 
37 
23 
19 
2X 
20 

1 
9 

1X 
2 
5 
7 

10 
11 
8 

21 
26 
24 
21 
34 
14 
15 
3 

7 
35 
33 
31 

4 
20 
19 
25 
29 

8 
11 
15 
24 
34 
27 
31 
30 
12 
16 
14 
2 

1X 
13 
3 
1 

21 
2X 

9 
22 
10 
32 
23 
26 
36 
17 
6 
s 

7 
35 
33 
32 

4 
20 
19 
2.5 
29 

8 
II 
15 
24 
34 
27 
37 
30 
12 
16 
I4 
2 

1X 
13 
3 
1 

21 
2x 

9 
22 
10 
31 
23 
26 
36 
17 
6 
5 

7 7 
35 35 
33 33 
31 32 

4 4 
19 20 
20 1Y 
25 2.5 
29 20 

8 X 
11 11 
IS IS 
24 24 
34 34 
27 27 
37 37 
30 30 
12 12 
16 16 
14 14 
2 2 

1X 18 
13 13 
3 3 

21 21 
2X 2X 

9 Y 
22 22 
10 10 
32 31 
23 23 
26 26 
36 36 
17 17 
6 6 
s 5 

Table 3.3b 
Rank Correlations between Rank Orders 

ANOVA ANCOVA I-S- I-S, I+S- I+S+ 

ANOVA 1.000 .661 ,925 .926 .Y26 .Y26 
ANCOVA .661 1 .OOo .645 ,647 .644 ,647 
I-S- ,925 ,645 1 .ooo 1.000 1 .ooo 1 .ooo 
I-S, .Y26 ,647 1 .ooo 1.000 1 000 1.000 
I+S- .926 ,644 1 .ooo 1 .ooo 1 .ooo 1 000 
I+S+ ,926 ,647 1.000 1 .OOO I .ooo I 000 
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Rank Corrclationa between Rank Orders. 
Foxed Models in Rows, Random Models in Columns 

ANOVA ANCOVA I s I-S, 1,s I+S, 

ANOVA .YYY .h63 .1)2X .Y2X .Y7X .Y2X 
ANCOVA ,667 .YY4 .6S‘I .6SJ ,652 .051 

ILS_ - ,031 .?‘)I .ooo ,002 ~ .002 ,002 
I s, ~ .OhO ,265 .Ohl .064 .OhO ,064 
I,% .44l fl.iY .353 .353 >.52 ,353 

I+S+ .3X3 .050 .x10 .15Y ,457 .45Y 

different form. We will not answer the question here if the random or fixed ANOVA 
model has the better fit of the two, because clearly fit measures cannot be directly 
compared. There is no simple residual variance in the random intercept model, and a 
direct comparison of likelihoods is also not quite appropriate (because the models are not 
nested). 

Conclusion 

There are two important outcomes of our analysis. In the first place we find (again) that 
variation in the slopes in school effectiveness models is not systematic, and only marginally 

significant (if at all) in the statistical sense. As De Leeuw & Kreft, Aitkin & Longford, and 
Bryk & Raudenbush have also found. the random intercept or random ANCOVA model 
is a better way to present our data. Models in which slopes are allowed to vary can be very 
misleading, in the case of fixed coefficients, because the betas bounce all over the place 
and lead to wildly different conclusion about the ranking of schools. In the random slopes 
model the variation in the betas is suitably depressed, but the complicated estimation 
problems in this case do not seem to be completely solved here. The likelihood surface is 
presumably very flat. The different ways in which the fixed and random slopes models 
handle the bouncing beta problem is another important outcome of our analysis. 

There are two alternatives that remain if we want to rank schools. The obvious one, 
using school means, is very stable. It gives virtually the same results for random and fixed 
models. If we do not interpret it in a purely descriptive way, and think of it as a model- 
based ranking, then the corresponding model is thoroughly discredited (chi squares near 
1100 with three degrees of freedom). If we rank schools in terms of output only, we do not 
measure their effectiveness, because if we want to measure effectiveness we also have to 
take input into account. After correcting for input we have a rank order which is quite 
different, although still moderately correlated with the output rank order. 

We have discussed the differences between the random and fixed models and we have 
given rational arguments why the random model is a good alternative. The model is built 
on more realistic assumptions: random effects and random slopes and correlated error 
terms within groups. Because the random coefficient model is based upon the knowledge 
of the sampling of schools, and the shared history of the students within the same school. 
the stability of the estimates is increased. Although we cannot show statistically that the 
random model is preferable to the fixed model, we think on the basis of the 
appropriateness and the parsimony arguments it is preferable to think in terms of random 
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coefficient models. Of course it still is the responsibility of every individual researcher to 
consider the choice of her tool. She is the one who is supposed to know if certain 
assumptions are realistic and if they apply to her situation. She has to choose the tool, in 
the sense of De Leeuw (1989). What we have shown here is, that the choice of the tool can 
really make a difference. 
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