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Multilevel models are becoming increasingly used in applied educational social and economic 
research for the analysis of hierarchically nested data. In these random coefficient regression 
models the parameters are allowed to differ over the groups in which the observations are 
nested. For eo~nputational ease in deriving parameter estimates, predictors are often centered 
around the mean. In nested or grouped data, the option of centering around the grand mean is 
extended with an option to center within groups or contexts. Both are statistically sound ways 
to improve parameter estimation. In this article we study the effects of these two different 
ways of centering, in comparison to the use of raw scores, on the parameter estimates in 
random coefficient models. The conclusion is that centering around the group mean amounts 
to fitting a different model from that obtaincd by centering around the grand mean or by using 
raw scores. The choice between the two options for centering can only be made on a 
theoretical basis. Based on this study, we conclude that centering rules valid for simple 
models, such as the fixed coefficients regression model. are no longer applicable to more 
cotnplicated models, such as the random coefficient model. We think researchers should be 
made aware of the consequences of the choice of particular centering options. 

Introduction 

Multilevel models are becoming increasingly used in applied educational 
and econometric research (see Bock, 1989; Bryk & Raudenbush, 1992; 
Goldstein, 1987) to analyze hierarchically nested data. Micro-level units, 

Correspondence should be sent to Ita G. G .  Kreft, Division of Educational Foundations 
and Interdivisional Studies, School of Education. California State University, 5 15 1 State 
University Drive, Los Angeles, CA 90032. We thank Rod McDonald for helpful discussions 
on the topics treated in this article. 
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such as workers or students, are nested within macro-level units, such as 
industries or schools. In multilevel models, separate predictors characterize 
the micro-level units, the individuals, and the macro-level units, the groups 
or contexts. The assumptions regarding the coefficients of the model depend 
upon the level of the predictors. The coefficients of all but the highest level 
predictors may be treated as random, hence the name rundoin coefficient 
models, while those of the highest level are always treated as fixed. Treating 
a coefficient as random means that the coefficient is permitted to vary across 
the units at the next higher level. It also means, however, that the different 
values of the coefficient are interpreted as different realizations of the same 
random variable. This treatment of coefficients as random, instead of in the 
traditional way as fixed, is a result of the fact that we interpret our groups as 
a sample of possible groups, and we want to make inferences to the total 
population of such groups. 

The available software packages for the analysis of hierarchically nested 
data (GENMOD, HLM, ML3 and VARCL) differ in the way they process 
the raw data. The most popular option in HLM (Bryk et at., 1988) is to 
center on the context mean. ML3 (Prosser, Rabash & Goldstein, 1992) 
offers many choices, among them to center on the grand mean or the group 
mean. The manuals for ML3 and HLM specify as reasons for centering that 
it may facilitate interpretation, and is also useful to improve numerical 
performance of the estimation algorithm. One of the improvements 
mentioned in the literature (e.g., Belsley, 1991, Chapter 6) is that it removes 
non-essential ill-conditioning caused by the choice of origin for the 
regressors. I n  VARCL (Longford, 1990), variables are automatically 
replaced by the centered version in deviations from the grand mean. not the 
group mean. The results are reparameterized in terms of the original data, 
which makes the VARCL output the same as that of GENMOD (Mason, 
Anderson & Hayat, 1991 ), a program that uses raw data (see Kreft, de 
Leeuw & Kim, 1 990). 

With formulas and examples we illustrate the different effects of 
centering, especially of group mean centering, or centering within context. 
Group mean centering in multilevel models is the topic of a recent 
discussion in the Multilevel Modeling Newsletter, started off by 
Raudenbush's ( 1989b) article, Centering Predictors in Multilevel Anulysis: 
Choices and Consequences. This was followed by reactions of Plewis 
( 1989) and Longford's ( 1  989) in the next issue of the same newsletter. and 
by a response of Raudenbush (1989a) to his two critics. The discussion is 
not new (Burstein, 1980; Cronbach, 1976). The use of centering has a long 
history in education since Cronbach advocated such a model for the 
separation of student effects from school or classroom effects in fixed 
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coefficient models. It is to this history that Raudenbush (1989a, b), among 
others, refers, in claiming several advantages of centering within context. 
The high correlation between the random slope and random intercept in raw 
scores models is eliminated. The first level regression model does not suffer 
from a misspecification of the second level model if centering within context 
is applied (Raudenbush, 1989b, p. 10). In contextual models (where the 
context mean is reintroduced as a second level predictor) this context mean 
might have a high correlation with the raw score. Centering within context 
eliminates this correlation. 

Notation and Dejinitions 

For our discussion of the effects of centering we define X., as the mean 
for group j ,  and X.. as the mean of all observations i over all contexts j. 
Three different centering approaches are used. 

1 .  RAS: leaving the micro-predictors in raw score form, the predictor is &; 
2. CGM: centering around the grand mean, predictor Ti = X,, - X..; 

3. CWC: centering within context, predictor yf = - X.,. 
Two different regression models are fitted: 
1 .  A simple regression model with one single first level predictor 

(RAS,, CGM,, CWC,). 
2. A contextual model with the context mean reintroduced as a second 

level predictor of the intercept (RAS,, CGM,, CWC,). 
Throughout this article, we will use these acronyms to distinguish the six 

different models. We also briefly discuss more elaborate models, which 
have second level predictors in the equation for the random slopes. It turns 
out that our algebraic techniques are general enough to cover these more 
complicated situations as well. 

Model Equivalence 

Each multilevel model defines a formula for the expected value and the 
variance covariance matrix of the dependent variable Y;,. If two different 
models generate the same set of expectations and dispersions, they are 
equivalent. In our case, we only look at expected values and dispersions, 
because normal distributions are the same if and only if they have the same 
expected values and dispersions. In non-normal models we can have 
identical first and second order moments, without having equivalence. Even 
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in normal models, we can have equivalence for the expected values and non- 
equivalence for the dispersions. 

Even if we have equivalent models, the formulas for describing the 
model may look different, because different parametrizations are used. 
Parametrizations are just systems of coordinates to describe the expectations 
and dispersions generated by the model. Some parametrizations can be more 
simple or more parsimonious than others, even if equivalent models are 
described. If there is a one-to-one transformation between two different 
parametrizations, then the models they describe are equivalent. 

In Table 1 our results are summarized. The RAS model is In both cases 
1 and 2 equivalent to the CGM model, but both are not equivalent to the 
CWC model. Thus the six combinations give rise to only four different 
models, which we denote by A, B, C, and D in the table. The numerical 
results we report can be used to verify equivalence of models. In general, it 
is not necessarily the case that fitting equivalent models will produce the 
same parameter estimates. This also depends on the estimation procedure. 
Since we will be using maximum likelihood estimation throughout this 
article, we can use the invariance property of maximum likelihood 
estimation to show that the estimates should coincide for equivalent models. 
Hopefully this result also extends to computer programs that implement the 
maximum likelihood methods. 

Centering in Fixed Coe!f/icient.s Models 

In the article, we explore the effect of centering in random coefjicients 
models. For that purpose we summarize here what we know about the 
effects of centering in fi'xed coqfi~cients regression models in similar 
situations (Cronbach, 1976). We shall see that results for the effect of 
centering in fixed coefficients rnodels cannot be applied directly to random 

Table I 
Six Models Compared 

Centering Do Not Include Include 
Mode Group Means ( I) Group Means (2) 

RAS RAS :A RAS,:c' 

CGM CGM I :A CGM2:C 

CWC CWC,:B CWC,:D 
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coefficients models, mainly because the between group variation is defined 
in a much more complicated way. By making more explicit the implications 
of centering for random coefficients models we hope to contribute to the 
understanding of these models. 

The reasons given by Raudenbush (1989a, b) for using CWC, or CWC, 
are based on fixed coefficients considerations. The relationship between the 
estimates of the coefficients in RAS and CWC fixed linear models is fairly 
simple. For the time being we suppose both X and Yare in deviations from 
the grand mean. Define the coefficient for the prediction of Y from X across 
all data from all contexts as h ,  and make use of the fact that bT is a 
composite of the between-group regression estimate b, and the pooled 

within-group regression estimate h, according to bT = q2bB + (1 - q2)bw, 

where q2 is the proportion of the variance in X explained by differences 
between contexts. We now have the Table 2. 

Relations between coefficients in fixed coefficients models can be 
defined more properly (see Duncan, Curzort & Duncan, 1966; Kreft, 1987). 
In the fixed coefficients CWC, model, the effect ofX,, - X.,, corrected for the 
effect of X., is equal to b ,  while the effect of X,, but corrected for the raw 
score effect of X,, is equal to (b, - h,). This shows that centering around the 
context mean changes the definition of the context effect (which is the 
coefficient of X.,), from b, - b, to h,. We also see in Table 2 that RAS, and 
CWC2 are equivalent, with CWC, giving the more natural parametrization. 
Models RAS, and CWC, are different. RAS, does not take the group 
structure into account at all, and CWC, shrinks h, by multiplying it with the 
proportion of variance that is within-group. In fixed coefficients models 
using CWC, does indeed separate the between-group variation from the 
within-group variation. We shall show in the following that the same 

Table 2 
Four Fixed Coefficients Models Compared 

Centering Do Not Include Include 
Mode Group Means ( 1 ) Group Means (2) 

RAS P i , = [ q 2 h , + ( l - q 2 ) b w ~ ; l  P,,=~,x,,+(~,-~,)x., 

CWC P,, = bd4,-X.,)  + h&., 
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orthogonalization occurs in the fixed part of random coefficient models 
when CWC2 is employed, but that the effect on the between-group variation 
in the random part is much less clear. 

In the following paragraphs we will show that for random coefficients 
models, (a) CWC, results in a different model than RAS, or CGM, both in 
the fixed and the random part (compare the first column of Table I); (b) the 
CWC, model is equivalent to RAS2 and CGM, in the fixed coefficients, but 

not in the variance-covariance part (compare the second column of Table I ) ;  
and (c) notions based on fixed coefficients models are not directly applicable 
to random coefficients models. The random coefficients model is more 
complicated than the fixed coefficients contextual model, especially in the 
definition of between-groups variation. 

Models Without Second-level Predictors 

We first formulate the simplest random coefficients models without the 
group means reintroduced, and consider the impact of centering on the 
regression parameters and the variance components in these simple random 
coefficients models. We discuss both an algebraic demonstration of the 
effects of centering and a numerical example of centering within the random 
coefficients model. 

As we will show in this section, centering within context yields a 
different model from the raw score or the grand mean centering model. 
Parameters of the CWC, model are not simple transformations of those of 
the CGM, or RAS, model. Parameter estimates change, potentially leading 
to different inferences concerning the impact of micro and macro-predictors 
on outcomes, and the definition of the between-group variance. 

The Models 

We shall follow the convention of underlining random variables in our 
models (Hemelrijk, 1966). This emphasizes the distinction between what is 
fixed and what is random, which is obviously critical in models of this class. 

The micro-equation within context j is 

y . .  = u + b,Yii + gji. 
- I /  -1 
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The macro-equations, in the simplest case, are 

In words, this means that contexts are replications of one another, drawn 
from a single population of contexts. This population of contexts is 
characterized by a single grand mean intercept yw and a single grand mean 

slope y l o  in Equations 2 and 3, respectively. The slopes and intercepts of the 

various contexts deviate randomly from their expectations yo,, and y lo ,  as 

reflected in eO, and el,. We assume the micro-level disturbance terms gij 

have expected value equal to zero, variance 02, and are uncorrelated with 
each other. The micro-level with the macro-level disturbances are 
uncorrelated. The covariance matrix of the macro-level disturbances is 

The correlation p between the random slopes and the random intercepts 
is defined by 

It follows from Equations 1-4 that 

ooO + o , ,(Xii + X,,.) + o , ,X,,Xkj if i # k and j = P, 
(8) C(Z,j7 L) = 

otherwise 
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What we have formulated here is the RAS, model, with predictor Xi,. If 

we replace $ by q, throughout, we have the CGM, model, if we use we 

have CWC , . 

Algebruic Relutionships Between RAS,, CGM,, and CWC, 

Let us first investigate equivalence of the expected values for R A S ,  and 

CGM, .  What we have to show is that for given yo, and y l o  we can always 

find y*,, and y;,  such that yo, + y,&, = y',,, + y;&, for all i and j. This can 

be rewritten as yo, + y,,Ai = (y*,, - y;J..) + y";Ti,, and we see that the 

solution is 

This expresses the parameters of the fixed part of RAS,  in terms of those 
of C G M , .  It is easy to invert the relationship, and derive the inverse 
expressions. They are 

Thus the fixed part (the expectations) are equivalent. 
For dispersions the situation is a bit more complicated. We need to solve 

woo + 2w,&,, + w , , X ~ ,  = w*,, + 2o;X l ;  + wT,(K,)*. The right-hand side is 

equal to w", + 20";)(X,, - X..) + wl;,(X,,  - X..)2, and by expanding and 

collecting terms we see this is equal to (w&, - 2w;&..) + 2(w;, - w;,X..)X,, + 
0; ,X:,. This shows that we must have 
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Again the relationship expressed in these equations can easily be inverted. 
For completeness we give the results. 

Thus the random parts (the dispersions) of RAS, and CGM, are equivalent 
as well. 

We now try to follow the same method of proof to investigate equivalence 
of RAS, and CWC, . We need to solve yo, + = y;; + y;*& = + y; *Ai, 
- y;*&.,. This can be written as (yoo - y;:) + (y lo  - yI;;)Xii + Y;*&., = 0. 

Because in general the constant vector, the vector with elements Xi,, and the 
vector with elements X., are linearly independent, this means that we must 

have both y;; = 0 and ylo = 0. Thus, in the general case, the equations cannot 

be solved, and the fixed parts of RAS, and CWC, are not equivalent. 

For equivalence of the random parts we need to solve o,, + 2ol&,i + 
o , , X j j  = 0;; + 2o;*&; + o;;(KT)?. But again the right-hand side, after 

expansion, will contain terms such as X.,, XT,, and Xi,X., that are simply 
missing from the left-hand side. Thus, also for the random part, there can be 
no equivalence. 

Numerical Examples 

To illustrate our discussion and formulas we use a specific example 
(Kreft & de Leeuw, 1994). The data consists of 5,241 employees in twelve 
industries. The relationship explored is that between education and income 
across the twelve industries. Industries are from both the public and private 
sectors. Examples of the former are College and University, U.S. Military, 
Human Services and Government. Examples of private sector industries are 
Manufacturing and Construction, Retail or Wholesale, and Commerce, 
Insurance, Finance or Real Estate. Employees are nested within industry. 
We use two employee-level (micro-level) measurements, education and 
income, from this dataset. Educational level is the independent variable X 
that predicts the income Y. Since the sample consists of a longitudinal study 
of university sophomores, the educational level has only four categories, 
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from no degree to Ph.D. To correct for skewness, income (in $1,000) has 
been categorized into seven categories with midpoints ranging from 3.5 to 
22.5. 

We have analyzed this education-income example, using model I and 
the computer program VARCL (Longford, 1990). The solutions, with z- 
values for the slopes in square brackets, for respectively the RAS,, the 

CGM, ,  and CWC, models, are given in Table 3. Under the heading 
Variunce Components we have collected the matrix fk of Equation 4. 

Comparing fixed effects (coefficients) and random effects (variance 
components) over the models, we see that the difference between RAS, and 

CGM, is only in the intercepts and the difference between CGM, and CWC, 

is in the slope estimates (and their corresponding z-values). Centering has an 
effect on the intercept and, as expected, on the variance of the intercept a, 

and the covariance between slope and intercept a , , .  The results also 

illustrate the computational advantage of centering. The correlation, using 
Equation 5, between intercept and slope is reduced from -0.75 when RAS, is 
employed to -0.20 when CGM, is employed, and to -0.19 for CWC,. The 
argument in favor of CWC, (Raudenbush, 1989b) is that it removes for a 
large part (but not totally) the confounding of slope and intercept variance. 
We see that in this example CGM,  accomplishes this reduction in 

multicollinearity also to a large extent. 
Table 3 shows that estimates of the parameters change when using data 

centered within context, since rescaling X,, from RAS, to CWC, form is not 
a simple linear transformation. The context mean varies across contexts; 

Table 3 
Solutions of Random Effects Models with RAS, CGM and CWC Predictors 

Model Deviance Equation Variance Components 

CWC, 24006.8 1 Pi, = 1 I .23 + 1.02[6.13x,* 
-0.1 1 +0.22 

Note. z-values between [ 1. 
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hence centering within context introduces a new variable Xii - X., into the 

prediction scheme. In our dataset, the estimate of y l o  for CWC, is 1.02, 

while for CGMl it is 1.01. This is clearly a small difference. We cannot 

calculate how much difference can usually be expected, but we can provide 
an illustration from Yoon (1993). She analyzed a large dataset, based on an 
U.S. sample from the IEA Second International Science Study, collected by 
the International Association for the Evaluation of Educational Achievement 
(IEA, 1988). The sample consisted of 12 1 teachers and 2909 students. The 
dependent variable was science achievement. Predictors were Verbal Score 
as an indicator for general ability, SES and Number of Books in the home as 
indicators for family background, and Practical Work which describes how 
often students work as a group. In her Tables 4-6 (p. 66) she compares the 
solutions given by CWC, and CGM,. No second level or context variables 
are present in the model. The solutions for the regression coefficients are 
given in our Table 4. 

The respective standard errors of the parameters in Table 4 do not differ 
over CWC, and CGM,, and significance levels of individual parameters are 
not effected. The largest difference between CWC, and CGMl is in the 
variance of the intercept from 12.33 in the CWC, model to 3.54 in the 
CGMl model. In the example in Table 3 we found an intercept variance of 
1.83 in CGM, and of 1.47 in CWC,. 

Contextual Models 

Contexts may well be expected to differ in arithmetic mean level on the 
micro-predictors, for example, in mean educational level from industry to 
industry. The strategy is sometimes adopted of modeling the differences 
among context means at the macro-level by creating a macro-level predictor 
that captures the differences in arithmetic mean levels over contexts. Such 
models are referred to as contextual models (Burstein, 1980). The macro- 

Table 4 
Solutions for CWC, - and CGM, - Predictors for Yoon Data 

Model Verbal Score SES # Books Practical Work 

CWC, 0.54 0.95 0.50 0.05 
CGM, 0.56 1.03 0.56 0.17 
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predictor we use is simply X,. We could also use X., - X.., but it is easy to 
see that this leads to equivalent models, and indeed identical results in the 
computation, except for the parametrization of the fixed coefficients. In this 
section we first explore numerically the impact of using the macro-level 
predictors, in combination with the three scalings of the micro-predictors we 
have considered. 

Contextual models, which use means of micro-level variables as macro- 
predictors, are more general than models with no macro-predictors. Given a 
contextual model with the predictor X., introduced at the macro level, we 

examine how the choice of the micro-predictor as XI, or q, or x; effects 

parameter estimates. 

Algebraic Comparison c!fContextuul Models 

The micro-model is 

as before, but the macro-model is 

Of course this is the RAS, model. The CGM, model and the CWC, model 
are obtained by replacing 4, in Equation 19 by or KJ. 

For the expected values and dispersions we find 

~ w + ~ l ~ ( X , , + X k l ) + o l l ~ j l , ,  i f i # k a n d j = l ,  
(24) C(I,/, = 

otherwise 

Expressions 23 and 24 do not involve the context means X.,, and are 
exactly the same as Equations 7 and 8. As a consequence the results about 
the equivalence of models from the previous section apply directly. As far 
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as the variances are concerned, CGM, is equivalent to RAS,, while CWC, is 
not equivalent. 

The results for the expected values are different from the previous 
section. Using the star-notation, we see that for equivalence we must have 

+ Y ~ I X . ~  + Y I & ~ ~ = Y ; O  + YGIX., + Y;oY,=YG*~ + ~ * o ; ~ ,  + Y;*&:. BY 

collecting terms, we see that this can be written as yoo + y,,X., + yI&;, = (y;, 

+ y;&..) + Y;~X., + y;&;, = y;; + (y;;  - y;;)X., + y;;yUi,. Thus the solution is 

(26)  Y o ,  = Y*ol = Y;; - y;*o, 

Expressing one set in terms of one of the other two sets turns out to be easy. 
Thus the three models are equivalent in terms of the expected values. 

Numerical Example ofContextua1 Models 

In Table 5, the three models RAS,, CGM2 and CWC, are compared. 
Slopes and intercepts vary randomly as in the case previously considered. 
The coefficient for the context variable is fixed, and is an additional 
parameter in the model. 

Table 5 
TheContextual. CGM2 and CWC, 

Model Deviance Equation Variance 
Components 

CWC, 23997.08 Y,, = 28.98 + 1.04[6.64]x; - 6.34[-4.52]X., 
+0.19 +O. 18 

Nole. z-values between [ ] 
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If we compare RAS,  in Table 3 and RAS2 in Table 5 ,  variance 

component moo is reduced from 4.26 to 1.05, variance component o,,  from 

0.22 to 0.18, and covariance component o,,, goes from -0.73 to -0.3 1 ,  

compared to the model I without the macro-level variable. The correlation 
between the macro-level disturbances goes from -0.75 to -0.71. Again, 
individual education, X,,, has a positive effect on income within industries. 
However, we see an opposite effect of mean education per industry on 
individual income. The negative coefficient of X.i shows that the higher the 
mean educational level of an industry, the lower the mean income after 
correcting for individual educational effects. The best educated industry 
overall (i.e., College and University) has a lower mean income than other 
less well educated industries. This example highlights the need to 
differentiate micro-level and macro-level effects in multilevel data. It also 
shows that the between-group variation is no longer captured in a single 
between-component. Even in this simple model, we have three sources of 
between-industry variation, the three elements of a. 

It has been shown that parameter estimates from a CWC, model that 
contains context means as a macro-predictor can be recalculated to the 
estimates of the RAS, model. Equation 26 is the analogy of the fixed 
coefficients equation in Table 2, which says that the coefficient of X., in 
RAS2 is b, - h,. But y;; and y;; are no longer the simple ratios based on the 
orthogonal variance partitioning that obtains in the fixed coefficient model. 

If X, is the macro predictor, the estimates of the coefficient yo, for this 

context effect are different when CWC, is employed from when RAS2 or 
CGM2 is employed. Models containing raw score predictor Xi, or grand 
mean centered predictor (Xi, - X..) show again that they produce identical 

parameter estimates, with the usual exception for the values related to the 
intercept. The discrepancy is in the macro level parameters yo, over models, 

where the value for yo, in the first two models (RAS, and CGM,) is -7.44 (2 

= 5. lo), while this value is the CWC, model is -6.34 ( z  = 4.52). 
In the previous section, which examined relationships between the 

RAS,, CGM, and the CWC, model, it was indicated that no simple linear 
transformation of the RAS, model parameters could produce the CWC, 
model parameters. The reason was straightforward: Xi, as a raw score 
micro-predictor contained any variation in context means X,  over contexts, 
while this source of variation is removed from the micro-predictor X,, - X,, 
for CWC, analysis. In this section, the variation among context means X., is 
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reintroduced at the macro-level, by using either X,. or X., - X.. as the macro- 
predictor. The model with Xi, - X., as micro-predictor and X,. or X,. - X.. as 
the macro-predictor contains all the variation as it is contained in the RAS, 

(or CGM,) model with context mean, only partitioned differently over the 
parameters. For these contextual models, there are again simple rules to find 
the RAS, estimates of the fixed coefficients from the CWC, estimates. But 
the contextual models, CWC,, CGM, and RAS, no longer describe the same 
family of distributions: both generate the same set of means, but not the 
same set of dispersions. 

Second level variables that have no individual component (so called 
global variables; see Lazarsfeld & Menzel, 1961) are, as a result of the 
difference in variances and covariances, also estimated differently over 
CWC, versus RAS,/CGM,. In the analysis of the IEA data (Yoon, 1993, p. 
86) we find that the estimate of global school-level variable RURAL is .98 
(standard error .64) in CWC, while in CGM, the same estimate is 1.36 
(standard error .63). In CWC, the coefficient is not significant, while the 
coefficient in CGM, is significant, which results in different conclusions 
based on the same dataset, based on the same multilevel model, based on the 
same software (HLM), but using different centering methods. 

Some Additional Algebra 

There are some small, but interesting, extensions of our results that we 
have not discussed so far. We collect them in this section. 

First, there is the simplification that obtains if there are no random 
slopes. Thus we have model 6-8, but el, = 0. This implies that a,, = o,, = 

o,,  = 0, and thus V(I,,) = o,, + 02, and C(&,, &,) = o,,. Because all X,. 
have now disappeared from the random part of the model, it follows 
immediately that all random parts are equivalent. It does not even matter if 
we reintroduce the context mean as a predictor of the random intercept, all 
six models of Table 1 are equivalent as far as the variance component 
structure is concerned. The results we had earlier about the fixed parts of the 
models do not change. Thus, for random intercept models, CWC, is still not 
equivalent to RAS, and CGM,, but CWC, is equivalent to RAS, and CGM,. 
A model with a random intercept only, but with centering within context, 
does not seem to appear in the literature. It seems to be general practice 
among HLM software users to employ CWC only for variables with random 
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slope coefficients (compare Bryk & Raudenbush, 1992, and many of the 
contributions to Raudenbush & Willms, 199 1 ). 

Second, there is the complication that results from introducing the 
context mean as a predictor of the random slope. Thus Equation 21 becomes 

The random part of the model is still given by Equations 23 and 24, but the 
fixed part becomes 

Using our familiar method we see that equivalence of RAS and CGM in this 
model is equivalent to solvability of 

This can easily be inverted to 

Thus we continue to have equivalence in this case. On the other hand, if we 
center within context in this case, we see that X.Jf = X.,X,, - XZ,. The 
quadratic term immediately shows that CWC in this case is not equivalent to 
RAS or CGM. 
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Discussion 

Let us start by summarizing our results on equivalence. Remember that 
equivalence does not mean that the models produce the same parameter 
estimates, nor does it necessarily mean that the same number of parameters 
is estimated. It means that the values of the estimates can be easily 
recalculated from one centering method to another. We have seen that RAS 
and CGM are always equivalent, even if we use X.i as the macro-predictor of 
random slope and intercept. CWC, is not equivalent to CGMl and RASI, 
but CWC, is the most interesting model in terms of equivalence. It is 
equivalent in its fixed part to RAS, and CGM,, but not in its variance 
component part. If slopes are fixed, then CWC, is completely equivalent to 
RAS, and CGM,. If X, is used as the macro-predictor of random slope then 
CWC, is no longer equivalent, neither in its fixed part nor in its random part. 
These are the facts. What can we suggest to the practical researcher as a 
consequence of these facts? 

Practical Considerations in the Choice of Model 

There is no statistically correct choice among RAS, CGM, and CWC, 
because from the statistical point of view the models are all equally correct. 
There are some minor differences in parsimony, but basically each of the 
models we have considered can be applied correctly to empirical data. 

From the point of view of estimation, the question is mainly one of 
computational ease and stability. If predictor variables have widely differing 
scales, for example, SAT scores with a mean of 500 and a standard deviation 
of 100 versus a grade point average scale with a range of four, then centering 
is called for. Since scales in psychology are in the main arbitrary, rescaling 
predictors to approximately equal locations and variances prior to analysis is 
often both possible and desirable. Thus, as the computational argument 
leads equally to the choice of CGM2 and CWC,, the choice among these 
latter two models must be determined by theory. 

Theoretical Considerations in the Choice qf Model 

In some literature, the context is considered as crucially important, as in 
the Theory of Reasoned Action (TRA, Fishbein & Ajzen, 1975) or as in 
Aptitude x Treatment Interaction research (ATI, Cronbach & Webb, 1975). 
TRA asserts that intentions of  individuals are determined by two 
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components: an individual's attitude toward certain behavior, and an 
individual's perception of the social pressure and subjective norms to engage 
in that type of behavior. Many times the group mean is used as a proxy for 
these social norms or pressure. TRA researchers model the treatment 
explicitly, either as a group mean or as an interaction between a context 
effect and an individual characteristic. This seems to lead to RAS, forms of 
modeling. 

In Cronbach's AT1 theory, distinguishing the within-group and between- 
group variation in regressions is regarded as an important theoretical step. 
Cronbach and Webb (1 975, p. 7 17) argue that there are comparative, class- 
level, and individual effects in the regression. The comparative effects are 
measured by within-group regression, the class-level effects by between 
group regression, and the individual effect influences both regressions. 
There is no way to separate all three types of effects, but contrasting the 
between-group and within-group regressions does provide a fairly precise 
analysis. Raudenbush (1989b, p. 10) uses Cronbach's arguments in support 
of  CWC,, by remarking that not centering this way "led to distorted 
estimates". The CWC2 approach has a natural appeal to people using fixed 
effects analysis of (co)variance models. But it is not so natural in random 
coefficient models, because even the most simple contextual models are no 
longer equivalent in the variance-covariance part over different forms of 
centering. In fixed coefficient models we can do the between-group and 
within-group analysis independently of each other. This is no longer 
possible in random coefficient models. 

We use another simple example to illustrate theoretically driven choice 
of model, closely related to Cronbach's ATI. If scores on a standardized test, 
such as SAT, are used to predict success in college, the effect of SAT can be 
considered purely as an individual effect, or can be considered a joint effect 
of the individual SAT and the school average SAT. In this last case the 
variation in the SAT score is divided in a between- and a within-part, where 
the between-part represents the effect of the school, and the within-part 
represents the effect of the individual relative to her peers. In the CWC, 
model that formalizes these notions, each student's success is predicted from 
her being a big or a small frog in that particular pond, and from the size of 
the pond (known as the "frog-pond" effect). Burstein (1980, p. 200-201) 
reviews the sociological and social-psychological literature which discusses 
relative standing in the group as a determinant of behavior. He shows that 
the frog pond effect theory naturally leads to the CWC2 model. The 
contextual model, discussed in the sociological methodological literature in 
the seventies, assumes that the context has an effect on individual behavior. 
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This leads directly to RAS,. Of course, we can also have frog-pond effects 
without contextual effects, which leads to CWC, models. An example 
would be that grades are used as the predictor of success in college, where 
grades are based on the subjective evaluation of a teacher, who grades in 
relation to the total achievement of the class (who "grades on a curve"). The 
various issues are discussed in considerable detail in Burstein. 

One reason why CWC, or CWC2 appear to be a logical way of handling 
the data can be found in the history of these models. Multilevel analysis has 
grown out of the notion of separate models for separate schools (Burstein, 
Linn & Capell, 1978; Cronbach, 1976), and the corresponding two-step 
analysis. In the two-step method, separate models are fitted within schools 
in the first step, and the aggregated first step coefficients are used as 
dependent variables in the second step. This Slopes-as-Outcomes approach 
naturally led to the emphasis on the two-step formulation of random 
coefficient models in Bryk et al.'s (1988) software and articles. If multilevel 
analysis is considered as a two-step approach, then it is natural to center 
within each group, since groups are considered as separate entities, which 
are only connected in the second step. Also centering in each group does not 
change the numerical values of the within-group slopes, although it does of 
course change the intercepts. Centering within groups changes the 
interpretation of the within-group slopes, from the expected performance of 
an individual with zero scores on all predictors, to the expected performance 
of an individual that performs at the group average on all predictors. This 
last interpretation is, in many cases, the more natural one, because zero 
scores on predictors are often outside the range of the scale. Of course, 
changing the interpretation of first-level intercepts also mean changing the 
interpretation of the second-level regression equations, which predict these 
first level intercepts. If the emphasis is on slopes, and not on intercepts, then 
centering within groups seems irrelevant, because it does not even change 
the numerical values of the within-group slopes. If multilevel analysis, on 
the other hand, is seen as a one-step procedure, fitting an overall regression 
model with cross-level interactions, then CWC is no longer such an obvious 
choice. 

It is clear, however, from the sociological literature on contextual models 
that the theoretical discussion was complicated by the methodological fact 
that RAS, CGM, and CWC cannot be distinguished on the basis of empirical 
data or statistical analysis. As we have seen, this fact is no longer true for 
random coefficient models. Thus the choice has to be made more explicitly, 
based on theoretical considerations. It is this foundation that is missing in 
much of the literature, where typically CWC, or CWC, is used (see Bryk & 
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Raudenbush, 1992; and the contributions of Gamoran, Fitz-Gibbon, Bryk & 
Frank, Lee & Smith, in Raudenbush & Willms, 1991). One could argue that 
RAS, and RAS2 users are also in need of a theory, but the practice seems to 
be that researchers do not need to specify why they ignore certain effects, 
like second order or third order effects. It is more common practice that 
researchers specify why they include certain effects, than to explain why 
they exclude certain effects. 

To sum up, using the SAT example again, we would say: if SAT is used 
to predict success in college, then in order to choose a centering method, it is 
necessary that the researcher determines her position in the above debate 
first. The position can be that either success in college is considered an 
individual effect, or that success in college is considered, at least partly, a 
school effect. The fact that an individual went to a certain school is used in 
the model as a purely individual characteristic (highly associated with SES 
of parents, neighborhood ethnicity, and so on), or as partly a school 
characteristic. Both definitions can be defended in the light of the research 
question. In the last case, CWC2 would be a good approach, in the first case 
RAS2/CGM, would be better. It is up to the researcher to decide which 
model to use, given her philosophy, her knowledge of the data, and her 
research question. We don't think using CWC2 is ever a question of superior 
formulation, and the choice can certainly not be made by producers of 
software. 
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