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PREFACE

This book is for researchers and students in the social sciences with no strong
background in statistics and linear algebra. However, we do assume that
traditional linear models, such as regression and analysis of variance, are
well understood.

The multilevel model presented here is a random coefficient model, with
fixed variables and random coefficients. The first chapters introduce the
model and its notation, and illustrate it with many examples. Chapter 4
starts with real examples taken from the National Education Longitudinal
Study of 1988 (see Appendix). A copy of this data set has been made available
on the Internet at ftp://ftp.stat.ucla.edu/pub/faculty/delecuw/sagebook. The
program used for the analyses is MLn, a multilevel program for Windows®
written by researchers at the Institute of Education, University of London.
In the practical data analysis part of this book the formulas and the notation
are replaced by commands used in MLn for fitting different models. The
commands in boxes, illustrating the changes in models, are easier to read
than formulas, quicker to understand, and do not need an effort on the
reader’s part to memorize symbols and subscripts, which are always idiosyn-
crasies of authors. The book is very practical, especially for people planning to
use MLn, but is by no means restricted to such users only.

This book is different from others in further respects. It is written with prac-
titioners in mind. Many examples illustrate the possibilities of the models,
while explaining the most important features of the output. In the practical
part of the book we elaborate on problems and idiosyncrasies of this type
of modeling. We do advocate random coefficient models with caution and
reservations. Where applicable, we emphasize the trade-offs between using
this new model and more traditional models. The contents of this book and
the discussion of alternative ways of dealing with hierarchically nested data
are based on our own experience in teaching these models, on our experience
with analyses of many data sets, and on problems and questions of practi-
tioners in the field discussed in the mailing list for multilevel modeling. (In
order to subscribe to this mailing list, send an e-mail with ‘join multilevel
your name’ in the message body to mailbase@mailbase.ac.uk.)

We thank Mahtash Esfandiary (UCLA) and Rien van der Leeden (Univer-
sity of Leiden, The Netherlands) for reading parts of this book. Their com-
ments have greatly improved its readability.
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Disclaimers

The reader must realize that this book introduces a statistical method that is
of value if and only if several conditions are fulfilled.

The first condition is that the user is aware that this method, just like any
other method, can only give answers if the data collection design and the data
collected allow such answers. Statistical methods are always imperfect tools
for achieving understanding of a complex world.

The second condition is that the user is aware that a method, such as
multilevel analysis, is just another strategy for finding patterns in data and
for glimpsing the truth. Like any strategy, it may or it may not work.

The third condition is that the user is aware that the multilevel models dis-
cussed in this book are based on certain assumptions. If those assumptions
are found not to be true, the user can still apply the technique, but standard
errors and significance tests in particular must be taken with a large pinch of
salt. Of course assumptions, for example that a specific slope is random, can
be tested on the sample data. But finding no significant random slope does
not mean that this assumption is not true, it is just not significant for this
particular sample. It still may be true in ‘reality’, but that is an answer a
statistical model cannot give.

The fourth condition is that the user of multilevel models is aware that
statistical models are mathematical models. If the data generation closely
resembles the assumptions underlying the statistical model the chances are
larger that the conclusions based on the results are close to reality. But
reality, in all its complexity, cannot be modeled in a useful way. Complex
models may imitate reality well, but will be equally complex, and thus useless
tools. Summarizing data in a complex way is not a step forward. Complex
statistical models are harder to interpret, and results may be hard to replicate
from sample to sample. Complex models are by their nature sensitive to small
changes in the system, leading to instability of parameter estimates among
models that differ in small ways.

The fifth and last condition is that the user of multilevel models is aware
that this tool is useful if data are constructed in the same way as the multilevel
model, if a certain knowledge base exists that guides the selection of explana-
tory variables and random components, and if knowledge of the data is
present. Data exploration needs to be done prior to the multilevel modeling
stage.

Complex models, such as multilevel models, may be more realistic models,
but they are not recommended by the authors of this book for data explora-
tion. We also do not recommend the fitting of extensive models. Large
models are models with many explanatory variables, measured at all levels
of the hierarchy, and/or models that include all possible cross-level inter-
actions among variatles of different levels.

In this book small models are fitted, and explanatory variables are selected
based on knowledge of the data and existing theory.



1 INTRODUCTION

1.1 Introduction

This chapter is a short overview of multilevel modeling, its use, its history and
its implementation in different software packages. Its usefulness is illustrated
with several examples from different research fields. New concepts that play
an important role in discussing this new model for the analysis of hier-
archically nested data are introduced. The chapter ends with a brief historical
overview and a list of available books and software packages.

1.1.1 Hierarchies, micro and macro levels

Hierarchical data structures are very common in the social and behavioral
sciences. Individuals can be in various types of groups. There are variables
describing individuals, as well as variables describing groups. For instance,
data collected on students in schools may contain variables that describe
students, such as socio-economic status, attitudes toward homework,
gender and ethnicity, as well as variables that describe schools, such as
sector (private or public) and type of school, as defined by their student
body. School effectiveness researchers collecting such data want to analyze
their data at both levels, in order to find the influence on student achievement
of the individual student, as well as of the school. The school data example
shows the need for techniques that can simultaneously handle measurements
made at different levels of a hierarchy.

Multilevel models are developed for analyzing hierarchically structured
data. Before elaborating on these models, more must be said about hier-
archies. A hierarchy consists of lower-level observations nested within
higher level(s). Examples include students nested within schools, employees
nested within firms, or repeated measurements nested within persons. The
lowest-level measurements are said to be at the micro level; all higher-level
measurements at the macro level. Macro levels are often referred to as
groups, or more officially as contexts. Hence the name contextual models
for models analyzing data obtained at micro and macro levels. Contextual
models can have as few as two levels, as in the case of students (micro
level) nested within school classes (macro level); or more than two, for exam-
ple students nested within classes nested within schools. Many more levels
can be thought of, such as students nested within classes, classes nested
within schools or neighborhoods, schools nested within states, countries,
etc. Once you know that hierarchies exist, you see them everywhere.
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1.1.2 Multilevel models

Analysis models that contain variables measured at different levels of the
hierarchy are known as multilevel models. In multilevel models there is the
notion that separate (first-level) linear models for each context should be
fitted. Usually each group has the same explanatory variables and the same
outcome, but with different regression coefficients, The models are linked
together by a second-level model, in which the regression coefficients of the
first-level models are regressed on the second-level explanatory variables.

The character of the second-level linking model determines the nature of
the model for the complete data. There are several possibilities, starting
with no linkage at all, simply specifying a single regression model for each
context. Although this is a natural way of handling hierarchically structured
or grouped data, it does not add anything new from a statistical point of
view. The same holds when the first-level regression coefficients are treated
as response variables at the group level in a second step, as is done in
‘slopes-as-outcomes’ analysis (Burstein et al., 1978). Statistically, in such
an analysis the regressions within groups and between groups are not con-
nected with each other. They are indeed separate analyses. In the unlinked
as well as in the linked model, the regression coefficients are fixed, not
random. The model for the complete data is at most a varying coefficients
model, where the term just explains how things are: each group is analyzed
separately and has its own set of regression coefficients.

The idea of separate regression analyses within each group, followed by
regressing first-level regression coefficients on second-level explanatory
variables alone, is not sufficient for specifying a multilevel model. It is
essential to realize that multilevel models involve a statistical integration
of the different models specified at the levels of interest. The simplest
integration takes place in the random coefficients model, where the first-
level regression coefficients are treated as random variables at the second
level. This means that a first-level regression coefficient is viewed as
‘originating’ from a probability distribution. The most important parameters
of this distribution, the mean and variance, are among the set of parameters
being estimated in the multilevel model. Adding second-level explanatory
variables to the random coefficient model makes it more general, and,
most of the time, more useful. Such models are commonly called multilevel
models.

In this book the words ‘group’ and ‘context’ are used interchangeably to
indicate second- (or higher-) level units in hierarchical data structures. To
avoid any confusion, note that ‘group’ does not refer to the concept of
group or treatment group, as used in experimental psychology. ‘Group’
refers to a natural grouping, such as a school or an industry. The word
‘context’ is used for the same thing and is not meant to specify the much
broader concept familiar from sociology. In the next section, the ubiquity
of hierarchically nested data, and their implications for the choice of analysis
technique, will be illustrated with examples.
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1.2 Examples

In this section we discuss several examples from a variety of areas where data
have a hierarchically nested structure. The first example is concerned with
data on workers nested within industries. It shows that different analyses
executed at different levels of the hierarchy do not necessarily lead to the
same conclusions. The concept dependency of observations in .the same
context is discussed. In the second example the data are on students nested
within school classes. These examples are followed by several others that
illustrate the many areas where multilevel models can be applied.

1.2.1 Income of workers in industry

The first example is from Kreft ez al. (1995). Data were collected on workers in
12 different industries. Individual-level variables are educational level as the
explanatory variable, and income as the response variable. The type of indus-
try, as well as the distinction between public and private industries, are the
second-level variables. An analysis with these data, executed at the level of
individual workers, shows a positive relationship between educational level
and income: the higher the educational level, the higher the personal
income. An analysis executed at the higher level, the industry level, with the
12 industries as observations, shows a surprisingly opposite result. A negative
relationship shows up between education and income. The higher the average
educational level of an industry, the lower the average income of workers in
that industry. Universities and colleges are a good example.

The industry-level analysis uses aggregated measurements, such as the
mean educational level of the industry, as the explanatory variable and
mean income as the response variable. The example shows that analyses
executed at different levels of the hierarchy do not necessarily produce the
same results, That aggregated measurements analyzed at higher levels of
the hierarchy can produce results different from the original individual
results has been known since Robinson (1950). This type of aggregation
bias has become known as the Robinson effect. If in our industry example
educational level has a positive effect on income if the unit of analysis is
the individual, and a negative effect on income if the unit of analysis is the
industry, the logical conclusion is that the variable ‘education’ measures
different things, depending on the unit of analysis. It also shows the need
for an analysis model that treats both levels simultaneously, since both
levels show important results, which are not unrelated.

Our example also shows another feature of hierarchically nested data.
People in the same industry are more alike than people who work in different
industries. The extent of homogeneity of industries can be measured by
industry characteristics, but more generally by an intra-class correlation.'
If this intra-class correlation is high, groups are homogeneous and/or
very different from each other. This is shown in our analysis results, where
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educational level explains income far better for workers in the public indus-
tries than for workers in the private industries. In general, it is true that if this
intra-class correlation is low, groups are only slightly different from each
other. If the intra-class correlation is so low that it is equal to zero, no
group differences exist for the variables of interest. People within the same
group are as different from each other on these variables as people across
groups are. A zero intra-class correlation means that clustering of the data
has no consequences for the relationship between the variables of interest,
and can be subsequently ignored in analyses. By assuming an intra-class
correlation, and modeling this correlation, the nested structure of the data
is taken into account. Ignoring an intra-class correlation has consequences
for the reliability of the results, but only if this correlation is significant
and substantial; see, for example, Cochran (1977).

1.2.2 Drug prevention research

The next example in this section is from drug prevention research (Kreft,
1994). In drug prevention research the concern is how effective prevention
programs are for teenagers in high school. The treatments are drug preven-
tion programs. The objects of measurement and of interest are students. The
variables are measured at different levels of the hierarchy — the school level,
the class level, and the student level. The schools are randomly sampled, and
classes can be considered as a random sample of all possible classes of a
certain type, where type depends on the school from which the classes are
sampled. The measurements are individual risk factors, such as psychological
factors, academic success or failure, and the level of poverty. At the school or
class level other risk factors are present, such as the extent of drug use in the
school and the type of neighborhood in which the school is located.

In the literature on drug prevention, an interaction effect is assumed
between individual risk factors and the type of drug prevention program —
but also between school risk factors and individual risk factors. Many
hypothesized effects can be found in the literature on drug prevention that
mention relations between context and student characteristics. In the lan-
guage of multilevel analysis these relations are called cross-level interactions,
because the relation crosses the school level and student level. It is expected
that certain individuals, such as high-risk students, are more stimulated in
certain environments, while other contexts may prevent them from using
drugs. For testing such research hypotheses we need an analysis model
that not only takes the nested structure of the data into account, but also
estimates cross-level interactions.

1.2.3 School effectiveness research

A third example of research that considers both levels of the hierarchy as
crucially important can be found in school and teacher effectiveness research.
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The objects of interest and measurement are schools and teachers, as well as
students. Researchers are interested in how the organizational structure of
schools influences the performance of students, or how teacher characteris-
tics such as experience, IQ, or teaching style have an impact on student
learning, over and above the influence of students’ own attitude and aptitude.
Classical examples of such analysis are Cronbach and Webb (1975), Burstein
et al. (1978), and Aitkin and Longford (1986).

Given that different teachers or different schools can be considered as
different treatments, by analogy with experimental psychology, analysis of
covariance (ANCOVA) is the analysis technique most often used. But this
technique has problems when used in this context, and given the most
important research questions in this field. Modeling the context is possible,
but context-specific characteristics cannot be modeled directly. Questions
answerable by ANCOVA, such as ‘Do schools differ?” are not the most
important questions in school effectiveness research. More important is the
answer to the question ‘Why do schools differ?”, which is beyond the
power of an ANCOVA analysis to answer.

Further examples are: ‘What characteristic of a teacher, or school organ-
ization, has an effect on individual student performance?’; ‘Are smaller
schools more effective than large ones for specific individuals?’; ‘Is the private
school better than the public school for all students, and if so, what charac-
teristics make private schools better?’; and ‘What are the effects of school size
on specific groups of students, such as high-risk students, or boys versus
girls?. Research questions that ask about the effect of a specific environment
(the size of a school) on a specific type of student (high-risk versus low-risk
students, or boys versus girls), need specific analysis techniques to answer
them. A technical problem of ANCOVA is that it does not correct for
intra-class correlation. ANCOVA has been developed for experimental,
randomized groups, where observations are assumed to be independent
replications of one another. In real-life groups shared experiences cause
dependence of observations in the same context.

1.2.4 Clinical therapy

Another field where multilevel analysis would be useful is in clinical psycho-
logy, especially in the evaluation of group therapy research. In group therapy
the type of therapy is an effect under the control of the researcher, but the
group dynamics is not. Therapy groups are, at the outset, as much alike as
chance can make them by randomly assigning clients to therapy groups,
but they change over time. The interactions within each group depend on
the dynamics of the group, which develops over time in unpredictable
directions.

If the two types of group therapy administered are directive intervention
and non-directive intervention, groups within the same treatment can
become different, especially under the non-directive intervention treatment.
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The behavior of each client starts to reflect the type of therapy as well as the
specific dynamics that develops in the client’s therapy group. The interaction
between group members makes clients in the same group more alike than
clients in different groups. Consequently, the observations of group members
can no longer be considered statistically independent.

Let us consider the problems that arise if we take a traditional approach to
analyzing these data. The common approach would be again to use fixed
effects ANCOVA with pre-test level of psychological adjustment as the
covariate and post-test level of psychological adjustment as the response
variable. Therapy groups are nested within treatments, either directive or
non-directive intervention. Application of ANCOVA ignores the intra-
class correlation that develops over time, leading to an underestimation of
the error variance of the estimated coefficients. Groups are nested within
one of the two treatments, and although groups start out equal, each
develops different processes, not under the control of the experimenter.
The group dynamics cannot be modeled in a traditional ANCOVA model,
nor can characteristics of the therapist. Hence a new model is needed that
takes care of the dependency of observations within groups, and models
differences between groups by means of macro-level characteristics, such as
different approaches by therapists and different group dynamics. Section
1.2.8 discusses a special case.

1.2.5 Growth curve analysis

Groups are not necessarily always groups of individuals, nested in some sort
of natural social context. In multilevel analysis individuals can be the macro
level, instead of the micro level. Consider the case where the data consist of
repeated measurements on individuals. Measurements are said to be nested
within individuals and are correlated within the same individual. Here the
intra-class correlation measures the degree to which behavior of the same
person is more similar to his/her own previous behavior in comparison to
behavior of other people. Recent books discussing random coefficient
models in repeated measures analysis are Lindsey (1993) and Diggle et al.
(1994), but the basic multilevel books we discuss in Section 1.5 also have
chapters on repeated measures data.

In educational examples, a three-level hierarchy exists when data consist of
repeated measurements on students in schools. Repeated measurements
make up the first level, nested within students, making up the second level,
nested within schools, the third level.

We shall see, in Chapter 5, that the multilevel techniques we discuss in this
book can easily deal with repeated measurement data, including unbalanced
cases with missing data. This is perhaps one of the most interesting areas of
application, although especially in social science research there has always
been an emphasis on cross-sectional analysis, as discussed in the previous
examples in this section.
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1.2.6 Geographical information systems

Spatial statistics is finding more and more applications. Census data, election
data, and surveys have always been structured geographically, but only
recently have the tools become available to incorporate geographical infor-
mation in the analysis. Again, multilevel models can be used in an obvious
way here. Sites or individuals are nested within geographic regions, and
thus the intra-class correlation comes from spatial autocorrelation. A general
and comprehensive reference for spatial statistics is the book by Cressie
(1991), which also discusses the relationship between kriging and the hier-
archical linear model.

Again, multilevel techniques can be easily adapted to spatial situations. To
show this, we discuss an example due to McMillan and Berliner (1994). Corn
yields in bushels are measured on 3842 farms in Iowa. Farms are classified
according to size into three types, but they are also in 88 counties. The
model used by McMillan and Berliner is basically a variance components
model, with a random component for farms and a random component for
counties. The covariance matrix of the county components is then modeled
by Markov random field techniques. Classical multilevel analysis as defined
in this book would be an alternative, in which county characteristics are used
as second-level explanatory variables of the 88 farm-level separate regression
coefficients. Thus adjacent farms in different counties are not spatially corre-
lated, but farms in the same county are.

1.2.7 Meta-analysis

In meta-analysis the problem is to summarize the outcomes of different
studies, in which each study produces an estimate of the size of an effect or
difference. In many cases individual observations on which the results of
the studies are based can no longer be used. They are lost or otherwise
unavailable. In quite a few meta-analytic studies some of the outcomes are
proportions, others are means, some may be correlations, and so on. We
can still apply a form of multilevel analysis, because the groups, which are
the collected studies or articles in this case, are independent. Of course
individual observations are lost, but standard errors of the estimates are
reported by researchers in these studies. These standard errors are used
as if they are the results of the first step of a multilevel analysis, and the
second step is the meta-analysis at the article or group level. For more
detail, see Bryk and Raudenbush (1992).

1.2.8 Twin and family studies

This example is different from previous ones, because the groups are small. In
twin studies, we have a number of groups of size two. We may have many
groups, but they are all very small. There is very little hope that we can
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estimate a model within each group, because we have only two observations.
The statistical stability has to come from the number of groups.

The following example is related to the hotly debated ‘IQ controversy’,
which discusses the notorious pseudo-question of whether IQ is inherited or
environmentally determined (nature or nurture). Suppose we have IQ data
for monozygotic and dizygotic twin pairs. If IQ has a genetic component,
then obviously the within-group correlation for monozygotic and dizygotic
pairs will be different, and if IQ has a high genetic component, the within-
group correlation for monozygotic pairs will be large. In fact, under the
usual and unrealistic assumptions, it will be equal to the heritability of IQ.
Again, this makes the example special, because we have small groups of
two, but also these small groups have a high intra-class correlation. In a
multilevel analysis we can use separate variables for the individuals in the
pairs, and variables which the members of the pairs have in common.

A similar example, which is also of interest in the social and behavioral
sciences, concerns data on married couples. Again, these data come in
groups of size two. Observe that in the twin data the members of the group
are exchangeable; it does not matter which twin we call A and which twin we
call B. In marriage data there is much less symmetry within groups, because
one group member is the husband and one member is the wife — a distinction
that cannot be ignored yet in present-day society.

1.3 Summarizing discussion and definitions

In the previous sections several concepts and terms have been introduced, all
important in understanding the analysis of hierarchically structured data. For
a better understanding of the subsequent chapters, definitions of the terms
contextual models, intra-class correlation, random and fixed coefficients,
shrinkage, prediction, and cross-level interaction are summarized below.

1.3.1 Contextual models

Traditionally, contextual models are defined as regression models containing
two types of variables: individual-level variables and aggregated context vari-
ables, such as group means or medians. For instance, data are collected on
students, nested within school classes, where students’ achievement is pre-
dicted by their socio-economic status (SES), but also by the mean SES of
the school class to which they belong. The variable SES is used twice, once
as an individual student variable and once as an aggregated school class char-
acteristic. In the literature, only a regression analysis with such an aggregated
context variable (mean SES in this example) is considered a contextual model
(Duncan et al., 1966).

In this book the concept of the contextual model is extended and used
for any linear regression model that contains lower-level variables and
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higher-level characteristics that are aggregated or globally measured. Global
characteristics are defined (see Lazarsfeld and Menzel, 1969) as variables that
measure characteristics of the context directly, instead of using aggregates of
variables that are measured over individuals. Any type of regression model
with individual- and context-level characteristics is referred to as a contextual
model. Random coefficient models with higher-level variables in the model
are in this sense contextual models.

1.3.2 Intra-class correlation

Intra-class correlation is illustrated with an example from school effective-
ness research. Students are nested within schools, and both students and
schools are the objects of interest and of observation. Observations that
are close in time and/or space are likely to be more similar than observations
far apart in time and/or space. Therefore, students in the same school are
more alike than students in different schools, due to shared experiences,
shared environment, etc. The sharing of the same context is a likely cause
of dependency among observations.

The intra-class correlation is a measure of the degree of dependence of
individuals. The more individuals share common experiences due to close-
ness in space and/or time, the more they are similar, or to a certain extent,
duplications of each other. The highest degree of dependency can be found
between the two observations of a monozygotic twin, or children born and
raised in the same family. Another well-known example of dependent obser-
vations concerns repeated measurements on the same person.

To acknowledge the existence of an intra-class correlation is important
because it changes the error variance in traditional linear regression
models. This error variance represents the effect of all omitted variables
and measurement errors, under the assumption that these errors are un-
related. In traditional linear models omitted variables are assumed to have
a random and not a structural effect, a debatable assumption in data that
contain clustered observations. For example, in a school effectiveness study,
structural influences of unmeasured variables can be school climate or peer
pressure. The degree of covariance in the error terms of individuals sharing
the same school or class is expressed in the intra-class correlation coefficient.

Intra-class correlation, generally indicated by p, can be summarized in
several ways. Above it is described as the degree to which individuals share
common experiences due to closeness in space and/or time. It can also be
called a measure of group homogeneity. More formally, with data having
a two-level hierarchical structure, it is defined as the proportion of the vari-
ance in the outcome variable that is between the second-level units. In one
way or another, these descriptions and definitions of intra-class correlation
refer to the existence of intra-class or intra-context dependency. This
means that if intra-class correlation is present, as it may be when we are
dealing with clustered data, the assumption of independent observations in
the traditional linear model is violated.
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Table 1.1 The inflation of the alpha level
of 0.05 in the presence of intra-class
correlation (Barcikowski, 1981, p. 270)

p

N, 0.01 0.05 0.20
10 0.06 0.11 0.28
25 0.08 0.19 0.46
50 0.1 0.30 0.59
100 0.17 0.43 0.70

The values in the body of the table are the observed
alpha levels; N; denotes the number of observations
within a group

A striking illustration of the effect of this violation is the increase in the
probability of a type I error (the alpha level), in the literature associated
with the presence of intra-class correlation. Thirty students in the same
school class are no longer 30 independent observations, but less than that.
How much less depends on the degree of similarity between the group
members or the homogeneity of the group. The strength of the intra-class
correlation determines how many independent observations there really
are. Since tests of significance lean heavily on the number of independent
observations, the existence of intra-class correlation makes the test of
significance in traditional linear models too liberal (see Barcikowski, 1981).
Barcikowski shows that in most applications of analysis of variance, the
standard errors of the parameter estimates will be underestimated. A small
intra-class correlation (say, p = 0.01) can inflate the alpha level substantially,
as is shown in Table 1.1, which is based on analysis of variance (ANOVA). It
shows that for large groups (N, = 100), a small intra-class correlation of
p = 0.01 inflates the type I error rate from the assumed 0.05 to an observed
0.17. For small groups (N; = 10), a large intra-class correlation of 0.20
enhances the observed alpha level to 0.28 instead of the assumed 0.05. In
general, the rule applies that a small intra-class correlation in large groups
has effects on the inflation of the alpha level similar to those of a large
intra-class correlation in a small group. Similarly, a small intra-class correla-
tion may hardly affect the alpha level in small groups, while it increases the
alpha level in a significant way in large groups.

The differential effect of the intra-class correlation follows the usual
pattern of traditional correlation coefficients: small correlations not signifi-
cant in small samples, are significant in large samples. For more details on
this topic we refer to Barcikowski (1981) and Cochran (1977).

1.3.3 Fixed versus random coefficients

There is a lot of confusion associated with the terms ‘random’ and ‘fixed’. In
the context of linear modeling, the terms apply to three different entities:
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random or fixed effects, random or fixed variables, and random or fixed
coefficients.

Fixed and random effects are concepts commonly used in experimental
research where treatments and treatment groups are involved, and data are
analyzed using analysis of variance. A factor, defining different treatments,
is said to have a fixed effect if all possible treatments in which the researcher
is interested are present in the experiment. A random effect is attributed to a
factor defining treatments that can be considered a sample from the universe
of all relevant treatments. Classical references are Scheffé (1956) and Wilk
and Kempthorne (1955). For instance, consider a thoroughly controlled
laboratory experiment, where the effect of a certain drug is evaluated. A
treatment group is given the drug, and a control group is given a placebo.
Some relevant measure is taken as the response variable. Clearly, the two
treatments form a fixed factor, since by the nature of this experiment they
are the only two possible treatments. In quasi-experimental research using
real-life groups, the assumption of fixed treatments can almost never be
made. The earlier example from school effectiveness research illustrates
this. Experimentation with different forms of drug prevention program
uses existing groups, such as schools. These groups are not equal to each
other, like randomized groups are. Schools are just a random sample from
all possible schools. An effect of a drug prevention program in a certain
school has to be defined as random instead of fixed, and thus treatment
effects have to be viewed as random instead of fixed effects.

The distinction between fixed and random effects is useful, because it has
consequences for inferences that can be made and for the generalization of
the results. For instance, fixed effects only allow inferences made regarding
the treatments used in the experiment. The effects are assumed to be ‘con-
stant’ and without measurement error. In random effects models, as in the
example with the schools, inferences are extended beyond the schools in
the sample. The intent is to generalize to the population of schools and not
only to the schools in the treatments. The effects are not assumed to be con-
stant, but to be slightly different, or measured with sampling error. This is a
direct result of the fact that a sample of schools is used, and that we want to
generalize to the population. We expect more or less different results if the
‘experiment’ is repeated and another sample of schools is examined.

The same concepts, ‘constant’ and ‘random’, are used as prefixes for
variables. Again the idea of measurement error applies here. Randomness,
as applied to variables, is not a concept that is relevant for random coefficient
models. Random coeflicient models assume fixed variables. Random vari-
ables are only discussed here to clarify the distinction between random
variables and random coefficients. Fixed and random variables are concepts
known in statistical theory. A loose, but for our purpose sufficient, definition
of a random variable is a variable with values selected from a probability
distribution. Thus, a random variable has an expected value (the ‘mean’)
and a variance (which may be either known or unknown). In general, we
assume that a random variable is measured with error and differs from
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measurement to measurement. IQ is an example. A person’s intelligence can
be tested several times under the same conditions, with a different result each
time. A fixed variable is a variable with values that are known, fixed quanti-
ties. Gender is an example. Each time a person is measured we assume that
the same gender will appear. Predictor variables in traditional regression
analysis and the design variables in analysis of variance are generally consid-
ered to be fixed variables, specifying the ‘fixed’ design of the analysis. But in
models for linear structural relations analysis variables are considered to be
random. Again, loosely formulated, in fixed variables the interest is in the
value of the variables as it appears. In random variables the interest is
mainly in the parameters defining the corresponding probability distributions.
Throughout this book the explanatory variables are assumed to be fixed.

The idea of fixed and random coefficients is a new concept introduced here
in relation to random coefficient models. The concept applies to the charac-
teristics of the linear model parameters. In ordinary regression models the
parameter estimates that specify the regression line are intercept and
slope(s). Traditionally, these coefficients are assumed to be fixed, and the
values are estimated from the data. Random coefficients are coefficients of
which the values are assumed to be distributed as a probability function.
In a multilevel modeling framework, for instance, the coefficients of the
first-level regression model are treated as random. Sometimes the interest
of the researcher is in the expectation of these parameters, sometimes in
the variance of these random coefficients, sometimes in both. For instance,
a random coefficient for the slope is estimated in two parts. One part is the
value for the overall slope, estimated over all individuals, irrespective of
the group to which they belong. The second part is the slope variance,
which represents a deviation of each group from the overall slope. Multilevel
models, as in random coefficients models, allow groups to deviate from the
mean solution, either in the intercept or the slope(s). In this book we will
elaborate on these models in their various forms.

1.3.4 Cross-level interactions

Cross-level interactions are defined as interactions between variables
measured at different levels in hierarchically structured data. An example
is the interaction between context and student, such as between an individual
student characteristic like gender, and teacher characteristics like attitude
towards gender issues. Cronbach and Webb (1975) were the first to mention
cross-level interaction in the educational research literature.

The hypothesis tested by Cronbach and Webb was that effective teachers
were only effective with certain types of students, and not necessarily effective
with all students. If certain teachers are, for instance, more effective with
bright students than with others, this means that the relationship between
an individual student’s aptitude and achievement is strengthened by such a
teacher. We say that such a teacher has a meritocratic teaching style. If, on
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the other hand, a teacher is more effective with slow learners, the relationship
between aptitude and achievement may be weakened. We say that the teacher
has an egalitarian teaching style. The first type of teacher widens the gap
between high and low performers, while the second type of teacher narrows
this gap. In the educational literature this is called an aptitude—treatment
interaction or ATI. Defining students as the micro level and teachers as
the macro level, such a cross-level interaction is a micro—macro interaction.
The stronger the micro—macro interaction, the stronger the effect of the
teacher on that specific type of student, either in a positive or in a negative
way.

1.3.5 Prediction

Regression models, no matter whether they have fixed coefficients or random
- coefficients, are tools for prediction or tools for description. Prediction can be
either actual prediction or virtual prediction. Actual prediction can be
checked against reality to find out afterwards how good the prediction
was. In the case of virtual prediction the investigator assumes a relationship
which cannot be checked against reality. For instance, the researcher pre-
dicts, based on a regression equation, that if the socio-economic status of
the parents is increased by one point, and the other explanatory variables
are kept constant, then the school achievement of the child will increase by
40 standard aptitude test (SAT) points. It is clear that these types of thought
experiment can sometimes be pretty far removed from what is feasible or
relevant in the real world. Moreover, there is no way to show that these pre-
dictions are actually true or false without extending them to real predictions.

Regression models can also be used to simply describe relationships
between variables. We can compute that the mean SAT of children in parti-
cular SES classes is approximately a linear function of the SES values. We
can be more precise, and describe the within-class variance, the variance
‘due to regression’. Again, description is of limited value if it does not
result in predictions that can be verified in experiments or replications.
Statistics tries to take over the role of repeating an experiment. The assump-
tion is that if the same experiment were done a hundred times the results
would be a bit different each time. To be more precise, it is assumed that
95% of the time the observed value will be no further than two standard
errors away from the true value. But again these hypothetical replications
are thought experiments which may be impossible to realize.

The purpose of multilevel analysis, in this context, is to be able to make
better predictions, as well as to describe accurately the relationship that is
present. We have to realize that a multilevel analysis generally improves
the description by introducing additional parameters, the variance and
covariance components that describe the correlation between first-level
units. But introducing additional parameters comes with a price. It means
that the regression coefficients can no longer be estimated as precisely as
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before. In fact precision is given up for a diminution of the bias in the
estimates. Throughout statistics a common theme is ‘trade-off’. Here that
trade-off is between increasing the number of parameters and decreasing
the precision with which the parameters of interest can be estimated. If too
many parameters are estimated in one single model, precision suffers so
much that the results are rendered useless for prediction.

1.3.6 Shrinkage estimation and borrowing strength

Random coefficient models are compromises between modeling each context
separately with its own model and modeling all contexts simultaneously with
the same model. The first alternative is wasteful, in terms of the many para-
meters that need to be estimated. The number of parameters is so large
because at least three are needed for each context: one for the intercept,
one for the slope and one for the error variance. Moreover, the need for
separate analyses for separate contexts contradicts our knowledge that
groups are related to each other. For instance, all contexts are schools
within the same educational system. The second alternative, one single
model for all contexts together, is too parsimonious in many cases, that is
to say, it does not have enough parameters for a useful description.

The trade-off here is a very familiar one in statistics. We can choose
between models with a small number of parameters (relative to the number
of observations) and models with a large number of parameters. If we
choose the smaller number of parameters, the coefficients can be estimated
with a great deal of precision, but at the likely cost of bias. Precision because
we have a small sampling variance, and bias because this variance is around
an incorrect value. Conversely, with a large number of parameters, we have
smaller bias, but also smaller precision, and we see large standard errors
around the correct value. Both extremes are undesirable, and we have to
find a compromise in the middle somewhere. This is discussed in many
places, for instance in de Leeuw (1994).

There is another way of looking at this, which has been discussed at great
length in a recent National Research Council (1992) report; compare also
Draper (1995). Each individual study or group may be too small to give a
precise idea about the processes that are going on. But by pooling schools
or studies, we ‘borrow strength’ from other schools or studies to obtain a
more powerful analysis. Of course this idea (which is surprisingly general)
only works if schools are related in interesting ways.

The effect of borrowing strength is invariably that individual estimates, for
a single school or study, are ‘shrunk’ to the overall solution. Results of
shrinkage are most noticeable if the number of observations in a single con-
text is small. The parameter estimates computed by random coefficient
models are a compromise between the estimates over the total population
summed over all contexts, and the estimates for each context calculated
separately. Clearly the idea of borrowing strength is also at the very basis
of meta-analysis.
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1.4  Brief history

In this section we make some remarks on the history of multilevel models. It
completes and improves on the historical remarks given in de Leeuw and
Kreft (1986). The key papers in various areas are summarized in order to
show what their relationships are. In particular, we concentrate on review
papers and textbooks. The purpose of this section is to show that develop-
ments similar to those in educational statistics are going on elsewhere, or
have been going on. The section gives an entry into the various specialized
literatures as well.

Tools developed in one area can often also be used in other areas. One of
the useful functions of statistics as an academic discipline is to coordinate
and document data analysis developments in different disciplines. This over-
view will show that multilevel models are a conglomerate of known models
such as variance component models (Section 1.4.1), random coefficient
models in econometrics (1.4.2), variable and changing coefficient models
(1.4.3 and 1.4.4), the analysis of panel data (1.4.5), growth curve models
(1.4.6), and Bayesian and empirical Bayesian estimation methods (1.4.7).
The concepts of moderator variables (1.4.8) and slopes as outcomes (1.4.9)
are also related to multilevel models. ’

1.4.1 Variance components

Variance component analysis (and mixed model analysis) has a long and
complicated history, which is discussed in considerable detail in the book
by Searle et al. (1992). The first use of the technique was in astronomy by
Airy (1861). But, of course, the seminal work was by Fisher (1918; 1925).
The distinction between fixed effects and random effects, and the birth of
the mixed model, can be dated to the work of Eisenhart (1947). Between
1950 and 1970 the field was dominated by the Henderson (1953) methods
for estimating variance components, and around 1970 the computational
revolution made it possible to compute maximum likelihood estimates (see
Hartley and Rao, 1967, Hemmerle and Hartley, 1973; Harville, 1977;
Searle, 1979; Thomson, 1980): Since 1970 there has been a lot of emphasis
oon computation, for which we refer to the excellent review paper by Engel
(1990), and some progress toward a deeper understanding of what we
mean by an ‘analysis of variance’. Two interesting papers on this last topic
are by Speed (1987) and Samuels e al. (1991).

1.4.2 Random coefficients

Random coefficient models were proposed in econometrics in the Cowles
Commission days by Wald (1947) and by Rubin (1950). The computational
revolution made these models also practically relevant, and during the 1970s
there were review papers by Rosenberg (1973), Spjetvoll (1977), and a
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monograph by Swamy (1971). A bibliography has been published by John-
son (1977; 1980). Recently there have been some attempts to make random
coefficient models semiparametric, in the sense that the distribution of the
random effects is not assumed to be normal, but is estimated from the
data. For the linear case, see Beran and Hall (1992); for the nonlinear case,
see Davidian and Gallant (1992).

1.4.3 Variable coefficients

This is a very general class of models. Each individual has her own vector of
regression coefficients, which depends on a number of parameters, possibly in
a nonlinear way. In this generality the model depends heavily on computa-
tional tools such as smoothing. It has been discussed recently by Hastie
and Tibshirani (1993), and related to the generalized additive models they
discuss in their book (Hastie and Tibshirani, 1990). Observe that the coeffi-
cients in these models are fixed.

1.4.4 Changing coefficients

Consider a random coefficient model in which the relation between the
response variable and the explanatory variables is a linear regression
model, with a different vector of regression coeflicients for each time point
t. In order not to be overwhelmed by the number of parameters, we have
to assume a ‘second-level’ model connecting the vectors of regression
coefficients in time. It is usually assumed that the regression coefficients
satisfy an autoregressive path model. There has recently been much interest
in this model. The literature until 1984 is reviewed by Chow (1984). There
is a close relationship with the Kalman filter of control system theory
fame.

1.4.5 Panel data

In economics, at least micro-economics, panel data, which follow a number
of individuals in time, have received a great deal of attention. We refer to the
review paper by Chamberlain (1984), and the books by Hsiao (1986) and
Dielman (1992). The models are usually variable coefficient regression
models, sometimes with random coefficients. In many cases they are fairly
straightforward mixed models or variance component models (Wansbeek,
1980).

1.4.6 Growth curves and repeated measurements

Growth curve models have been studied in biometry since Wishart. The key
paper here is Pothoff and Roy (1964). They introduce a multivariate linear
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model which can actually be written as a balanced version of the usual two-
level model without the random component at the second level. Rao
(1965) linked growth curves with random coefficient modeling. The multi-
variate analysis of variance (MANOVA) approach to growth curve
modeling, and the related modeling of repeated measurements, are discussed
by Geisser (1980) and Timm (1980). The relation with multilevel models
is discussed in detail in Strenio ez al. (1983) and Jennrich and Schluchter
(1986).

1.4.7 Bayesian linear models and empirical Bayes
estimation

There is a strong formal relationship between multilevel modeling and the
Bayesian analysis of the linear model discussed extensively by Lindley,
Smith, Leamer, Zellner and others (Lindley and Smith, 1972; Smith, 1973).
We call the relationship ‘formal’ because there is nothing inherently Bayesian
about assuming coefficients to be random. The models can be interpreted
equally well as frequentist mixture models.

The use of shrinkage estimators in linear models can also be motivated
from mean square error considerations, using the basic James—Stein
theory. Classical papers by Efron and Morris (1975) and Morris (1983)
explain the data analysis aspects of shrinkage estimation. The National
Research Council (1992) discusses the notion of ‘borrowing strength’ in con-
siderable detail. The report concentrates on meta-analysis as the main area of
application, but the methodological discussion is quite general,

1.4.8 Moderator variables

The concept of a moderator variable is not easily defined. There is a thought-
ful review in Baron and Kenny (1986). Velicer (1972) discusses the concept
in terms of different regressions in different groups, and in an early
paper Saunders (1956) explicitly takes the point of view that regression coef-
ficients in an equation are themselves response variables in a second set of
equations.

1.4.9 Slopes as outcomes

‘Slopes-as-outcomes’ analysis was proposed by Burstein ez al. (1978) as an
alternative to the variance decomposition techniques of Cronbach. A nice
historical review of the approach is given in Burstein ez al. (1989). The tech-
nique is two-step ordinary least squares (OLS), but it was quite unclear what
the precise statistical model behind the computations was. In a sense, the
random coefficients models are one attempt to make the slopes-as-outcomes
approach rigorous.
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1.5 Further reading

There are three other books on random coefficient regression or multilevel
analysis that we are aware of. All three are more advanced than this book,
in the sense of requiring a stronger background in statistics, matrix algebra
and/or analysis. If you have such a background, then they are excellent
material for further reading. As a guide, we provide nutshell reviews of all
three books.

Bryk and Raudenbush (1992) is oriented toward educational statistics, and
its use in education departments or schools. It presents the multilevel
material in the way it is implemented in the program HLM, using mainly
the options of that program to discuss variations in the technique. The exam-
ples in the text are mostly from education, with a relatively small number of
variables. There is not much emphasis on model criticism and on alternative
methods of analysis. There are chapters on applications to meta-analysis, in
which the variance and covariance components are assumed to be known,
and on repeated measures and growth curves. Generally, the book enthusias-
tically presents a new class of techniques, which are an important step ahead
in solving problems of educational and sociological statistics.

Longford (1993) is more technical than the book by Bryk and Rauden-
bush, with much less emphasis on multilevel modeling and the slopes-as-
outcomes approach. As the title of the book indicates, it is about random
coefficient models, which are special mixed linear models in which the
variance and covariance components derive from random regression coeffi-
cients (including intercepts). The treatment of random coefficient models is
both thorough and clear, starting with random analysis of covariance, and
progressing to categorical and multivariate outcomes.

The book by Goldstein exists in two versions (Goldstein, 1987; 1995). The
more recent edition is a major extension of the 1987 book, and supersedes it
in all respects. The book treats the general principles of multilevel modeling,
and then proceeds to apply these general principles to many of the more
common statistical models. Usually relatively few details are given, but the
conceptual unity of the various extensions is emphasized again and again.
There are chapters on categorical response variables, event history analysis,
errors-in-variables and simultaneous equation models, and generalized linear
models. It is not an introductory book, or a book reviewing a class of models
in detail. It is more like a program for research, reporting the progress so far,
and mapping out areas for future development.

1.6 Software

There are, by now, many software tools that can be used to analyze hierarch-
ical data with linear models. Such models are special cases of mixed linear
models, and as a consequence they can be analyzed, in principle, with pro-
grams that fit mixed linear models. On the other hand, they are rather special
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types of mixed linear models, and consequently it makes sense to develop
special software packages that take the special properties of the model into
account. As in the previous section, we will give very brief reviews of the
available packages and programs, with some indication of their strong and
weak points. A much more extensive comparison of some of the older
packages is in the paper by Kreft ez al. (1994) and the related report by
Kreft et al. (1990).

Throughout this book, we use the package MLn, developed and described
by Rasbash ez al. (1991). Our reason for selecting MLn is not necessarily that
we think it is superior to the other packages (although in some respects it is),
but also that it provides a convenient notation to describe data and model
manipulation in multilevel analysis. This notation can be used in the same
way as mathematical formulas, with the advantage that many people find
formulas more difficult to understand than computer instructions of this
type. Our book is not, however, a user’s guide for MLn. Much better docu-
mentation is available for that purpose, such as Woodhouse (1995), Rasbash
and Woodhouse (1995), and Prosser et al. (1991).

In this section information is provided on where programs and software
can be found on the World Wide Web (if they are free) and where they
can be ordered (if they are not).

1.6.1 HLM

In educational statistics, the package HLM plays a special role. In the United
States it was adapted, soon after its release, as the ‘official’ software for
educational multilevel analysis. The manual (Bryk ez al., 1988) is clearly
written, the program has relatively few user options, and is structured
along the lines of the slopes-as-outcomes tradition, which is very familiar
ground for most educational researchers. The user interface is a relatively
simple question-and-answer format, and the program provides some useful
tests and descriptive statistics. Further information is available from

http://www.gamma.rug.nl/iechome.html

1.6.2 VARCL

VARCL, written by Longford (1990), is a program for variance component
analysis of hierarchical data. VARCL is designed as a program for random
coefficient analysis, not as a program for multilevel analysis. Thus the user
has to decide for each variable whether the coefficient has a fixed or a
random part, but there is no way to create cross-level interactions in a
simple way. VARCL uses the scoring method, and has extensions to
Poisson and binomial response models. VARCL comes in two flavors. The
first version of the program analyzes random slopes and intercepts for
models with up to three levels, the second version handles random intercept
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models with up to nine levels. Further information is available from
http://www.gamma.rug.nl/iechome.html

1.6.3 BMDP5-V

BMDPS5-V is a part of the well-known BMDP package. It was written
by Jennrich and Schluchter (1986). This program is meant for repeated
measures data, that is to say, for balanced designs with relatively few obser-
vations within each of the second-level units. It can be used for other forms of
multilevel analysis as well, but only after the user makes quite complicated
command files. BMDP5-V can choose between various techniques and
algorithms. It also has various options to model the dispersion of the
second-level residuals. Information is available from

http://www.spss.com/software/science/Bmdp/

1.6.4 MLln

MLn was developed by the Multilevel Project at the Institute of Education,
University of London. A very useful feature of MLn is that it is integrated
with the general-purpose statistics package NANOSTAT, which means a
lot of data manipulation and elementary analysis is possible within the
program’s shell. MLn can analyze up to 15 levels and various crossed and
nested structures. It has a macro language, which is used, for instance, to
write modules for categorical outcomes. You can read more about MLn at

http://www.ioe.ac.uk/multilevel/

1.6.5 PROC MIXED

PROC MIXED is the mixed model analysis component of the SAS statistics
system. It is comparable in options and possibilities to BMDPS5-V. For
further information, see

http://www.sas.com/

1.6.6 MIXOR and MIXREG

The MIXOR and MIXREG programs were written by Don Hedeker
(Hedeker and Gibbons, 1993a; 1993b). The theory is described in Hedeker’s
dissertation (Hedeker, 1989) and in Hedeker and Gibbons (1994). MIXOR
does multilevel analysis with an ordinal outcome variable, MIXREG
does multilevel analysis with autocorrelated errors. Binaries for PC and
Macintosh, and manuals, can be obtained from

http://www.uic.edu/~hedeker/mixdos.html

The programs fit two-level models, using Newton—Raphson procedures.
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1.7 Summary

Many new concepts regarding multilevel analyses are introduced in this
introductory chapter. We show that some old concepts acquire a new mean-
ing, such as contextual models and micro/macro level. Other concepts are
specific and new, such as random and fixed coefficients and intra-class corre-
lation. Several real-life examples show the usefulness of multilevel models,
especially for testing new theories about human behavior in context, for
instance by fitting cross-level interactions. The brief historical overview of
multilevel modeling shows that the ideas of such models are and were applied
in many different fields of research, and for different purposes. The discus-
sion of the latest developments in software show that multilevel techniques
are becoming more and more accessible and easier to use.

Note

1 The intra-class correlation is the proportion of the total variance that is between groups.



2 OVERVIEW OF CONTEXTUAL
MODELS

2.1 Introduction

In this chapter we discuss the important differences in the way traditional
regression models decompose variation present in the data. The total regres-
sion model allows only individual variation to be modeled, while an aggre-
gated model does the opposite and models only variation among contexts.
Traditional contextual models, the Cronbach model, the ANCOVA model
and the various multilevel models decompose the variation in the data into
a within and a between part, but each in their own way. To illustrate the
effects of this decomposition, results of an analysis with a small sample
from the National Education Longitudinal Study of 1988 (NELS-88) data
set are presented and discussed. In Section 2.10 we discuss briefly the
commands that are used to fit the models with MLn.

2.2 Models

In this chapter we discuss a number of variations on the ordinary linear model
and on OLS regression — variations that have been suggested to deal with
hierarchically nested data. They vary from total or pooled regression, which
completely ignores the between-group variation, to aggregate regression,
which completely ignores the within-group variation. And, on another dimen-
sion, they vary from separate regressions for each group, with separate sets of
regression parameters, to a single regression with only one set of parameters.

In many cases, however, it makes sense to take the group structure into
account more explicitly. Forms of regression analysis, in which both indivi-
dual- and group-level variables are used, are known as contextual analyses. In
contextual analysis group membership is not neglected. The units of observa-
tion are treated as members of certain groups, because the research interest is
in individuals as well as in their contexts.

In contextual analysis techniques the free parameters of the linear model
are estimated based on the following model, where y is the response variable,
and x the explanatory variable at the individual level, and z is the explanatory
variable at the context level.! The subscript i is for individual, and j is for
context. The model is

»Z[j:a+bx,-l-+czj + €. (2.1)
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The ¢; are disturbances, which are centered, homoscedastic and mdependent
This means they have expectation zero and constant variance o2. Generally,
of course, there may be more than one explanatory variable on both
levels.

Model (2.1) can be written in a slightly different way, that more clearly
shows its structure. We write

-Z‘:f = aj + bxij + Eijy (223,)
aj=a+cz. (2.2b)

Equation (2.2b) shows that the contextual models of equation (2.1) are
varying intercept models, i.e. regression models for each group which are
linked because they have the same slope b and the same error variance o°.
They differ, however, in their intercepts. The different contextual models
we discuss in this chapter specify the relationship between the varying
intercepts and the group-level variables in different ways.

2.3 Data

In this chapter we illustrate several analyses by using a subset of NELS-88.
The data were collected by the National Center for Education Statistics of
the US Department of Education. They constitute the first in a series of
longitudinal measurements on students, starting in the eighth grade. The
data consist of approximately 1000 schools (800 public and 200 private
schools) in the United States that enroll eighth-grade students. More than
20000 students across the United States participated in the base year
study. The sample represents the nation’s eighth-grade population, totaling
about 3 million eighth-graders in more than 38 000 schools in spring 1988.
In this chapter we use a small subset selected from the NELS-88 data for
illustrative purposes. In later chapters the entire sample is used and more
realistic analyses are discussed.

Our subset consists of 10 handpicked schools from the 1003 schools in the
NELS-88 data set. There are 260 students in this subset, a tiny fraction of the
original 21 580 students in the full data set. The variables in the model are the
number of hours of homework (which is a micro-level variable) and the score
on a math test; the former will serve as our explanatory variable, the latter as
our response variable. Thus we wish to find out whether and to what extent
amount of homework (‘HomeWork’) causes or predicts achievement in math
(‘MathAchievement’).? The school-level characteristic (‘Public’) of interest is
the sector to which schools belong; public schools are coded 1 and private
coded 0. The schools are picked from the two ends of the continuum, with
strong positive and strong negative relationships between math score and
amount of homework. Another reason for our selection is that the school
regression lines show interesting variation. The majority of schools in the
NELS-88 data set show a positive relationship between time devoted to
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Table 2.1 Ten selected schools from NELS-88.
within-school means

School Size Math mean Homework mean
1 23 45.8 1.39
2 20 42.2 2.35
3 24 53.2 1.83
4 22 43.6 1.64
5 22 49.7 0.86
6 20 46.4 1.15
7 67 62.8 3.30
8 21 49.6 2.10
9 21 46.3 1.33

10 20 47.8 1.60

homework and math achievement. A description of our 10 schools is given in
Tables 2.1 and 2.2. Table 2.1 gives the mean math score (number correct) and
amounts of homework (in hours per week), Table 2.2 the variances,
covariances and correlations. The variables are described in more detail in
the Appendix. Before discussing the analysis results of different models, we
elaborate a little on the crucial distinction between parameter estimates
within and between groups (or contexts).

Table 2.2 Ten selected schools from NELS-88:
within-school dispersions and correlations

School Dispersion Correlation
A =2,
Z Sss e ~0.45
c T
D e o 0.84
; Sn ok ~0.43
F s Toe -048
G as v 0.34
: o, 7
' %o a8
: s T 00
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2.4 Decomposition of variation

In hierarchically nested data with two levels the variances and covariances of
the observed variables can be divided into a between-group and a within-
group matrix. This distinction of within and between variation of variables
is not entirely straightforward and differs from technique to technique. To
explain the definition of regression coefficients in different models we make
use of the notion of the correlation ratio. The correlation ratio is the percen-
tage group variance of a variable, which can be explained as follows.
Variables used in equations earlier in this book, such as x as an explanatory
variable and y as response variable, can be divided into a between- and
a within-group part. This induces a corresponding decomposition of the
variances as

Vr(x) = Vg(x) + Vi(x) (2.3a)
and equally
Vr(y) = V() + Vw(y), (2.3b)

where the indices T, Band W denote total variance, between-group variance,
and within-group variance, respectively. Familiar from ANCOVA, the total
covariance between variables x and y can be divided in the same way into a
within and a between part,

CT(x’y) = CB(xry) + CW(x7y)7 (230)

where C denotes covariance.

The coefficients for regressions over the total sample by, between groups,
bg, and within groups by, can be defined by the variances within or between
groups, compared to the total variance, as follows:’

A C (xay)

bT"_€%?§5_’ (2.4a)
A C (xay)

b2 ———;ﬁB(X) : (2.4b)
a C (x,y)

bW"—gi?ﬁ_' (2.4c)

These coefficients can be related to the correlation ratio 5%, defined for x and
y in the following way:

a Va(x)
7 (x) & V:(x), (2.5a)
2,y 4 Ve(y)
()= V() (2.5b)

The equations show group variation in the response variable as the percen-
tage of the total variance in y declared between groups. This is at the same
time the definition of the intra-class correlation as discussed in Chapter 1.
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Also,
1 —n2(x) = ’I/,‘:((;)) (2.6a)
1-n'(y) = I,/,‘;’g)) - (2.6b)

The proportion of variance within groups is equal to 1 —~ nz(x), and equal to
the ratio of the within variance and the total variance.

We know from classical regression theory that the ‘best’ estimate of b for
the regression over the total sample, irrespective of group membership, is b7.
It can be shown that the estimate of by is a weighted composite of the
between-group regression by and the within-group regression by, as we
can see in the following equation:

br = 77(x)bg + (1 — 0 (x))bw. (2.7)

The first to use equation (2.7) in relation to contextual analysis were Duncan
et al. (1966). Since then it has been used by, among others, Boyd and Iversen
(1979) and Burstein (1980).

A total model does not separate context effects from individual effects. As
a result, a total analysis only gives reliable estimates if by = by, and by = Oor
n2 (x) = 0, which, again, means there is no context effect. It is clear from
equation (2.7) that br is only a valid estimate for the individual-level slope
if there is no context effect (n?(x) = 0). No context effect means that the
relation between x and y is the same within all contexts.

When br = bg, it follows that by =0 or n*(x) = 1. This is the opposite
situation to that above, since the effects are exclusively context effects, and
individual effects are absent. The relationship between x and y is the same
for all individuals, but only if they are in the same context. In most cases
where variables are measured at different levels, b7 has a value that is a
weighted composite of by and by, with weights 77(x) and 1 — 7*(x). If the
research is aimed at finding context effects, as in our example of the effect
of the sector (public or private) to which a school belongs on the math
achievement of their students, the total model is not an appropriate model.

2.5 Total or pooled regression

The first technique we discuss is a simple one. It is not a multilevel analysis,
and in most cases not even a contextual analysis. We analyze the effect of
homework on math achievement in a single regression for the total sample
of ten schools pooled. No school variable is used; the fact that some students
are in the same school and others are in a different school is not reflected in
the model.

Executing a regression analysis over the total sample of individuals, ignor-
ing group membership, is the same as ignoring the subscript j in equation
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Table 2.3 Total regression for 10 schools

Null model With homework
EST SE EST SE
Intercept 51.3 0.69 44.] 0.98
Slope by n.a. 3.6 0.39
R? 0.00 0.25
& 111 9.6
(2.1). The model becomes

where the ¢; are independent, with mean zero and constant variance o°.
For completeness, and for later comparisons, we also fit the corresponding
null model, with only the intercept a and no homework as an explanatory
variable. This null model is

A regression analyzing individual observations over the total group is called
a total regression. The individual is the unit of analysis, the unit of sampling
and the unit of decision-making. Using this analysis here means that no
systematic influence of school on math achievement is expected, and all influ-
ences of the school are incorporated in the error term of the model. The fact
that the observations are nested within groups is disregarded, and assumed to
be of no importance for the research question. In terms of the contextual
model (2.2a), in a total regression the intercepts 4; are assumed to be equal
for all groups j. The results for the total regression over the ten schools are
given in Table 2.3, where we see that one additional hour of study each
week will result in an increase in the predicted math score of 3.6 points.

2.6 Aggregate regression

One rather crude way to take the grouping of the students into account is to
do a regression over the school means, a so-called aggregated analysis. There
is a priori no real reason to expect that regression coefficients from a total
regression analysis and those from an aggregate regression analysis will be
similar. In fact, it is easy to construct examples in which the differences
between the two techniques will be very large.

For the analysis we form the 10 homework means Xoj, the 10 math achieve-
ment means y,;, and we fit the model,

Yoj = a+bx.j +§j’ (210)
where the bullet replaces the index for individuals i to indicate that the x

and y are summed over individuals. As usual, it is assumed that ¢j has a
mean of zero. The variance of ¢; is now, compared to the total model,
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Table 2.4 Aggregate regression for 10 schools

Null model With homework
EST SE EST SE
Intercept 51.3 2.44 37.1 4.03
Slope bg n.a. 7.0 1.84
R? 0.00 0.64
14 39.3 24.9

nj'la2 , because it is a mean of n; disturbances, each with variance ¢2. In this

analysis we fit a weighted regression, with weights equal to ;. The regression
is heteroscedastic.

Clearly aggregate regression ignores all within-school variation, and thus
throws away a large amount of possibly important variance.

The results for the (weighted) aggregate regression are shown in Table 2.4.
We see that eliminating within-school variance results in a large increase of
the multiple correlation coefficient. At the same time, the standard errors
of the regression coefficients become much larger, because they are based
on only 10 observations.

Aggregate regression equations must be interpreted carefully. From the pre-
diction point of view, we can merely say that if students in school A spend, on
average, one hour more on their homework than students in school B, then A
will have an predicted average math achievement score which is seven points
higher than B. This does not make any statements about predictions for
individual students, and actually making such statements on the basis of aggre-
gated results is known as the ecological fallacy (Robinson, 1950).

2.7 The contextual model

The contextual model has been used widely in the past in research interested
in the effect of group membership on individual behavior. Typically in this
type of analysis the group mean of an individual-level variable is used as a
contextual variable. For instance, a characteristic of schools is defined as
the average homework time of its students x,; in the next equation, together
with the individual student characteristic x;. The same measurement for
homework is used twice in the same regression, once as the original indivi-
dual measurement, and once as the mean for each school. The mean is
‘HomeWork’ aggregated from student to school level. The model is thus
written as follows:

Yij =a; +bx; + €, (2.11a)
a; =a+ X, (2.11b)
Substitution gives us the following equation for the contextual model:

Vi =a+bx;+cxy+egjy (2.12)
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Table 2.5 Contextual model for 10 schools

Null model With homework
EST SE EST SE
Intercept 51.3 0.69 37.1 1.46
Slope by n.a. 2.1 0.43
Contextual effect bg — by, n.o. 4.9 0.79
R? 0.00 0.34
é 1.1 9.0

The results are presented in Table 2.5. It turns out that the best estimate of b
in equation (2.12) is b, while the best estimate of ¢ is by — by. For more
details, see Duncan et al. (1966), Boyd and Iversen (1979) and Burstein
(1980), who show that the within regression (by/) is confounded with the
between regression (bp) in the estimation of the context effect.

Some more technical problems are present in this contextual model, one
related to multicollinearity and one to the level of analysis. Multicollinearity
is introduced in this analysis by the correlation of the individual variable
homework and the group mean for homework. The level of analysis is the
individual, because the response variable is defined at the individual level.
Performing a regression analysis at one level ignores the true hierarchically
nested structure of the data, and treats the aggregated variable as if it was
still measured at the student level. The contextual effect in this contextual
model is merely the difference between by and by, or the difference between
7.0, the value of by calculated in the aggregated model in the previous
section, minus 2.1, the effect of by, in Table 2.5, which gives us 4.9, the esti-
mated context effect reported in this analysis. It is clear that the individual
and group effects are confounded in ¢, and as a result interesting and signifi-
cant relationships can be distorted by this procedure.

2.8 The Cronbach model

The Cronbach model (Cronbach and Webb, 1975) provides a clearer picture
of the individual effect together with the group mean effect on the response
variable. The individual variables are first centered around their respective
group means, as in the following equation:

yi = a+b(x;—x,) + by(Xej = Xeo) + £ (2.13)

In equation (2.13) the centered individual scores x;; — x,; form a variable that
is orthogonal to the variable formed by the centered group-level scores
Xoj — Xee. For our 10 schools the centered x; — x,; scores are the number
of hours of homework per week done by each student minus the mean
number of hours done in the student’s school. Raw scores are thus trans-
formed into deviation scores from the school mean. Centering explanatory
variables in this model provides a convenient way of avoiding the problem
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Table 2,6 Cronbach model for 10 schools

Null model With homework
EST SE EST SE
Intercept © 513 0.69 37.1 1.46
Slope by n.Q. 2.1 0.43
Contextual effect by n.a. 7.0. 0.67
g? 0.00 0.34
& 111 9.0

of correlation between the two variables that are measurements for
-‘homework’ at the two different levels. The two predictors in the Cronbach
model are the centered individual ‘HomeWork’ and the centered group
mean for ‘HomeWork’ analyzed again with regression. The results are
presented in Table 2.6. Because the two predictors are orthogonal, the
best estimate of b, is equal to by, and thus also to the estimate in the contex-
tual model in the previous section. The difference compared to the contextual
model is in the estimate for the contextual effect, where b, is now equal to by
and thus equal to the effect of b in the aggregate model. Within and between
effects are no longer confounded in the Cronbach model.

Although the collinearity problem of the correlation between the indivi-
dual variable and its aggregated counterpart is solved in the Cronbach
model, the significance tests are just as suspect as they are in the contextual
model. In both contextual models discussed so far, the analysis is executed at
the lower (here student) level. As a result the standard error for the coefficient
of the group mean is underestimated. The result is an increase in the alpha
level of the test of significance. The group mean has only as many indepen-
dent observations as the number of groups. Since we have 10 groups with
22 observations each, the total number of observations on which the
standard error is based is 220, instead of the correct number, 10. Another
threat to the validity of the standard errors in the above contextual model
is intra-class correlation. The enhancement of the alpha level when intra-
class correlation was present was discussed in Chapter 1. In Section 5.2 we
will return to the Cronbach model when we discuss centering of variables
around the group mean in multilevel models.

2.9 Analysis of covariance

Analysis of covariance is another traditional way of analyzing our grouped
data. Both levels, the school and student level, are included in the model,
but not in equal roles. Individual-level explanatory variables are involved,
as in regression models, but at the same time schools are allowed to differ
in the intercepts. The ANCOVA model incorporates both quantitative and
qualitative variables and therefore has a mixed character. It is a regression
model, with dummy variables to code group membership. While the



OVERVIEW OF CONTEXTUAL MODELS 31

regression model enables us to assess the effects of quantitative factors (such
as individuals’ homework), ANCOVA enables us to model qualitative
factors (such as group membership, or the school a student is in).

ANCOVA is a technique with a somewhat different purpose from contex-
tual analyses. It evaluates the effect of groups, correcting for pre-existing
differences among these groups. With this technique we can study if schools
are equal in achievement, corrected for the differences in the amount of
homework done by their students. Such an analysis would tell us if schools
differ in average achievement, and which school scores, on average, the
best. In ANCOVA the individual effects are neglected, or considered as
noise, and the emphasis is on the group (school) effect.

The individual variable(s) functions as covariate(s), while the grouping is
used as the important factor in the design. Because the model was originally
developed for designed experiments, groups in ANCOVA are considered
to be different treatment categories. The equation for the analysis of
covariance is

Different values for a; mean that some schools have higher ‘starting values’
for math achievement than others. The assumption in ANCOVA, that all
schools have the same slope (the 4 in the model), means that we assume
that the relation between homework and math achievement is the same for
all schools.

In the NELS-88 example the results for the ANCOVA are as presented in
Table 2.7.

After allowing different schools to start at different levels (different a), the
assumption is that one additional hour of homework adds the same increase
in math score to a student’s score over all schools. We see that equation (2.14)
is the same as (2.2a), and that (2.2b) is missing. There is no additional
structure imposed on the a;; they can take all possible values.

Table 2.7 ANCOVA for 10 schools

Null model With homework
School EST SE EST SE
A 45.8 1.77 42.8 1.75
B 42.2 1.90 37.1 2.00
C 53.2 1.73 49.3 1.78
D 43.6 1.81 40.1 1.82
E 49.7 1.81 47.9 1.74
F 46.4 1.90 44.0 1.84
G 62.8 1.03 55.7 1.60
H 49.6 1.85 45,1 1.92
| 46.3 1.85 43.5 1.82
J 47.8 1.90 44.4 1.89
Slope n.a. 2.1 0.38
R? 0.44 0.50
é 8.5 8.0
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Since ANCOVA expresses the differences between k groups using all k — 1
degrees of freedom, this model provides an upper limit on the amount of
variance potentially attributable to overall differences in contexts. In contrast
to the traditional contextual model in equation (2.1), ANCOVA cannot tell
us which characteristics of the context (or school) explain the differences
between them. The only thing it shows is how large the overall group effect
is, by giving a measure of the explained between-group variation of the
intercepts.

The chief advantage of ANCOVA is that it has greater predictive power
than the traditional contextual models, as in equations (2.2a) and (2.2b).
ANCOVA accounts for all variability between the context means, and not
only for variability related to a context-specific explanatory variable, as in
contextual models. At the same time the specificity is a strength of the
contextual model, because it identifies important group characteristics.
Most researchers consider the analysis of (co)variance useful as an
estimate of the composite group effect preliminary to contextual analysis.
It is true that where the g; in a covariance analysis adds little explained
variance, we know from the outset that none of the context characteristics
can explain much additional variance of the response variable in
subsequent models. But that is only true if variation among contexts is
studied in relation to the intercepts, the main effects. But more and more
research is dedicated to studying differences among contexts in relationships
between explanatory variables and response variable, the b-coefficients in
model (2.14). The assumption of ANCOVA that each of the k explanatory
variables, or covariates, has the same relation with the response variable
over all schools is unrealistic, as is illustrated in the next chapter. Each
school may need its own unique solution, and its own unique relation
between the response variable, math score, and the explanatory variable,
‘HomeWork’.

2.10 MLn analysis of contextual models

Suppose we have a data file schools.dat with four variables. The first is a
student identifier, the second a school identifier, the third the time spent by
the student on math homework, and the fourth the math score of the student.
There is one record in the file for each student, and the scores of the four
variables are separated by spaces.

We start MLn, which will give us an empty worksheet. Into this worksheet
we read our four variables, putting them into four data columns:

DINPUT C1-C4

The program then prompts for a file name, and we tell it to look for
schools.dat. This reads the four variables into the four columns. We give
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them a name:

NAME C1  ‘school’

NAME C2 ‘student’
NAME C3  ‘homew’
NAME C4 ‘math’

For the contextual analyses we also need some other variables. These are,
respectively, a constant term, the school averages of ‘HomeWork’ and
math, and time and math as deviations from the school average. We first
give the columns names:

NAME C5 ‘cons’

NAME C6 ’‘meanhomew’
NAME C7 ’‘meanmath’
NAME C8 ‘devhomew’
NAME C? ‘devmath’

and then we fill them, using the appropriate MLn expressions. The first one,
PUT, makes a column of ones. The second and third, MLAVE, compute group
averages. The last two, CALC, do simple calculations.

PUT 260 1 C5
MLAV C1 C3 C6
MLAV C1 C4 C7
CALC C8=C3-C6
CALC C9=C4-C7

For the analysis of covariance we also need dummies indicating the schools.
We do not bother to give the columns names, we just input

DUMMY C1 C10-C19

Thus we now have a total of 19 variables, enough to do all the analysis in this
chapter.

Let us start with the pooled regression analysis from Section 2.5. We tell
the program which variables are explanatory variables, and which is the
response variable:

EXPL C3C5
RESP  C4
IDEN } C2

IDEN 2 CI
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We build the model, indicating which variables we want as fixed effects and
which as random effects. By default, all explanatory variables are set as
fixed effects. Also cons is the only explanatory variable with a variance com-
ponent.

FPAR C6-C19
SETVI1CS

Once we have switched batch mode on (otherwise the program stops after
each iteration), we can start the analysis:

BATCH
START

2.11 Summary

This chapter discusses some of the traditional ways of analyzing grouped
data that consist of two levels, an individual one and a contextual one.
The data analysis in these models is always executed at one single level,
which can be either the individual or the context level. Analyses executed
at the individual level can still be different in the way they handle the between
variation. As a result, different regression estimates for the contextual effect
are observed among models. From the discussion of the models in this
chapter, and the different results, we see that we are in need of a more general
model. We need a model that treats the data at the level they are measured,
and can answer research questions about the influence of all explanatory
variables on the response variable, irrespective of the level in the hierarchy
at which they are measured, or to which they are aggregated. Such models
are discussed in the next chapter.

Notes

1 In the equations throughout this book, we employ the convention of underlining random
variables (Hemelrijk, 1966). This is not entirely standard in statistics, but we think it is
very important in comparing the various models with fixed and random coefficients.

2 There is a notational problem here. We have to distinguish the concept of ‘mathematics
achievement’ from the variable or indicator measuring it in NELS-88. If we talk about the
concept, we will simply use it in the text without any quotes. The variable or indicator is
always in quotes, and is written as one word, such as ‘MathAchievement’.

3 We use the symbol £ for definitions.



3 VARYING AND RANDOM
COEFFICIENT MODELS

3.1 Introduction

This chapter illustrates the differences between the varying coefficient model
approach and its modern version, the random coefficient (RC) approach,
using the same sample of 10 schools from the NELS-88 data as used in the
previous chapter. But before we do the data analysis the principles behind
the two data analysis techniques are illustrated with four hypothetical
schools. The illustration shows the differences and the similarities of varying
coefficient and random coefficient models. Three hypothetical situations are
used for comparison:

e a situation with varying intercepts only;
e a situation with varying slopes only; and
e a situation with varying intercepts and varying slopes.

Varying coefficient models are also known as the ‘slopes-as-outcomes’
approach.

Using a small sample of four schools, it will be shown that the two models
are based on the same concepts, but that the RC model is a statistically more
sophisticated version of the varying coefficient model. The concepts are easier
to explain using the ‘slopes-as-outcomes’ approach, while the results of the
RC model are easier to interpret. The two models accomplish the same
goals and can be used for the same purposes, but the RC model is statistically
more correct, more parsimonious, and easier to execute.

After the discussion of the assumptions and formulations of both multi-
level models, they are compared with the models discussed in Chapter 2,
the traditional regression model and the ANCOVA model. In the last part
of the chapter an analysis using the same 10 schools as before shows the
differences in data analysis results over the two multilevel models.

3.2 Separate regressions

Traditional strategies for analyzing grouped data are several forms of regres-
sion analysis, including ANCOVA. The basic equation defining these linear
models is

which is similar to equation (2.2a) in Chapter 2.
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In equation (3.1) x is again the individual explanatory variable, and y the
response variable. The a; are intercepts and the b; are slopes. We use the
plural form, since instead of the usual single intercept and single slope, sepa-
rate ones are estimated for each context. To indicate that fact in the formula
the subscript j is added to the coefficients g and . Thus subscript ; refers to
contexts and subscript i to individuals. The ¢ is the usual individual error
term, with an expectation (mean) of zero and a variance of o°. In equation
(3.1) only ¢; and y; are random variables. Later, when we move away
from varying to random coefficient models, the a; and b; will be underlined
too.!

In the 10 schools from our NELS-88 example, students are again the
individuals, and schools are the contexts or groups. The explanatory variable
x is again ‘HomeWork’, and the response variable y is ‘MathAchievement’.

3.3 Varying coefficients or ‘slopes as outcomes’

Within the traditional fixed effects linear framework the ‘slopes-as-outcomes’
approach can be considered a multilevel analysis approach. This approach is
the first step toward modern multilevel modeling. A linear model with indi-
] vidual-level explanatory variables and an individual-level response variable
i estimates separate parameters within each school, allowing each context to
have its own micro model. This is illustrated in the Figures 3.1-3.3 for
four hypothetical schools.

| The four schools are chosen on the basis of some features they have in
: common. In Figure 3.1 the four schools have the same slope, but different
| intercepts. In Figure 3.2 the four schools are chosen because they have the

| 12

i 11 1
y=z+3
y=1x+2
y=z+1
y=rz
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Figure 3.1 Four regression lines, varying in intercept
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Figure 3.2 Four regression lines, varying in slope

same intercept, but different slopes. The four schools in Figure 3.3 are chosen
because the four schools have different intercepts as well as different slopes.
In Figures 3.1-3.3 the start of a ‘slopes-as-outcomes’ analysis is illustrated,
where each school has its own regression line. In Figure 3.1 the four schools’
regression lines are parallel. Parallel lines mean that the slope of the regres-
sion of y, ‘MathAchievement’, on x, ‘HomeWork’, is equal for each school.
But the lines start at different points, showing that the overall mean level for

10 + y=133z+2
91 y = 0.50x + 6

44 y = —0.66z + 8

1 2 3 4 ) 6

Figure 3.3 Four regression lines, varying in intercept and slope
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math achievement is different from school to school. Unequal intercepts
mean that some schools perform better, after the amount of homework is
taken into account, than others. The situation pictured in Figure 3.1 resem-
bles an ANCOVA solution, where unequal intercepts but equal relationships
(or parallel lines) between x and y are assumed.

The four schools in Figure 3.2 are chosen so that all four regression lines
start at the same point, thus having the same intercept. But the regression of
y on x is stronger in some schools, resulting in different slopes. The steeper
the slope, the stronger the relationship between ‘HomeWork’ and
‘MathAchievement’.

The four schools in Figure 3.3 exhibit a more realistic situation for the
complete NELS-88 data set. The four schools represent the situation where
both intercepts and slopes in the regression model differ. This figure is an
example of where the ‘slopes-as-outcomes’ approach is most valuable.
Each school is allowed to have its own unique solution, which may be a
more realistic situation than forcing schools to have some or all features in
common.

All three figures show that different intercepts and/or slopes are estimated
for each context, representing the first step in the ‘slopes-as-outcomes’
approach. In subsequent steps parameter estimates for intercepts and
slopes are used as response variables in macro-level regressions together
with macro-level explanatory variables.

Another name sometimes used for this type of analysis is ‘two-step
analysis’, because in a first step the individual, or micro-level, parameters
are estimated within each context and used in a second step as response vari-
ables, predicted by macro-level variable(s). In both steps ordinary least
squares is the estimation method.?

The following equations show the second step, which is at the macro
level:

aj = CO + Cle, (32a)

bj :d0+d|ZJ, (32b)

where a; and b; are the regression coefficients for intercept and slope respec-
tively. For applications, see Burstein et al. (1978) and Tate (1985).

The number of observations in each step can be different. In the micro ana-
lyses of the first step the number of observations varies for each school (see
again Table 2.1 in Chapter 2 for our 10 schools). In the macro analyses, with
either intercepts or slopes as response variable, the number of observations is
equal to the number of schools, which is 10 in our example. Ten schools pro-
duce 10 different slopes b; and 10 different intercepts a;. The macro equations
produce macro intercepts and slopes, which are ¢, and d; and ¢, and 4,
respectively in (3.2a) and (3.2b). The same equations show that the group-
level variable z is used to explain the variation among intercepts and
slopes. For our example z can either be the global variable ‘Public’, or the
aggregated variable ‘MeanHomeWork’.?
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The ‘slopes-as-outcomes’ approach is promising and a potentially good way
to find interesting features in the data, features that were previously ignored.
But the approach has a practical disadvantage; it requires a separate analysis
for each context. Separate analyses for each school may be the best way to
represent each school in its uniqueness, but with a thousand schools (as in
the original NELS-88 sample), this method is hardly feasible, not parsimo-
nious, and ignores the fact that schools also have many things in common.

An alternative way is the extension of this approach to RC models, which
will be discussed in the next section. This approach combines the concep-
tually interesting features of the ‘slopes-as-outcomes’ approach with the
statistical advantage of parsimony, and the practical advantage of taking
into account not only the uniqueness of each school but also what they
have in common.

3.4 The random coefficient model

The RC model is conceptually based on the ‘slopes-as-outcomes’ model. One
difference between the two models is that the RC model does not estimate
coefficients for each context separately, although each context is allowed to
differ from the other contexts in intercept, in slope(s), or in both. Figures
3.1, 3.2 and 3.3 are compared with similar ones depicting RC models, in
order to show similarities and differences between models. Figures 3.1-3.3
showed four separate models estimated for four separate schools, thus pro-
viding each school with its own unique solution. The next Figures 3.4-3.6
show the estimation of a single model, from which the four schools are
allowed to deviate.

Figures 3.4-3.6 are conceptually equivalent to Figures 3.1-3.3, although
not in a visual way. The difference is that in the former only a single solid
line is shown, with two dashed lines on either side of it. In each case we
have drawn the figure in such a way that the dashed lines capture the
variation of the four schools from the average line, corresponding with the
variance in the ‘fixed but varying coefficient’ figures in the previous section.
Remember that in Figure 3.1, schools differ only in their intercepts, while in
Figures 3.2 and 3.3 schools differ in their slopes as well. The same pattern is
followed in the RC figures.

Compare Figure 3.4 with Figure 3.1, where intercepts vary but slopes are
all the same. In Figure 3.4 this is reflected in a variance around the line which
is regular and equal for all values of x.

Compare again Figure 3.5 with Figure 3.2. Intercepts do not vary, but
slopes do. In Figure 3.5 the space around the solid line is not equal for all
values of x. This is to be expected in RC models, because variation in
slopes is related to values of x, the explanatory variable. The higher the
value of x the larger the spread around the mean line in Figure 3.5.

Finally, compare Figure 3.6 with Figure 3.3, where both slopes and inter-
cepts are different for the four schools. As a result the variation around the
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Figure 3.4 Random coefficient solution with random intercept

solid line in Figure 3.6 shows a pattern, produced by the combination of the
variance of the slope, the variance of the intercept and the covariance
between the two. The variation in slopes is related to values of x, as is the
covariance between the variances of intercept and slope. The total variance
around the line is the sum of all three (co)variances. As a result, the pattern
of the variation of the four schools around the average line is irregular, with a
minimum and a maximum at certain values of x.
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Figure 3.5 Random coefficient solution with random slope
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Figure 3.6 Random coefficient solution with random intercept
and slope

If the variation around the average line (as indicated by the values for the
variances) is large, we say that the single line does not represent all schools
equally well. Since the line is an average, we know by the value of the disper-
sion or variance of the coefficients that some schools are above the line, while
others are below it. If, on the other hand, the variances of the intercept and
slope are small, the line is close to equal for all schools. A single-level regres-
sion analysis would then represent the relationship in this data equally well.
Remember that schools can be above or below the line because they differ
either in intercept, in slope, or in both. In RC models each coefficient has
its own variance, allowing schools to be unique. Uniqueness for each context
or school is translated into the extent of the deviation of a school from the
overall line. At the end of this chapter it will be explained that this deviation
(or error) can be used to calculate the posterior means. Posterior means are
separate values for intercepts and slope(s) for separate contexts, very similar
to the ‘slopes-as-outcomes’ approach.

Figures 3.4-3.6 have illustrated the principles of RC modeling , as well as
the differences between RC models and ‘slopes-as-outcomes’ models. Next
we formalize the same principles in equation form. The figures show that
the coefficient estimates for separate contexts are represented as varying
around the overall line. As a result coefficients in RC models consist of
two parts: a mean or fixed part, and a variance or random part. The
random part is represented by a macro variance, showing the deviation
from the overall solution. This variance is referred to as macro-level variance,
because the coefficients differ from each other at the macro or context level.
The equation of the random model starts with the familiar regression
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equation, where we underline random variables as before:
Yij =gj+ij,~j+§,-j. (33)

Index i is again used for individuals and index j for groups. y;; is the score on
the response variable of an observation / within a context j, while x;; is the
individual-level explanatory variable of the same observation. The variable
a; is the random intercept, b, is the random slope, and £ ; is the disturbance
term. We assume that ¢ ; has expectation zero. All g ; are independent of each
other. The variance of ¢ ; is equal to o’

Note that the underlining of a and b in equation (3.3) is a new feature,
signifying random coefficients. Observe that this underlining is the only
difference between this equation and equation (2.2a) for the ‘slopes-as-
outcomes’ model.

The models discussed so far have fixed coefficients. In RC models coeffi-
cients can be either fixed or random. The choice between random and
fixed coefficients can be made separately for each coefficient in an analysis
based on an RC model.

Coefficients in RC models are estimated as a main effect with a variance
around it. This variance represents the deviations of contexts from that over-
all or main effect. To specify the properties of the random coefficients, we
define them as fixed components plus disturbances. These disturbances are
at the group level. They have expectation zero, as usual, and they are
independent of the individual-level disturbances ¢ ;.

The macro-level equations express the properties of the random slope and
intercept in terms of overall population values plus error, as specified in the
following macro equations:

a; = 7Yoo + Hoj» (3.4a)
b =10 + ;- (3.4b)

The macro-level errors ug; and u,; in (3.4a) and (3.4b) indicate that both the
intercept o and slope ;o vary over contexts. The grand mean effect in (3.4a)
is g9, While u;, the macro-error term, measures the deviation of each context
from this overall or grand mean.

In the same manner the grand slope estimate across all contexts is 7o,
while uy; represents the deviation of the slope within each context from the
overall slope, as in equation (3.4b). For the gammas the subscript is defined
as follows: the first index is the number of the variable at the micro level, the
second represents the number of the variable at the macro level. Hence +,, is
the effect of the macro variable ¢ on the regression coefficient of micro vari-
able s. Zero signifies the intercept, that is to say, the variable with all values
equal to +1, either at the micro level or at the macro level. For instance, g is
the effect of the macro-level intercept on the micro-level coefficient of the
intercept. Note that equations (3.4a) and (3.4b) display the model coefficients
g; and b; as a function of two components: a fixed component -y and v
respectively, and a random component ug; and uy; respectively, where uy;
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has variance 7o, u|; has variance 7y, while u, and uy; have covariance 7.
Table 3.5 summarizes the variance components of an RC model with a
random intercept and one random slope.

Wy Yy
T = Y| Too Toi (3.5)
Uy \Tio T

The elements in the matrix T in equation (3.5) indicate the extra parameters
that are estimated in RC models. The 7 parameters show the degree to which
the schools differ from the overall line.

To show that the separate equations are not really separate, but part of the
model, we substitute the separate equations (3.4a) and (3.4b) into equation
(3.3), resulting in

Yi = (Yoo + ug;) + (o + 1yj) x5 + €5 (3.6)
Expanding and rearranging terms yields
Yii = Yoo + MoXy + (doj + uyjx; +£5)- (3.7)

The rearranging of the terms yields an equation that looks a bit more orga-
nized. The fixed effects (gammas) are together and the micro error ¢ i and the
two macro errors up; and uy;x; are also collected together (in parentheses).
The result is a single equation that resembles a traditional regression equa-
tion, except for the error terms in parentheses. When we discussed Figure
3.6 it was mentioned that the macro-level variance of the slope (the variance
of uy;) was related to the values of x. In equation (3.7), the error term, in
parentheses, depends on the variable x.

The uniqueness of each context is expressed in these macro errors (the us)
which are the deviances from the overall solution. Solutions based on this
model no longer produce unique lines for each context, such as the four
lines for each of the four schools in the ‘slopes-as-outcomes’ approach.
The result of the RC analysis is a single regression line as an overall solution.
Schools fluctuate around this average line. The parameters of the line are the
gammas in the above equation, also called the fixed effects. The random
effects or macro variances are u; and uy;x;. If these variances are signifi-
cantly different from zero we say that context effects are present.

The equations of the RC model show that this model is an intermediate
solution between a totally restricted one, such as a standard regression
that ignores the context, and a totally unrestricted one, such as the
‘slopes-as-outcomes’ approach that takes the context too literally. In the
‘slopes-as-outcomes’ approach all contexts (or schools in our example), are
treated as separate entities as if they have nothing in common, while in the
total regression approach schools are treated as if they are the same and
interchangeable. The RC model is also statistically in between the two
extremes. The RC model estimates fewer fixed parameters than the
‘slopes-as-outcomes’ approach, but RC models estimate more parameters
than are estimated in the total regression model.
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In the next section the models discussed in Chapter 2 and in this chapter
are compared and summarized.

3.5 Assumptions of linear models

Table 3.1 summarizes the differences between two traditional linear models,
regression and ANCOVA, and two multilevel linear models, ‘slopes as
outcomes’ and random coefficients. Most models in Table 3.1 are fixed effects
linear models, while the RC model is the only random effects linear model.
Within the fixed models the choice is to allow intercepts to be equal (3.8a)
or different (3.8b):

ay=a;=--=a,, (3.8a)

agFaF - F (3.8b)

Equation (3.8a) applies to the total regression model, where group member-
ship is ignored, and all contexts are assumed to have the same effect on
people. ANCOVA models assume unequal intercepts over contexts, as in
equation (3.8b) and as shown in Figures 3.1 and 3.4.

Linear models can also differ in what they assume concerning slope coeffi-
cients. Slopes can also be assumed to be equal or unequal over contexts.
Equal slopes are assumed in the analysis of variance model, where a
pooled within slope is estimated, as in equation (3.9a):

b] = b2 == bmv (393)
by#by# - # bm (3.9b)

Random and varying coefficient models allow slopes to differ, as in equation
(3.9b) and as shown in Figures 3.2 and 3.5.

RC and ‘slopes-as-outcomes’ models allow researchers to assume that
coefficients within contexts vary systematically as a function of the context.
Different intercepts together with different slopes can be fitted, as shown in
Figures 3.3 and 3.6.

ANCOVA and regression are based on a more restrictive model than the
two multilevel models. Multilevel models are more general, because some
restrictions are lifted and more parameters are estimated. While more general

Table 3.1  Assumptions of traditional linear
models and multilevel models

Model Intercepts Slopes
Traditional linear regression equal equal
ANCOVA unequal equal
‘Slopes as outcomes’ unequal unequal
Random coefficients unequal either equal

or unequal
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models allow more freedom than restricted models, they are at the same time
less parsimonious. In the next section the RC model and the ‘slopes-as-
outcomes’ model are discussed and illustrated with the same example of 10
schools as used in Chapter 2. Results of the analyses are compared with
each other and with the results of ANCOVA.

3.6 ‘Slopes-as-outcomes’ analysis

We now look at an example of the ‘slopes-as-outcomes’ approach to the
analysis of hierarchically nested data. A linear model is fitted within each
context, with individual-level explanatory variable(s) and an individual-
level response variable. Within-group regression coefficients are used in
the next step as response variables in regressions at the macro level. The inter-
cepts and the slopes are model-based aggregates, subsequently used in macro
regressions as response variables.

For the analysis of our example with 10 schools, 10 separate regression
lines are fitted, one for each school, with ‘HomeWork’ predicting ‘Math-
Achievement’. The results are shown in Figure 3.7, where the 10 regression
lines are plotted, and in Table 3.2. In the figure the 10 solid lines represent
the 10 schools, while the dashed line represents the total regression line
calculated over all 10 schools together. Comparing the separate regression

100
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90 +
y=31.71+633z
80 + y= 389816492
y = 34.49 + 5.582
nt U
60 -
50 -
40 4
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Figure 3.7 OLS regression lines for 10 schools
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Table 3.2  OLS regression lines of Mcthchlevemenf on
'HomeWork’ over 10 schools

Intercept Slope

School Estimate SE Estimate SE r N Pu/Pr
1 50.70 2.24 -3.55 1.27 -0.52 23 1
2 48.88 3.56 -2.86 1.33 —0.45 20 1
3 38.80 2.94 7.87 1.37 0.77 24 1
4 34.49 1.76 5.58 0.80 0.84 22 1
5 53.82 2.55 —4.74 2,22 -0.43 22 1
6 49.30 1.51 —2.49 1.08 -0.48 20 1
7 59.10 1.42 1.1 0.38 0.34 67 0
8 36.05 3.46 6.46 1.46 0.71 21 1
9 38.56 3.19 5.81 1.99 0.56 21 1

10 37.71 2.36 6.33 1.1 0.80 20 ]

Total 44.05 0.98 3.57 0.39 0.50 260

lines with the overall regression line, we see that schools differ mainly in their
slopes and less so in their intercepts from the overall line. The correlation
coefficients in Table 3.2 (see the column labeled r) show that the strength of
the correlation between ‘MathAchievement’ and ‘HomeWork’ varies in a
similar fashion to the slope coefficients. This indicates that schools differ
substantially in their relationships between ‘HomeWork’ and ‘MathAchieve-
ment’. The intercepts differ too, but not so widely. Since we selected the 10
schools for the differences in their relationship between ‘HomeWork’ and
‘MathAchievement’, these results are not surprising. The overall regression,
calculated over all 260 observations, is also reported in the table; see the
row labeled ‘Total’. If we compare in Figure 3.7 the regression lines with
the overall dashed line, it is clear that schools differ more in their slopes
than in their intercepts. The overall line shows a positive slope, while four
out of the 10 schools have a negative slope. The main picture shows that
schools differ widely in their slopes. For these 10 schools we can see that an
overall analysis would not summarize the data well.

In the second step of this analysis the intercepts and the slopes of the 10
schools are used as response variables predicted by the school-level variable
‘Public’ (with public schools coded 1 and private schools coded 0), which is z
in the equations below. Since the public sector is coded 1, the value of the
parameter will be the value for the public sector.

The two macro models, one for the intercepts (3.10a), and one for the
slopes (3.10Db), are:

a; = ¢y + ¢z, (3.10a)
by =dy+d,z;. (3.10b)

The two macro regressions in equations (3.10a) and (3.10b) produce estim-
ates for a macro intercept (cy) and a macro slope (dp), as well as estimates
for the main effect of ‘Public’ (¢;) and the cross-level interaction effect of
‘Public’ with the slope for ‘HomeWork’ (4,).*
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The results of the macro regressions are as follows:
Intercept ~ 59.10 — 15.95 x ‘Public’,
Slope =~ 1.11 4+ 0.94 x ‘Public’.

The negative coefficient for ‘Public’ in the first macro regression with the inter-
cept as the response variable means a lower effect for that sector in general.
The positive effect for ‘Public’ in the second macro regression with the slope
of ‘HomeWork’ as the response variable means a steeper slope for ‘Home-
Work’ in that sector compared to the private sector. The overall effects of
the two sectors, after controlling for the amount of homework, can be com-
pared by using equation (3.10a). The effect of the private sector is equal to
the macro intercept, which is 59.10, while the same effect of the public
sector is lower, 59.10 — 15.95 = 43.15. The effects of sectors on ‘HomeWork’
can be compared by using the second macro-level regression (3.10b), which is
the regression with the cross-level interaction between slopes and ‘Public’. In
this regression it shows that the public sector has a stronger effect on
‘HomeWork’. The effect is 1.11 + 0.94 = 2.05, while for the private sector it
is equal to the value of the intercept 1.11. In the second step of this analysis
‘Public’ has two effects, one on the intercept, which we call an overall effect,
and one on the slopes, which we call a cross-level interaction effect.

The model of the ‘slopes-as-outcomes’ approach has some drawbacks. First,
the error structure is not specified properly, which makes the p-values for the
parameter estimates questionable. Secondly, the regression coefficients
obtained in the first step are not equally efficient: some have large standard
errors and some have small ones. This is not accounted for in the second
step. Each coefficient is weighted equally. The idea of the ‘slopes-as-outcomes’
approach is, however, appealing. In the next section we show, with the same
example, how the idea of the ‘slopes-as-outcomes’ approach is used in
random coefficient modeling, but in a more parsimonious way.

3.7 Random coefficient results

The interpretation of the random coefficient model is illustrated, again using
the same data with 10 schools, where ‘HomeWork’ predicts ‘MathAchieve-
ment’. The software package used for the analysis is MLn (Rasbash et al.,
1991).

The solution is (with standard errors below the coefficients)

‘MathAchievement’ ~ 44.76 + 2.04 x ‘HomeWork’.
(259) (147
Compare the results of the fixed regression model, found in the last row of
Table 3.2. This was

‘MathAchievement’ ~ 44.05 + 3.57 x ‘HomeWork’.
(0.98)  (0.39)
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Table 3.3 A random coefficients model

Level 2
Parameter Estimate Standard error
Variance intercept 60.89 29.89
Variance slope ‘HomeWork' 19.79 9.53
Covariance slope and intercept -27.91 15.32
Level 1
Parameter Estimate Standard error
Variance 42.89 3.92
Deviance " 1768.21

As before, ‘HomeWork’ (x) is positively related to ‘MathAchievement’ (y),
but no longer significantly so. The statement that more hours of homework
will result in a higher predicted math achievement score is no longer valid.
The differences in the values for the same coefficients over models are
minor compared to the much larger differences in the standard errors over
models. The coefficient for ‘HomeWork’, which is significantly different
from zero in the fixed model, is no longer significant in the random coefficient
model.

Random variation of the regression coefficients is specified in the macro
equations (see Table 3.3).> To show how the same solution, presented earlier
in one single equation, can also be written as two separate equations, we
present the same results again:

Intercept; = 44.76 x Macro-Intercept + Error;,
Slope; = 2.04 x Macro-Slope + Error;.

The two macro equations can conceptually be compared with the second step
in the ‘slopes-as-outcomes’ approach.

In general, intercepts are more stable estimates than slopes are, resulting in
a larger variance of the intercepts than of the slopes. In our handpicked data
this is not true. In Table 3.3 both the intercept variance and the slope
variance are about equally significant, although not very highly, with
calculated standard scores of z = 2.04 and z = 2.08, respectively. Based on
this outcome we conclude that the strength of the relation between
‘HomeWork’ (x;) and ‘MathAchievement’ (y;) differs across schools
roughly as much as the intercepts (the average math scores) do.

3.7.1 Adding a macro-level explanatory variable

We now discuss more ways of employing random coefficient models by
further analyzing our small data set. Our next step is to add the second-
level variable ‘Public’ to the analysis model. Sector is used to ‘explain’
the variation in the coefficients for slope and intercept. By adding a
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school-level variable z, the variation among schools in general (in the inter-
cepts) or in particular (in the slopes) may disappear. If that works we say that
the macro-level variable ‘explains’ the variation among schools.

The same variables are used at the micro level, that is to say, ‘HomeWork’
predicts ‘MathAchievement’.

As in the ‘slopes-as-outcomes’ approach, we can choose to model the
intercept variance or the slope variance. What we could not do in the
‘slopes-as-outcomes’ approach was model both variances in the same step.
In this subsection we show how the model can be extended by fitting macro
variances together. All parameters are estimated in a single model, instead
of fitting two different macro models as in the ‘slopes-as-outcomes’ approach.

Our first task involves the explanation of the intercept variance. For this
subsection the macro-level explanatory variable z; is introduced in the equa-
tion of the intercept, but not in the slope. We relate the macro-level variable
‘Public’ (z; in the equations) to the intercept by changing the equation in
(3.4a) to

a; = Yoo + Y012j + Ug;- (3.11)

We do not change anything yet in the equation for the slope (3.4b), which
remains as before:

b =m0 + w (3.12)

By fitting this model we assume that only intercepts vary as a function of the
macro-level explanatory variable z; plus a random fluctuation, which is
represented in the macro-error term ug; in (3.11). Note that we actually fit
a single model, which becomes clear when we substitute the macro equations
(3.11) and (3.12) in the micro equation (3.3). We obtain the single equation

Vi = Yoo + Y012 + doj + x(vio + uyj) + €4 (3.13)
Expanding and rearranging terms yields
Yi = Yoo + Y012 + moXxy + (Uoj + Xuy; + £5)- (3.14)

Once again, equation (3.14) looks like a fixed effects regression equation with
a complex error term.
The results of the analysis for the fixed part are

‘MathAchievement’ =~ 57.98 + 1.93 x ‘HomeWork’ — 14.57 x ‘Public’.
(267)  (1.52) (1.80)

The results for the random part are given in Table 3.4. Table 3.4 shows that
oo (the intercept variance) is ‘explained’ to a certain extent. This is evidenced
by the significant (negative) effect of the public sector, and the substantial
decrease in intercept variance from 60.89 to 40.20. The fit between the two
random coefficient models (with and without ‘Public’) can be evaluated
using the difference between the two deviances of both models.® An approx-
imate rule is that a difference in deviance between models should be at least
twice as large as the difference in the number of extra parameters estimated.
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Table 3.4 A random coefficient model with a
macro variable for the intercept

Level 2
Parameter Estimate Standard error
Variance intercept 40.20 20.41
Variance slope ‘HomeWork’ 21.58 10.30
Covariance slope and infercept —28.95 14.21
level 1
Parameter Estimate Standard error
Variance 42.78 3.90
Deviance 1749.48

If the difference in deviance is significant the model with the smallest deviance
is considered the ‘better’ model. If we apply this rule to the models in Table
3.3 and Table 3.4, it appears that the difference in deviance is 18.73 with one
degree of freedom. Clearly, the model with ‘Public’ as a macro variable is
more appropriate, since adding this variable improves the fit of the model
to the data.

Our next task is to add an explanatory variable that can account for
the slope variation among schools. We already know from Table 3.3 that
the variance of the slope is significantly random. It is therefore worth
investigating if this can be explained by the same macro-level explanatory
variable, ‘Public’. In notation that means we add z; to the macro equation
(3.4b):

b =10 + M1z + Uy (3.15)

In this way we have created an interaction of the micro-level variable
‘HomeWork’ with the macro-level variable ‘Public’. Since the private
sector is coded 0 the results of the analysis will again show the effect of the
public sector only.

Substituting the new macro equation for the slope together with the same
macro equation for the intercept as above (3.11), into the basic equation
(3.3), we produce the single equation,

Vi = Yoo + Yo12; T oXy + Xz + (o + X1 + €5)- (3.16)

The difference between model (3.16) and model (3.15) is in the estimation of
one more parameter. One more coefficient (7,) is estimated, the rest stays the
same.
The results of the fixed part of this analysis are
‘MathAchievement’ = 59.10 + 1.11 x ‘HomeWork’ — 15.83 x ‘Public’
(6.55) (465 (6.92)
—0.92 x ‘HomePublic’
(4.92)
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Table 3.5 Random coefficient model with a
macro variable for the intercept and the slope

level 2
Parameter Estimate Standard error
Variance intercept 39.84 20.23
Variance slope ‘HomeWork' 21.37 10.20
Covariance slope and intercept ~28.68 14.08
Llevel 1
Porameter Estimate Standard error
Variance 42.78 3.90
Deviance 1749.44

while the random part is in Table 3.5. The results in Table 3.5 show that the
cross-level interaction term is not significant. This is also evidenced by the fit
of the model compared to the previous one. Comparing the deviances
reported in Table 3.4 and Table 3.5 shows that the difference in deviance is
only 0.04 with one degree of freedom, not a significant improvement of fit.

The main conclusion of this subsection is that a model with random slope
and intercept exhibits a good fit. The macro-level explanatory variable
‘Public’ shows a negative effect for the public sector on the micro-level inter-
cepts. A cross-level interaction with the same variable and ‘HomeWork’ does
not add significance to the model. The significant random effects can only
partly be explained by the school characteristic ‘Public’.

It is interesting to compare the solutions obtained in the random coefficient
analysis with the solution obtained with ‘slopes-as-outcomes’ model. The
parameters for the intercept and slope are the same among models, respec-
tively 59.10 and 1.11, while the parameter estimates are also very similar,
both for the macro-level variable ‘Public’ (—15.95 versus —15.83) and the
interaction term (0.94 versus 0.92). The main difference is in the estimates
for the standard errors of the macro-level variable and the interaction.

3.7.2 Posterior means

One type of output that can be obtained from most software for analyzing
data with a random coefficient model are posterior means. Conceptually,
posterior means are comparable with the coefficients for each school
separately, obtained in the first step of the ‘slopes-as-outcomes’ approach.
However, the estimation method for the parameters of a random coefficient
model is quite different from the separate OLS estimation in ‘slopes as out-
comes’. The intercepts and slopes for the 10 schools are estimated in relation
to each other as shown before (see again equations (3.11), (3.14) and (3.15)).
The estimation method in random coefficient modeling is empirical Bayes
maximum likelihood (EB/ML) (the MLn program uses a method which is
asymptotically equivalent to EB/ML).
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Table 3.6 Shrunken EB/ML regression coefficients
of 'HomeWork’ on ‘MathAchievement’ over 10
schools resulting from a random coefficients model

Intercept Slope
School Estimate (SE) Estimate (SE) N
1 50.28 (=) -3.14 (=) 23
2 48.77 (-) -2.70 (-) 20
3 39.24 (=) 7.53 (=) 24
4 35.25 (=) 5.38 (=) 22
5 52.96 (=) -3.75 (=) 22
6 48.62 (=) -1.77 (=) 20
7 57.94 (-) 1.35 (=) 67
8 37.16 (=) 6.02 (-) 21
9 39.21 (-) 5.38 (-) 21
10 38.17 (=) 6.09 (=) 20
Miln 44.76 (2.59) 2.04 (1.47) 260

In EB/ML the overall solution is taken into account, where schools with
unreliable estimates are shrunk towards this overall solution. Unreliable
estimates have large standard errors, due to ill-conditioned data and/or
small number of observations within the school. Shrinkage is large when
the estimates are unreliable, and small if the estimates are reliable. Shrinkage
causes the estimates of the posterior means to be different from the estimates
in the ‘slopes-as-outcomes’ analysis of Table 3.2. Compare the results in this
table with the results in Table 3.6.” The posterior means are calculated based
on the overall solution plus the specific OLS solution for that particular
school, and not on separate analyses such as in the ‘slopes-as-outcomes’
approach. Standard errors and correlation coefficients within each school
are no longer defined in a straightforward way. They are missing in Table
3.6. The estimates of the overall intercept and slope are again given in the
last row of the table, labeled MLn.

In our example the shrinkage is not large. This is due to the reliability of all
parameters, as can be checked in the separate models solution (see Table 3.2).
All OLS coefficients are significant, because we selected our 10 schools that
way. Still we see the effect of shrinkage for schools with relatively large
standard errors. Compare, for example, schools 5 and 6 in both tables.
Notice also that schools with reliable coefficients, coefficients that are three
or more times as large as the standard errors, remain the same in the analyses
reported in Tables 3.2 and 3.6. In Figure 3.8 the variation among the
posterior means and around the main dashed line is illustrated. The
dashed line represents the values of the gammas or the fixed effects of the
random coefficient analysis. Posterior means are sometimes used to rank
schools, for instance. But the shrinkage factor makes such a use questionable.
Shrinkage means that high-scoring but small schools are shrunk towards the
mean as much as low-scoring small schools are. Both schools may end up
close together in rank. One weakness of the random coefficient model is



VARYING AND RANDOM COEFFICIENT MODELS 53

100

y = 39.2 + 7.5z (3)

y = 38.2 + 6.0z (10)

V%5189 0 8

y =353+ 5.4z 4

y =579+ 1.4z (7)

y=44.8+ 2.0z

y=48.6—18z EG;
=488 - 2.7z (2

B R

20 t } } + t t

Figure 3.8 Predicted regression lines for 10 schools (shrunken
estimates)

that it is less suitable for research that is used for making decisions regarding
existing groups, such as schools. The main strengths of the random coeffi-
cient model are in exploration of data for development and strengthening
of social theories.

3.8 ANCOVA as alternative

For the purpose of explanation we illustrate what the results would have been
when using the ANCOVA technique with our small example. We have to
realize that executing an analysis of covariance means that you assume
that all slopes are equal. We know by now that this is far from true in our
data.

In ANCOVA the intercepts are different estimates for each school. Apply-
ing ANCOVA to our data produces a regression coefficient for homework on
math score, called the pooled within-regression coefficient. The solution for
our ten schools is

‘MathAchievement’ ~ Intercept; + 3.57 x ‘HomeWork’.

The F-test for differences between intercepts gives a highly significant result
Fy50 = 13.84, p < 0.0001. The F-test indicates that some or all schools differ
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significantly in their mean level for math score, after correcting for home-
work. Remember however that the type I error rate is significantly inflated
when intra-class correlation is present. A check for intra-class correlation
shows that » = 0.30 for these data, too high to ignore.® It remains impossible
within the ANCOVA method to check why schools differ significantly in their
intercepts. The most we can do is state that they differ. Whether the observed
differences are the result of being a school in the public sector or a school in
the private sector cannot be tested. Such conclusions are beyond the limits of
ANCOVA.

3.9 The number of parameters

Apart from the statistical advantage that random coefficient models produce
better-defined estimates, they also provide a more parsimonious model than
the ‘slopes-as-outcomes’ approach. In our example with the 10 schools 30
parameters have to be estimated, three for each school (an intercept, a
slope and a variance of the individual error term; see Section 3.2). If
macro-level variables are related to intercept and slope, another six para-
meters are added to the model (see (3.2a)), which brings the total for the
‘slopes-as-outcomes’ model to 36. For the same data, using the random coef-
ficient model (3.15), the number of parameters is reduced to 8, four variances
and four fixed coefficients. The four variances are the micro-level variance,
the two macro-level variances, plus their covariance. The four coefficients
are the intercept, the micro slope for ‘HomeWork’, the macro slope for
‘Public’ and the slope for the cross-level interaction term ‘HomePublic’.
Simplification of both models makes it possible to estimate even fewer
parameters than eight. This can be done by setting the variance of some coef-
ficients to zero.

In our example we can set the variance for the slope of the variable
‘HomeWork’ to zero. If we fit a model with only a random intercept, two
fewer parameters are estimated, the variance of the slope and the covariance
between the two macro-error variances (for the slope and the intercept).
Another solution is that we can keep the variation of the ‘HomeWork’
slope, since it is significant in the model, but delete the fixed part of the para-
meter estimate for ‘HomeWork’. This decision can be made based on the
individual r-test for both slope parameters, the fixed part and the random
part, but a better way is to inspect the overall measure for the fit of the
model, the deviances for a model with and a model without the variable
‘HomeWork’. Since the differences between the two deviances are chi-
square distributed, one model can be tested against another model to see if
one is a significant improvement over the other.

Another way of reducing the number of parameters is by eliminating inter-
action terms. In our case that would be the model in equation (3.11), which
has one parameter less than the model in equation (3.15). In the next chapter
we will return to these and other problems while fitting a more realistic
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random coefficient model to the total sample of 1003 schools. The 10 schools
used as an illustrative example in this chapter are just a specific subsample of
this larger one.’

Itis important, in this context, to make a couple of distinctions here. Sup-
pose we use the ANCOVA model, which says

and again suppose that all groups have the same ¢°. In this model, which has
only a single variance component, there are some other ‘variances’ which are
also interesting. The first is the variance of the m numbers a;, perhaps
weighted with group sizes »;. This is an unknown population quantity. The
second is the observed variance of the m numbers @;, which are the least-
squares estimates from the ANCOVA. We may be tempted to assume that
the second (sample) quantity will estimate the first (population) quantity,
but the relationship turns out to be more complicated than that.
In the same way, the varying coefficient model,

__y_'j =aj+bjx,-j+§,'j, (318)

does not have parameters for the covariance between slopes and intercepts.
But we can compute the covariance between estimates of slopes and estimates
of the intercepts, and treat this in a way similar to the covariance parameter
in random coefficient models. .

Thus, although ANCOVA and the other contextual models do not have
variance components for the between-group variation, we can define quanti-
ties that have a similar function, and we can estimate them from the OLS
output.

3.10 Summary

In this chapter we compare two multilevel models, the fixed effect regression
‘slopes-as-outcomes’ model, and its modern counterpart, the random effects
regression model. The first half of the chapter discusses model differences in a
theoretical way. Four handpicked schools are used to illustrate possible
situations in research and their implications for parameter estimates in
both models. The second half of the chapter is an illustration of the results
of the ‘slopes-as-outcomes’ approach and the random coefficient model,
using the same data as in the previous chapter, the sample from the
NELS-88 data of 10 schools. The results among the fixed and the random
model are extensively compared and discussed.

The main conclusion reached in this chapter is that the fixed effect esti-
mates do not differ widely among models, but practical implications of
choice of model are quite different. We identified the advantage and the dis-
advantage of shrinking parameter estimates in the random coefficient model.
The advantage is more reliable predictions for the future. The disadvantage is
that the estimates are unrealistic for schools that have few observations.
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Another practical implication of the difference between models is that
the random coefficient model is more parsimonious. Parsimony makes the
random coefficient model in many ways desirable, especially when a large
number of contexts are present, or if the number of observations within
contexts is small. In the last part of the chapter the ANCOVA model is intro-
duced as a means of estimating if context effects in the intercepts are present.
ANCOVA is not a serious candidate for the analysis of context effects. All
ANCOVA can do is estimate if differences among contexts exists, not why
these differences exist.

Notes

1 For simplicity of notation, we only consider models with a single explanatory variable in this
chapter, but the extension to multiple regression models is straightforward. In that case we
have more than one b in the model, of course.

2 Although the term ‘slopes as outcomes’ suggests that only slopes are used as response
variable in analyses of this type, we emphasize here that intercepts are also used as outcomes.
The model should really be called ‘intercepts and slopes as outcomes’.

3 Note that second-level error terms are not included in equation (3.2a). Although the
specification of the error term is omitted in the equations, this does not mean that it is
assumed that intercepts and slopes are measured without error or variation. It only means
that this model is statistically not completely identified.

4 Note that the error terms for the macro equations are not present in equations (3.10a) and
(3.10b). These macro errors are not defined in the ‘slopes-as-outcomes’ model. Later we
will show that these error terms for the macro regression are defined in the random coefficient
model, making the latter model statistically superior.

5 Note that the macro errors are properly defined in the random coefficient model, in contrast
to the absence of these macro errors in the ‘slopes-as-outcomes’ model.

6 A calculated difference in deviance between nested models is chi-square distributed, with
degrees of freedom equal to the difference in number of estimated parameters.

7 Note that the parameters in Table 3.6 are based on a single random coefficient model (with-
out macro-level explanatory variables), and calculated in a single step. Standard errors are
not provided by the procedure.

8 See again the effect of intra-class correlation on the alpha error in Table 1.1 of Chapter 1.
That table shows that an intra-class correlation of 0.20 inflates the assumed alpha level of
0.05 to an observed level of 0.46.

9 Note that the number of parameters in a random coefficient model would not change if we
use the total sample of 1003 schools. The number of parameters to be estimated would
still be eight. That this is not so when the ‘slopes-as-outcomes’ approach is used is obvious,
since 1003 separate models, with three parameter estimates each, have to be executed in the
first step of this approach.



4 ANALYSES

4.1 Introduction

In this chapter we discuss several different analyses based on a sample from
the NELS-88 data. We report four modeling sessions, illustrating different
ways of using two-level modeling and the MLn package. The estimation
method we use throughout is unrestricted maximum likelihood estimation;
see Section 5.6.

Each session starts with a small number of variables, picked for theoretical
reasons. The selection of a small set of basic explanatory variables! is essen-
tial for successful multilevel modeling. A more extensive discussion regarding
theory-based model choice will be given in Chapter 5, when we discuss the
choice between a centered and a raw score model. In this chapter we will
show that models can easily become too large. Large and complex models
may seem to be more realistic, but only at a price: instability. Instability
means that small changes in the model result in large changes in the result
of the analysis, due, for instance, to multicollinearity.

An example is the introduction of cross-level interactions. This can best be
illustrated by an example. A researcher had three first-level explanatory vari-
ables and three group-level explanatory variables. Being most interested in
the interaction effects (let us say, between school and student characteristics)
the model fitted was:

Vi = By + Byxuy + Byxay + Byxsy + €5 (4.1a)

where the cross-level interactions for the intercept with the three second-level
variables zy;, z; and z3; produce three terms, the so-called main effects of the
second-level variables, as in

By =00 + Y0121 + Y0222 + Y032y + oy, (4.1b)

while the cross-level interactions of the three first-level predictors (8y;, 8,; and
f33) with the three second-level variables zy;, z;; and z3; produce nine inter-
action effects, as in

_@1,- = Y0 + M2y + Y222 + N3zy + 8y (4.1c)
By = 20 + Y212y + 22y + Y2323 + by (4.1d)
By = M0 + 31215 + Vaazy + Y3323 + 8. (4.1¢)

The nine cross-level interaction terms are in the three separate equations
related to the three regression coefficients on the left-hand side of equations




58 INTRODUCING MULTILEVEL MODELING

(4.1c) through (4.1e). Reading the separate analysis terms does not show that
all these separate terms are calculated in one single step. The estimates of the
parameters for main effects in equation (4.1b) and interaction effects in (4.1c)
through (4.1e) are all calculated together. Estimates will tend to be corre-
lated; see Section 5.7. Main effects are correlated with interaction effects
and interaction effects are correlated among themselves. As a result it is
often found that none of the parameters in equations (4.1c) through (4.1¢)
is statistically significant. If the model is simple, and cross-level interactions
are chosen based on theory or knowledge of the data, such zero-effects can
very well be a result of multicollinearity. Models like this are not very
good for extensive exploration of the data.

The sessions in this chapter show how the data can be explored in different
ways, illustrating that many choices can be made. In this chapter the models
are used to illustrate the many possibilities of RC models, and the interpreta-
tion of the output. The theoretical choice of a model is indicated, but never
discussed extensively. Which model is chosen as the ‘best’ model cannot be
decided on the basis of the technique or the model fit. The ‘best’ model is
the model that is best for the given purpose. An example of such a choice
is given in Section 5.2, where it is illustrated that using centered scores instead
of raw scores has consequences for the results of the analyses. Since different
models produce different results, model choice is important. Even the fact
that a researcher uses a multilevel model to analyze the data, instead of a
traditional regression model, is a choice based on theory and knowledge of
the way the data are generated.

4.1.1 Data description

In all four sessions ‘MathAchievement’ is the response variable.? Each ses-
sions starts with a small number of explanatory variables at one or both
levels of the hierarchy, the school level and the student level. The general
advice in regression analysis to restrict the number of variables in an analysis,
especially when they are correlated, is even more pertinent in multilevel mod-
eling. In multilevel models the number of parameters can grow rapidly, as in
the example used earlier, where six variables formed nine new interactions,
more than doubling the number of explanatory variables in the analysis.
Both cross-level interactions and aggregated variables can be added during
a session. Other additions to the number of parameters to be estimated are
the variances and covariances related to the random slope(s). As in all
types of analysis, the most important variables in a multilevel model are
chosen based on knowledge of the data and theory. This knowledge and/
or theory will guide the exploration phase, the selection of variables at
both levels, the decision as to which coefficients need to be made random,
and which cross-level interactions to add to the model.

The analyses reported in this chapter make use of a subsample of seven
variables, for 519 students in 23 schools. Eight schools are in the private
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sector, and 15 schools are in the public sector. This sample is taken from the
original NELS-88 data, of 21580 students in 1003 schools.® The smaller
sample serves our purposes better, since idiosyncrasies of multilevel modeling
show up more readily in small data sets than they do in large ones.

Next to the response variable ‘MathAchievement’, we selected seven expla-
natory variables, four student-level explanatory variables and three school-
level explanatory variables. The student-level explanatory variables are:

e socio-economic status of parents (‘SES’);

o the number of hours of homework done per week (‘HomeWork’);

e the student’s race, where white is coded as 1, and non-white coded as 0 (the
variable is for that reason called ‘White’);

e parents’ educational level (‘ParentEducation’).

The school-level variables are:

e education sector, where, as before, the public sector is coded 1 and the
private sector is coded 0 (the variable is for that reason called ‘Public’);

o the percentage of ethnic minority students in the school (‘Percent-
Minorities’);

e class size, measured by the student—teacher ratio (‘Ratio’).

Aggregated variables are used in some sessions. This adds more school-level

variables to the data. These are aggregates from student characteristics to the

school level, using the arithmetic mean for that variable in each school.

For obvious reasons we cannot use all seven explanatory variables in one
model. If we were to use such a model with all cross-level interactions we
would have a model in which the fixed part had 20 fixed parameters. There
are coefficients for ‘Intercept’, ‘SES’, ‘HomeWork’, ‘White’, ‘Parent-
Education’, ‘Public’, ‘PercentMinorities’, ‘Ratio’, ‘SES’ x ‘Public’, ‘SES’ x
‘PercentMinorities’, ‘SES’ x ‘Ratio’, ‘HomeWork’ x ‘Public’, ‘HomeWork’
x ‘PercentMinorities’, ‘HomeWork’ x ‘Ratio’, ‘White’ x ‘Public’, “‘White’ x
‘PercentMinorities’, ‘White’ x ‘Ratio’, ‘ParentEducation’ x ‘Public’, ‘Parent-
Education’ x ‘PercentMinorities’, ‘ParentEducation’ x ‘Ratio’. Needless to
say that the cross-level interactions (indicated by ‘name’ x ‘name’) are inter-
correlated, as well as correlated with the main effects.

The random part of the model becomes equally complicated since all first-
level coefficients are random. The random part has 10 parameters, four
variances and six covariances. The variances are V (‘Intercept’), V (‘SES’),
V (‘HomeWork’) and V (‘White’). The covariances are C (‘Intercept’,
‘SES’), C (‘Intercept’, ‘HomeWork’), C (‘Intercept’, ‘White’), C (‘SES’,
‘HomeWork’), C (‘SES’, ‘White’) and C (‘Homework’, ‘White’).

Fitting such a large model can easily give misleading results. Correlation
among the explanatory variables (including the cross-level interactions)
makes parameter estimates in the model unreliable. As a result, slight
changes in the model, or the use of a different sample, may lead to different
results. In this chapter large models are never used, nor would we recommend
the use of such large models in general. We also recommend data exploration
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Table 4.1 Correlations among the six explanatory variables
{above diagonal N = 519 and 23 schools, below diagonal
N = 21 580 and 1003 schools)

‘SES’  ‘HomeWork’ ‘White’ ‘Public’ ‘MeanSES’ 'PercentMinorities’ ‘Ratio’

'SES’ 0.30 0.31 -0.55 0.70 -0.05 -0.30
'HomeWork' 0.29 0.09 -0.29 0.33 0.06 -0.16
'White’ 0.27 0.08 -0.10 0.24 ~0.62 0.08
‘Public’ -0.35 -0.12 -0.11 -0.78 -0.04 0.06
‘MeanSES’ 0.65 0.20 028 -0.54 -0.08 -0.42
‘PercentMinorities’  —~0.23 -0.07 -0.59 0.18 -0.36 -0.22
‘Ratio’ -0.12 -0.06 -0.12 -0.12 -0.19 0.12

before doing a multilevel analyses. The knowledge of the data gained by such
an exploration will guide the choice of a small model with only one or two
explanatory variables. The variables in the models discussed in this chapter
are selected on the basis of theory.

The correlations among the student-level explanatory variables are given in
Table 4.1. This shows that even among the main variables correlations are
sometimes high — for instance between ‘MeanSES’ and ‘SES’ or between
‘SES’ and ‘Public’. In Table 4.1 the values for the correlation in our sample
are found above the diagonal, while the correlations for the entire NELS-88
data set are below the diagonal. A comparison shows that especially the
correlations among school-level variables (‘MeanSES’, ‘PercentMinorities’
and ‘Ratio’) are different in our sample compared with the correlations in
the larger NELS-88 data set. This is not surprising given the larger errors in
a sample with 23 schools, compared to the NELS-88 with 1003 schools, and
the fact that our sample is handpicked, not randomly sampled. The analyses
in this chapter are not used to make generalizations to the NELS-88 sample
or to the student population in the USA. The data are a selected sample,
used exclusively for illustrative purposes.

In all the model-fitting sessions we make use of MLn statements to indicate
a change in a model, to avoid unnecessary use of formulas. The results of the
analyses show first the fixed effects (or fixed parameter estimates) in the
traditional regression form (with below the coefficients their standard
errors in parentheses). A model’s variance components, intra-class correla-
tion (when applicable), and deviance are reported in tables, where a clear
distinction is made between first-level and second-level parameter estimates.

In the sessions we analyze the data in the way an imaginary researcher
would explore the best-fitting model for the data. The choice of explanatory
variables in a session is based on theoretical knowledge of the field. The best-
fitting model can be determined in a technical sense, by comparing deviances.
But alternatively, the best model is determined by the fact that it fits a
particular theory. In the modeling sessions we illustrate that after the first
choice of what specific explanatory variables to include in the model, many
more choices can and have to be made. In all sessions we make our choices
explicit.
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4.1.2 The organization of the four sessions

The first session with MLn starts by preparing a worksheet that can be saved
and used again. For our data we begin by naming all seven variables using
the command NAME. In this command the number of the column (C) and
the name of each variable are stated, including the identification column
for student and school. In our data the school identification code is in the
first column, and the student identification code is in the second column.
These columns are named respectively school and student, and used to
identify the levels of the hierarchy. Level 2 is identified as ‘school’, and
level 1 as ‘student’ in MLn by using the statement IDEN, as illustrated in
the box below.

NAME C1 ‘school’ C2 'student’
IDEN 1 ‘student’
IDEN 2 ‘school’

For model identification we need a response variable and one or more
explanatory variables. The intercept is an explanatory variable and it
needs to be created in MLn before an analysis can be done. The intercept
is a column of ones,* hence the name constant (cons) used for this variable
in model specification. The constant or intercept is created by coding
(CODE) one block of all our 519 observations with a one, as shown in
the box below. This column of ones is named cons in the next command.
The last command makes the constant an explanatory variable. The con-
stant is made random® at the first (SETV 1) and at the second level (SETV 2)
by the two last commands in the box below. The constant will be
random at both levels in all the models used in this chapter. The variance
of the constant at level 1 produces the variance of the familiar first-level
error term, while the variance of the second level is the variance of the
intercept.

CODE 15191 Cl6
NAMES C16 ‘cons’
EXPL ‘cons’

SETV 1 ‘cons’

SETV 2 ‘cons’

The variances of the first level can later be used to calculate the multiple
correlation within schools. The variance of the intercept at the second level
measures the variance of the school-level error terms, and is later used to
calculate the multiple correlation between schools.® After identifying all
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explanatory variables, including one or more random slopes, the model can
be fitted by starting MLn.

The analysis sessions in this chapter are illustrations of different applica-
tions of multilevel modeling. They are organized as follows. In the first
session a null model is fitted, followed by a model that answers the simple
question: ‘Is the number of hours of homework a good explanatory variable
for high math test scores?’. The research question can be reworded as: “What
is the relationship between math achievement and a student characteristic,
such as the number of hours that is dedicated to homework?". In the same
session parent education, another well-known explanatory variable for
school success, is added. Note that the research question does not refer to
schools at all. At face value this is not a multilevel research question, and
thus we do not seem to need a multilevel analysis. Nevertheless there are
good reasons for applying a multilevel analysis in this case.

First of all an intra-class correlation may be present since students are
nested within schools, and sampled from within schools. The second
reason is the expectation that school effects are present. Effects of schools
can be of a general nature and more specific, and both can be fitted in multi-
level models. For differences among schools in intercepts an ANCOVA
model can be used. But for testing whether slopes differ significantly
among schools we need multilevel models. The last conclusion can be
reached by either varying coefficient models (see Chapter 3) and/or multilevel
models. If differences among schools are present, either in intercepts or
slopes, the next question is where these differences come from. Why are
schools different? The latter question can never be answered by ANCOVA
models since an introduction of school characteristics is not possible in
such models. In multilevel models second-level explanatory variables, as
well as cross-level interactions, are used for an explanation of variations
among schools.

In the second session the analyses of the first session are expanded by
adding school-level explanatory variables and cross-level interactions. The
variable ‘HomeWork’ is again the most important student-level explanatory
variable for ‘MathAchievement’.

In the third session the effects of characteristics of the environment on
math achievement are explored. Again the session starts out with no
second-level variables, where socio-economic status of the student is used
to predict math achievement. Later in the session the school-level explana-
tory variables ‘PercentMinorities’ and ‘MeanSES’ are added.

The fourth and last session mainly discusses cross-level interactions.
Interaction effects need large numbers of observations at both levels. This
is a possible reason why our subsample did not show significant interaction
effects. By repeating the same analyses with the much larger NELS-88 sample
(with 1003 schools), it is illustrated that cross-level interactions are present
in the data. Cross-level effects need to be strong in order to show up as
significant in small data sets. The results with the larger data set also show
more stable results, especially for the parameter estimates at the higher level.
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4.2 Session 1

4.2.1 Notation for models

Throughout this chapter we will identify models by the commands used in
the MLn package. The MLn commands clearly show the differences between
one model and the next, without the need to use symbols and equations.
Another advantage is that one or two commands may change a model con-
siderably. Our experience with several multilevel modeling software packages
has shown that MLn, with its multitude of options, allows users the most
control. The downside of that same feature is that researchers need to
know the differences between the many options that are offered. As will be
illustrated in this chapter, to use MLn (or any other software package for
that matter) successfully, one must be clear about what changes to make in
models, and what the consequences of these changes are. To indicate what
changes are made from one model to the next, the necessary MLn commands
are put in boxes.

4.2.2 The null model

This session starts with fitting a null model. A null model contains only a
response variable, and no explanatory variables other than an intercept.
The null model is used here as a baseline for the estimation of ‘explained’
versus ‘unexplained’ variances in comparison to more elaborate models.
The null model also provides an initial estimate for the intra-class correlation
in the response variable ‘MathAchievement’. The variance in a two-level
analysis consists of two parts, an individual-level variance and a group-
level variance, or a level 1 variance and a level 2 variance. Intra-class correla-
tion is calculated as the intercept variance (a level 2 variance) divided by
the total variance (the total variance is the sum of the level 1 and level 2
variances). Another way to express intra-class correlation is as the propor-
tion of the variance that is between groups.

The concept of intra-class correlation is based on a model with a random
intercept only. No unique intra-class correlation can be calculated when a
random slope is present in the model. The value of the between variance in
models with a random slope and a random intercept is a combination of
slope and intercept variance (and covariance). We know from the discussion
of the basic RC model that the variance of the slope (and, as a consequence,
the value of the covariance) is related to the value of the explanatory variable
x. Thus the intra-class correlation between individuals will be different, in
models with random slopes, for individuals' with different x-values. As a
result, the intra-class correlation is no longer uniquely defined. The within
and between variances of a null model serve as a criterion for estimation
of the multiple correlation R%, a concept known from traditional regression
analyses — but again only for random intercept models, not for models
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with random slopes. A difference between a two-level analysis and tradi-
tional regression is that in the latter only one source of variance is present,
and thus only one definition of R%. In two-level analyses two potential
sources of variation may be ‘explained’ by explanatory variables. As a
result we have two’ R%s. The level 1 R? is based on the traditional error
variance at the student level, while that of level 2, the school level, is a new
concept.

Fitting the null model in MLn needs one more statement, the declaration
of cons as an explanatory variable, as shown in the box below. The response
variable and the variances for the intercept cons at level 1 and 2 have already
been defined (see Section 4.1.2).

EXPL ‘cons’

The results of the analysis are

‘MathAchievement’ = 5((1)173)6

The estimate for the intercept (or constant) produces a mean of 50.76, with
an estimated standard error of 1.13. The variance estimates, together with
the intra-class correlation, are given in Table 4.2. Table 4.2 shows that the
within-school variance of math achievement is much larger (81.24) than
the between-school variance (24.85). This is a frequently observed result in
school effectiveness studies. It indicates that individual students differ more
from each other than schools do, or individual variation is larger than
school variation. The intra-class correlation, calculated as the ratio of the
between variance to the total variance (24.85 divided by 106.09), is 0.23.
The deviance reported in the table is equal to minus twice the log-likelihood.
This deviance can be used as measure of model fit or improvement of model
fit in subsequent models. '
The parameter estimates of this null model are used throughout this chap-
ter as a yardstick. For instance, the variances at level 1 and level 2 in the null
model can be used to indicate how much reduction in variance takes place in
one or both parts, when explanatory variables and/or random slopes are
added to models. The deviance serves the same purpose. Differences between
deviances in two (nested) models have a chi-square distribution, and this

Table 4.2 Results of model 0

Parameter Estimate Standard error
Level 2 variance 24.85 8.60
Llevel 1 vuriance 81.24 516
Intra-class correlation 0.23

Deviance 3800.78
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shows, compared to the degrees of freedom lost, if one model is a significant
improvement over another. The difference in deviance is especially useful to
estimate improvement of fit when the between variance is no longer uniquely
defined.® For that reason deviances are considered the most important
feature in the output, and used for an overall evaluation of models. As a
rule of thumb, in order to reach the conclusion that one model is a significant
improvement over another, the difference in deviances between two models
should be at least twice as large as the difference in the number of estimated
parameters.

4.2.3 ‘HomeWork’ and ‘MathAchievement’

In this subsection one variable is added to the null model. The model change
can be effected by a single statement (see box). The new variable is the
number of hours studied at home, ‘HomeWork’, which is added with a
fixed coefficient.’

EXPL ‘homew’

The results for the fixed effects are (with standard errors in parentheses)

‘MathAchievement’ = 46.35 + 2.40 x ‘HomeWork’.
(113)  (0.28)

When these results are compared with the results of the null model we see a
change in the value of the intercept. The intercept value was 50.76 before the
homework variable was introduced. That the total unexplained variance has
also been reduced can be seen when the variance components or random
effects are compared over models. The random effects are shown in Table
4.3. First we compare deviances. The difference between the deviance in
this table and that in Table 4.2 is 70.29 (3800.78 for the null model minus
3730.49 for the present model). Model 1 has only one extra parameter that
needs to be estimated, which is the slope for ‘HomeWork’. One parameter
estimate is equivalent to the loss of one degree of freedom. A difference in
deviance of 70.29, with one degree of freedom, is a significant improvement
of fit.

Table 4.3 Results of model 1

Parameter Estimate Standard error
Level 2 variance 20.23 7.07
Level 1 variance 71.14 4.52
Intra-class correlation 0.22

Deviance 3730.49
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Adding ‘HomeWork’ to the model has reduced the variance at level 1 and
at level 2. Calculating the proportion of this reduction results in two mea-
sures for ‘explained’ variance (for more details see Section 5.3), the individual
R? (denoted R%/) and the schools R? (denoted R%). The between variance was
24.85 and has fallen to 20.23. The difference of 4.62 is a 19% reduction of the
school-level variance. The within variance shows a decrease in variance of
10.10 (81.24 in the null model minus 71.14 in the model in Table 4.3), a
12% reduction. Adding the variable ‘HomeWork’ results in an R% of 0.12,
and an R3 of 0.19.

4.2.4 Random slope for ‘HomeWork’

The next model differs from the previous one in one respect only: the coeffi-
cient for the variable ‘HomeWork’ is allowed to be random. No new variables
are added to the model. The reason for fitting this model is the expectation that
the effect of ‘HomeWork’ is different among schools. Differences among
schools can be the result of differences in class size, tutoring system or math
curriculum. Based on such differences it may be that in some schools students
do not need to rely so much on their homework to get good grades in math as
in other schools. If indeed the effect of ‘HomeWork’ on ‘MathAchievement’ is
less strong in some schools than in others we expect to find a significant
variance of the slope for ‘HomeWork’. One single statement produces this
new model (see box below), where the variance for the slope of ‘HomeWork’
is set at level 2 by the statement SETV 2.

SETV 2 ‘homew’

The results are

‘MathAchievement’ =~ 46.32 + 1.99 x ‘HomeWork’.
(1L72)  (0.91)
Comparing the results of the random slope model with the previous one
shows an increase in standard error for both coefficients, the intercept as
well as the slope coefficient. This effect is explained in Section 5.5.

In this model two more parameters are estimated, which are the variance
for the slope and the covariance between intercept and slope. These esti-
mates, together with the deviance, are reported in Table 4.4. This shows
support for the hypothesis of differences among schools in the relationship
between ‘HomeWork’ and ‘MathAchievement’. We base such a conclusion
on the significant variance of the slope for homework, which is 16.78 with
a standard error of 5.54, giving a z-value of 3.03. Since parameter estimates
in regression models can be correlated, interpretations of effects need to
be based on the overall fit of the model, more than on the testing of a
single parameter in the model. If the fit of the model improves in a
significant way, we feel more secure in accepting an individual significant
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Table 4.4 Results of model 2

level 2
Parameter Estimate Standard error
Variance intercept 59.28 20.00
Variance slope 16.78 5.54
Covariance slope and intercept -26.14 9.65
Level 1
Parameter Estimate Standard error
Variance 53.30 3.46
Deviance 3639.04

parameter. This way the problem of correlated significance tests is avoided.
Since the difference in deviance between model 1 and model 2 is
3730.49 — 3639.04 = 91.45, with 2 dfr, the model fit is much improved by
adding the random slope. The 2 dfr are calculated based on the two extra
parameters estimated in model 2. There seems to be support for the conclu-
sion that a model with a random slope for ‘HomeWork’ is an improvement
over a model with a fixed slope.

Adding a random slope means adding two parameters instead of one extra
parameter to the model. Intercepts and slopes are negatively correlated, as we
see in Table 4.4, where the covariance has a negative sign. Based on the
covariance and variances, the correlation can be calculated. The value of
this correlation is r = —0.83."° High correlations between intercept and
slope(s) can be avoided by group mean centering the explanatory variables
before starting the analysis. How to employ centering is discussed in Section
5.2, together with the resulting changes in the parameter estimates.

In the table three variances instead of one single variance are reported for
level 2. In traditional regression a smaller error variance is expected when
more parameters are added to a model. In this random slope model we
see the opposite. Observe that the intercept variance (level 2) reported in
Table 4.2 is 24.85, but is now considerably larger at 59.28, and has a
much larger standard error. This is a result of multicollinearity, the high
correlation among intercept and slope variances, as indicated by the negative
covariance.

An unexpected reduction of the individual or within variance is also
observed when model 1 is compared to model 2. The reduction is from
71.14 to 53.30 for model 2. This reduction is unexpected, since only a
random part at the second level is added to the model, with no changes at
the first level. Reasons for this are given in Section 5.3, where the changes
are related to the complexity of the relationship between first-level and
second-level variances. Again a way to avoid this is to center the variable
‘HomeWork’ around the school mean, as explained in Section 5.2, thus
removing the between part of this variable, and at the same time the
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correlation with the second-level parameter estimates. But treating the data
in this way results in fitting a conceptually different model, where the variable
‘HomeWork’ has obtained a specific within-schools part and a between-
schools part, which is the mean for ‘HomeWork’. In this section we do not
deal with this discussion, and continue to use the raw scores for ‘HomeWork’
and for all other variables added later to the model. The three variances are
correlated and cannot simply be summed, while the slope variance is also
related to values for x. As a result we no longer have a single value for the
between variance and cannot calculate an R? between schools. The within
variance fluctuates together with the between variance (see Section 5.3),
which makes it useless to calculate a reduction in the within variance. Neither
could an intra-class correlation be calculated. The familiar concepts of R
and intra-class correlation are no longer useful, even in a simple RC model
such as model 2.

The conclusion based on the deviance is that adding a random part to
the coefficient for ‘HomeWork’ produces a model with a better fit. But this
model is at the same time a more complex model, with the usual disadvan-
tages, such as less stability. In general, it is true that more complex models
are also less stable models. In our example this instability shows in the
estimate for ‘HomeWork’. When compared to the previous model we see
the significance drop from a z-score of 2.40/0.28 = 8.6, showing a highly sig-
nificant coefficient, to a coefficient that is barely significant with a z-score of
1.99/0.91 = 2.19.

Users of multilevel models have to be aware that allowing a slope to be
random over contexts may result in changes in the coefficients involved. As
happens in statistical analyses, there is a trade-off. Here the trade-off is
between an improved model fit and a less efficient individual parameter
estimate for ‘HomeWork’.” A choice between the two models cannot be
made based on the better model fit, but has to be made based on theory
and the purpose of the study. If the effects of schools are the subject of
study, then the random slope model is most appropriate. If schools are not
the subject of study, a fixed slope may be a better choice. At the end of
this section, we will show results of such a traditional analysis.

For the time being, we proceed with this random slope model, since we are
interested in school effects. That the coefficient for ‘HomeWork’ is close to
zero is no problem in multilevel analyses, and certainly not a reason for
deleting such an explanatory variable from the model. The variable is still
a powerful explanatory variable of ‘MathAchievement’, but in its random
effect rather than its main effect. The deviation from this zero value, the
slope variance (see Table 4.4) is significant, showing that the effect of ‘Home-
Work’ on ‘MathAchievement’ is largely an effect of schools, not of individual
students.

The next logical step would be to add school characteristics that can
explain this variation in the slope of ‘HomeWork’ among schools, as
shown in Session 2. But first we add another student-level variable to the
model, which is ‘ParentEducation’.
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4.2.5 Adding 'ParentEducation’

In this section the theory is tested that math achievement can be enhanced by
help offered by parents, where parents with more education are assumed to
be most helpful. As a proxy for parental support the explanatory variable
‘ParentEducation’ is added to our analysis model. Preparation for the analy-
sis is simple. First we locate the variable ‘ParentEducation’ in the data
matrix, and assign the variable the status of an explanatory variable. As
shown in the box below, the variable ‘ParentEducation’ is in column 8 of
the data set, and is named pared.

NAME C8 ‘pared’
EXPL ‘pared’

The model fitted next has two student-level explanatory variables, one with a
random slope (homew) and one with a fixed slope (pared). ‘ParentEduca-
tion’ is considered a student-level variable, and not a context variable.'!
The results for the fixed effects estimates of our new model are

‘MathAchievement’ = 40.81 + 1.89 x ‘HomeWork’
(1.76)  (0.81)

+ (Io .85 x ‘ParentEducation’.

The results show the expected effect, the coefficient for parental educational
level being significant (z = 6.38). The estimates of the variance components
for this model, together with the deviance, are shown in Table 4.5. The
deviance reported in the table has a lower value, indicating that this model
exhibits a better fit. This cannot be tested in the usual way, by comparing
differences in deviance with the number of degrees of freedom, and using a
chi-square test, since the models are not nested. As before, no intra-class
correlation and no measure for R3 or R3, can be calculated.

Table 4.5 Results of model 3

level 2
Parameter Estimate Standard error
Variance intercept 45.20 15.69
Variance slope 13.08 4.41
Covariance slope and intercept -20.72 7.70
level 1
Parameter Estimate Standard error
Variance 50.70 3.30

Deviance 3602.35
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For illustrative purposes a model with the same explanatory variables is
analyzed using a traditional regression model, and reported in the next
subsection.

4.2.6 Traditional regression analysis

Traditional regression analyses ignore the hierarchical structure of data. In
our case students are observed within different schools. This means in our
data that the substantial intra-class correlation of r = 0.23 is neglected, as
well as the interaction effect of schools as present in the significant variation
in slopes and intercepts among schools. Ignoring intra-class correlation
results in general in an underestimation of the standard errors of regression
coefficients, suggesting too high precision and resulting in inflated signifi-
cance levels. See Section 5.4 for some theoretical results. We will show that
forcing all schools to fit a single regression where ‘HomeWork’ predicts
‘MathAchievement’ results in a loss of important information, as indicated
by a less well-fitting model.

In MLn a traditional regression model can be fitted by setting the variance
for the constant and the variance for the slope to zero. The statement to clear
the variance (CLRV) for the variables cons and ‘HomeWork’ at level 2
from the previous model is used for that purpose, as is shown in the box
below.

CLRV 2 ‘cons’ 'homew’

That this statement changes the model from an RC model into a traditional
regression model illustrates again the difference between the two models. The
variance components of the regression coefficients of the RC model are
removed (cleared) by a single statement, resulting in the famlllar regression
model with fixed coefficients. The results are

‘MathAchievement’ =~ 37.24 + 2.34 x ‘HomeWork’
0.99)  (0.27)

+ 3.00 x ‘ParentEducation’.
(0.28)

The solutions for the fixed effects are different among models. The value of
the coefficient for ‘HomeWork’ in the traditional model is closest to the
value of that same coefficient in the multilevel model without a random
slope (see Table 4.3); even the value for the standard error is very close to
that value. The magnitude of the coefficient of ‘ParentEducation’ is much
higher in the current model. Two out of three standard errors of the regres-
sion coefficients are, as predicted, smaller than in the RC model, while the
model fit of the traditional model, again as predicted, is lower. The model
fit, as indicated by the deviance, is significantly higher for the current than
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Table 4.6 Results of model 4

Parameter Estimate Standard error
level 1 variance 75.68 4.70
Deviance 3718.29

for the previous RC model (see Table 4.6), the difference being 115.94 with an
extra 2 dfr.

In traditional regression only one source of error is present, the individual
error variance.

A fixed regression analysis can answer questions in relation to students, or,
if we aggregate data to the school level, it can answer questions related to
schools, but always one level at a time. Multilevel analyses answer both ques-
tions at the same time, and are designed to answer questions such as: ‘Is the
relation between math achievement and homework equal or different among
schools, and if so, why?’. As in our examples, we found that adding a random
slope for ‘HomeWork’ to the model resulted in a better fit and a good model
for our purposes, which is to test hypotheses related to school effects. We can
now proceed by adding school-level explanatory variables to the model, to
explore reasons why the coefficient for ‘HomeWork’ is significantly different
among schools.

4.3 Session 2
4.3.1 Introduction

In this session we introduce school-level variables. Two useful school charac-
teristics are the size of a school (which we denote ‘SchoolSize’) and the sector
to which it belongs (which, as already explained, we denote ‘Public’).
Significant variation in intercepts and slopes for ‘HomeWork’ may be
caused by differences among schools. Which characteristics of schools are
responsible for these differences is not known. All we can do in this session
is to explore if some of the available school-level variables in our data are
associated with the observed differences among schools. If variations
among schools disappear, either in intercepts, in slopes, or in both, as a
result of the adding of these variables to the model, we have indications of
why schools differ.

Figure 4.1, based on the well-known path model, illustrates the different
ways school characteristics can influence lower-level relationships in multi-
level analyses. The deviation from the path model illustrates nicely the
idiosyncrasies of multilevel models. The diagram can be used to visualize
the meaning of the different relationships in the data, without the use of
equations. If the reader wishes to make the connection with the equations,
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cons

cons

Figure 4.1 Random coefficient regression model

we have provided the symbols for the coefficients next to the path that con-
nects the variables.

In the diagram we illustrate a multilevel model with a single student-level
explanatory variable (‘HomeWork’), and a single school-level explanatory
variable (‘Public’). The path model has circles and squares, and some
rather unusual paths. The circles represent variables from the student level,
the squares represent variables from the school level. An arrow always
flows from an explanatory to a response variable, but only for the first-
level variables. The paths are interrupted by second-level variables.

School-level characteristics always interact with student-level charac-
teristics, which is indicated by an arrow toward paths instead of towards
variables. This unusual direction of the arrows indicates the difference
between cross-level interactions in multilevel analysis, and direct or indirect
effects as we usually see in path analysis.

In multilevel analyses, when second-level variables are part of the model,
these variables interact with first-level variables, either by having an effect
on the path starting with the intercept, or by having an effect on the path
starting with a first-level explanatory variable. In our example the school-
level variable ‘Public’ has two cross-level interactions, one with the path
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between the constant and ‘MathAchievement’, and one with the path
between ‘HomeWork’ and ‘MathAchievement’.

The gammas in the path model refer to the parameters in the model, and
can be compared to the models described in equations in previous chapters.
Note that the second-level variable has a constant at the second level, that the
two coefficients g9 and vy, replace the one coefficient b jo in the path from the
constant to ‘MathAchievement’, and that the two coefficients v,y and 7,
replace the one coefficient b;;. The dotted lines represent the error terms,
also known from the equations.

Since ‘SchoolSize’ and ‘Public’ are school-level variables, we do not allow
these variables to have a random coefficient.'? The discussion in this chapter
is exclusively about random coefficients for student-level variables, where
these coeflicients vary among schools.

4.3.2 A model with ‘SchoolSize’

In the literature on school effectiveness it has been found that smaller schools
are more effective in promoting student achievement. Based on this hypo-
thesis a model is fitted with ‘SchoolSize’ as an explanatory variable at
school level. We begin a new session in MLn, where we define the response
(RESP) variable ‘MathAchievement’, and two explanatory (EXPL) variables,
‘HomeWork’ and ‘SchoolSize’. The variance is defined at level 1 and level
2 for the intercept (cons), together with a second variance at level 2, which
is the variance for the coefficient of ‘HomeWork’.

RESP ‘math’

EXPL ‘homew’ 'schsize’
SETV 1 ‘cons’

SETV 2 ‘cons’ ‘homew’

The results of this analysis are

‘MathAchievement’ =~ 44.95 + 1.99 x ‘HomeWork’ + 0.43 x ‘SchoolSize’.
(2.62)  (091) (0.62)

The model fitted has two variables, one student-level variable, ‘HomeWork’,
and one school-level variable, ‘SchoolSize’. The results show that ‘Home-
Work’ again has a marginally significant effect. As discussed earlier, the
statistically significant fixed effect of ‘HomeWork’ changed into a borderline
effect after the random effect for ‘HomeWork’ was added to the model, as is
the case here. The new variable ‘SchoolSize’ is not statistically significant
when we compare the coefficient with its standard error. Table 4.7 shows
the variance components of this model, with their respective standard
errors. The deviance of this model is again reported at the bottom of the
table. The conclusion that ‘SchoolSize’ has no effect is supported by the
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Table 4.7 Results of model 2

Level 2
Parameter Estimate Standard error
Variance intercept 62.22 20.90
Variance slope 16.84 5.56
Covariance slope and intercept -27.27 9.94
level 1
Parameter Estimate Standard error
Variance 53.30 3.47
Deviance 3638.61

lack of improved fit for this model compared to the model in Table 4.4. The
present model is similar, except that one more parameter is estimated. This is
the coefficient for the variable ‘SchoolSize’. Table 4.7 shows that the deviance
of our last model is 3638.61, while the model without ‘SchoolSize’ has a
deviance of 3639.04. The difference in deviances is only 0.43, a very tiny
improvement. Hence we conclude that for our data ‘SchoolSize’ has no
effect on ‘MathAchievement’.

4.3.3 Changing 'SchoolSize’ to ‘Public’

In this session ‘SchoolSize’ is deleted from the model and the variable ‘Public’
is added. In the original data we have a variable ‘SchoolSector’, which is a
categorical variable with five categories (see Appendix), one for the public
sector, and four categories for the different private sectors. For our purposes
‘SchoolSector’ is recoded as a dummy variable, where public schools receive
the code 1, while all private schools receive the code 0. An effect found for the
variable ‘SchoolSector’ will be a public school effect, hence the name ‘Public’
for this variable. We explore whether ‘Public’ can ‘explain’ the significant
intercept and the slope variances observed in the previous models. In the
literature it is reported that the public sector has on average lower student
achievement than the private sector has. Based on these findings, a negative
effect for the variable ‘Public’ is expected.

The box below shows a single statement which removes ‘SchoolSize’ from
the model and, at the same time, adds ‘Public’.

EXPL ‘schsize’ ‘public’

The results for the fixed effects are

‘MathAchievement’ = 49.06 + 1.98 x ‘HomeWork’ — 4.08 x ‘Public’.
(2.11)  (0.90) (1.90)
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Table 4.8 Results of model 3

Level 2
Parameter Estimate Standard error
Varionce infercept 56.24 19.10
Variance slope 16.37 . 5.42
Covariance slope and intercept -25.99 9.44
Level 1
Parometer Estimate Standard error
Variance 53.34 3.47
Deviance 3634.84

The variable ‘Public’ has the expected negative sign, and is also statistically
significant with a z-score of 2.15. Later we will show that this effect is not
very reliable, since the model fit is not greatly enhanced by adding this
variable. But given that this effect is a real effect, its negative sign means
that a student in the private sector will be predicted to have, on average, a
higher math achievement. ‘On average’ means here that the prediction
equation for the private sector has a higher intercept. This intercept is calcu-
lated by subtracting the coefficient for ‘Public’ from the intercept value
(49.06 — 4.08 = 44.98). The intercept for the private sector comes out at
4.08 higher than for the public sector. This tells us that on average a student
in the private sector has a math score which is 4.08 higher than a student
doing the same amount of homework in the public sector. This calculation
is of course based on the assumption that the coefficient of 4.08 is a real
value, which is a bold conclusion, given the large standard error. The effect
of ‘Public’ may not even be a real effect. This can be checked by comparing
the fit of models with and without ‘Public’. The deviance reported in Table
4.8, when compared with the deviance in Table 4.4, shows a difference of
3639.04 — 3634.84 = 4.20. This very small improvement of fit tells us to be
cautious in drawing conclusions based on the effect of ‘Public’. On the
other hand, our model is based on a small data set, with only 23 schools.
The power for finding school-level effects when the number of observations
is small is very low, unless the effect is very strong. See also Section 5.4.

4.3.4 Adding a cross-level interaction with ‘Public’

In the literature we find reports of another kind of public/private school effect,
which is that the private sector is found to be more egalitarian than the public
sector — at least in some respects, as Raudenbush and Bryk (1986) found. They
report that the socio-economic status (SES) and minority status of students
have less power for predicting student achievement in the private sector than
in the public sector, hence producing a less egalitarian effect in the latter sector.
Such an effect is called a cross-level interaction in multilevel analysis.
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Table 4.9 Cross-level correlation matrix (values for the full NELS-88
data set in parentheses)

'HomeWork’ x ‘Public’ ‘HomeWork’ x ‘"MeanSES’  ‘HomeWork’ x ‘Rafio’

“Public’ 0.65 (0.52)
'MeanSES’ 0.83 (0.81)

"Ratio’ 0.27 (0.31)
"HomeWork’ 0.30 (0.70) 0.43 (0.21) 0.86 (0.89)

Before proceeding to the analysis, a short discussion of interaction effects
in regression models, and more specifically in multilevel models, is needed.
Adding interactions to regression models in general means adding instability
(see Aiken and West, 1991). Interaction terms, such as an interaction between
sector and SES (as reported in Raudenbush and Bryk, 1986), are correlated
with the original variables, in this example ‘SES’ and ‘Public’. In our next
analysis the original variables, ‘HomeWork’ and ‘Public’, form the inter-
action ‘HomePublic’. As a result of this correlation between variables, also
known as multicollinearity, we introduce a well-known cause of instability
in the model. See Section 5.7 for more discussion of this topic.

In our data ‘HomePublic’ is correlated with ‘HomeWork’ (r = 0.30) and
with ‘Public’ (r = 0.65); see Table 4.9. To show that a high correlation, as
found between ‘Public’ and ‘HomeWork’, is not an idiosyncrasy of this
data set or of these two variables, we show other interactions as well in the
same table. The cross-level interactions in Table 4.9 are between ‘Home-
Work’ as the first-level variable and three second-level variables. The
second-level variables are ‘Public’ as discussed before, the mean SES level
of each school (‘MeanSES’) and the class size, as measured by the
teacher—student ratio (‘Ratio’). All correlations show the same pattern: the
cross-level interaction is highly correlated either with the second-level vari-
able or with the first-level variable, or with both. The correlations in parenth-
eses in the table are the correlations calculated for the large data set, of which
our data are a subset. In every case at least one correlation is high. It is safe
to conclude that interaction terms introduce instability into the parameter
estimates. Centering first-level variables on their respective group means
may lower some of the correlations among the variables involved. The effects
on the interpretation of centered variables are discussed in Section 5.2.

We proceed with our model by testing a hypothesis that involves a cross-
level interaction term. The question is whether the relationship between
‘HomeWork’ and the response variable ‘MathAchievement’ is stronger in
the public sector than in the private sector. If so, we have found another
egalitarian effect of the private sector. A significant negative effect of such
an interaction will be interpreted as a private sector effect where the relation-
ship is lower than in the public sector. To add the cross-level interaction
between ‘HomeWork’ and ‘Public’ to the model in MLn means that we
need to create it by multiplying (MULT) the two variables involved. The
MULT statement in the box below shows that the obtained interaction
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variable is put in column 19, the first available empty column. A NAME
statement for the cross-level variable follows the multiplication statement,
by labeling it ‘homepub’. To add the interaction term to the model we
need an EXPL statement. An interaction term is always fixed in our models,
which means that we do not need to make a SETV statement for this new
explanatory variable. In the box below the three statements needed for
adding a cross-level interaction in MLn are reported.

MULT ‘homew’ ‘public’ C19
NAME C19 ‘homepub’
EXPL ‘homepub’

The result of the analysis is

‘MathAchievement’ ~ %858)5 + (21 25311 x ‘HomeWork’

— 3.29 x ‘Public’ - 0.50 x ‘HomePublic’.
(3.55) (1.88)

The effect of the high correlation among the variables and the interaction is
observed in the larger standard error for the coefficient of the variable
‘Public’, which has nearly doubled. At the same time the effect size for
‘Public’ is smaller, resulting in 4 non-significant effect for ‘Public’. A similar
effect is found for the variable ‘HomeWork’, where the effect size has
increased (from 1.98 to 2.31) but the standard error has almost doubled,
with the result that the effect is no longer significant. Since the effect of the
cross-level interaction ‘HomePublic’ is neither significant we would conclude,
based on this model alone, that none of the coefficients in the model is signif-
icant. A check of model fit compared to the null model can reveal whether
this is true. The deviance as well as the variance components of the present
model are reported in Table 4.10. The deviance of this model compared to
the null model shows that the model fit has improved by 166.01 (compare

Table 4.10 Results of model 4

level 2
Parameter Estimate Standard error
Variance intercept 56.21 19.09
Variance slope 16.30 5.40
Covariance slope and intercept -25.92 9.42
level 1
Parameter Estimate Standard error
Variance 53.34 3.47

Deviance 3634.77
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a deviance of 3800.78 of the null model in Table 4.2 with the deviance in this
model of 3634.77). Such a large difference in deviances leads to the opposite
conclusion to that based on the individual coefficients for the fixed effects as
reported earlier. If we had no prior knowledge of the relations in the data,
and did not check with the null model, or the variance components of the
present model, we would never conclude that the variables do ‘explain’ a
significant part of the variation in the response variable. This conclusion is
based on the deviances and variance components, not on the fixed coeffi-
cients. It is still unclear if the introduction of the cross-level interaction
variable has introduced instability, hiding significant effects of ‘Public’,
either in the main effect or in the cross-level interaction, or if such effects
are not present in the data.

To find significant fixed effects it is best to remove a correlated variable
from the model — either the cross-level interaction (which brings us back
to model 3) or one of the main effects. The best choice would be based
on theory or knowledge of the data. Since we lack such knowledge we
decide by comparing model fit. For that purpose we observe the deviances
between models with and without some of the variables. In doing so we
discover that a model without ‘Public’ and ‘HomePublic’, reported in
Table 4.4, has a deviance of 3639.04. The difference in deviances between
this and our present model of only 4.27 leads us to decide that these
models do not differ much from each other in fit. For this data set we
give up the hope that one of our hypotheses regarding ‘Public’ effects can
be supported.

Multicollinearity is a problem for the interpretation of the coefficients,
especially when dealing with cross-level interactions. Our analyses showed
that coefficients for correlated variables change over models, but that their
standard errors change even more. The main effect for ‘Public’ changed
from a significant effect of 4.08 (and a standard error of 1.90) to a non-
significant effect of 3.29 (and a standard error of 3.55) in a model that
contains a cross-level interaction term that is related to ‘Public’.

The analyses in this session have not supported the hypothesis that the
private sector has a significant effect on student achievement. No such
effect seems to be present, either as main effect (an effect on the intercept)
or as interaction effect (an effect on the slope). The cause is that either no
relationship is present in the data, or the number of observations is too
small while effects are weak. Especially in situations where contexts are
few or the total number of observations is small, solutions tend to
change from model to model as a result of multicollinearity. Stability of
solutions can be obtained by using larger data sets with more observations
at the individual as well as at the group level. Next we show results with
the full NELS-88 data set, containing 21580 students instead of 519,
and 1003 schools instead of 23. We use the same model, where again
‘HomeWork’, ‘Public’ and ‘HomePublic’ predict ‘MathAchievement’. The
result of this analysis shows highly significant effects for all explanatory
variables in the model, contradicting the resulits obtained earlier.
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4.3.5 Analyses with NELS-88

The analyses with the NELS-88 data are based on the last model, model 4.
In model 4 the correlations are high between the main effects ‘Public’,
‘HomeWork’ and the cross-level interaction ‘HomePublic’.

If we repeat model 4, fitting it to a larger data set, the effects are more pro-
nounced. The smaller data set is a subset (although not a random one) of the
NELS-88 data. The larger data set is used to show that multicollinearity is
less of a problem here than in our smaller data set. The correlations between
the variables are again high, as shown in Table 4.9, where it appears that the
cross-level interaction is highly correlated with both variables ‘Public’ and
‘HomeWork’ (0.52 and 0.70 respectively). The results are

‘MathAchievement’ =~ 52.72 4+ 0.92 x ‘HomeWork’

(0.38)  (0.10)
— 6.05 x ‘Public’ — 0.68 x ‘HomePublic’.
(0.43) (0.12)

Conclusions based on these results are opposite to those based on the same
model fitted on our smaller data set. The previous results (in model 4) showed
that none of the explanatory variables had a significant effect — neither
‘HomeWork’, nor ‘Public’ nor the cross-level interaction ‘HomePublic’.
The same model fitted to the larger data set shows quite different results,
with all coefficients having large effects and small standard errors. Conclu-
sions based on these results are that ‘HomeWork’ is a significant explanatory
variable for ‘MathAchievement’. Being in the public sector has a large and
significant negative effect on ‘MathAchievement’, and the cross-level inter-
action shows a significant negative effect. The negative effect indicates that
being in the private sector has a strengthening effect on the relationship
between ‘HomeWork’ and ‘MathAchievement’.

Based on the previous model, we concluded that there was no support for
our hypothesis about private sector effects. The same analysis repeated here
shows that the interaction and the main effect of ‘Public’ are both statistically
significant and negative. These results support both our hypotheses, that
there is a private school effect in general and that the private sector is
more egalitarian in relation to ‘HomeWork’. Recall that a positive effect
for the private sector (coded as 0) is indicated by a negative sign,

The random effects for this model are shown in Table 4.11. A warning
against causal statements regarding the merits of the private versus the
public sector is in order here. In general, we know that analysis based on
observational data (as opposed to experimental data) is not a strong founda-
tion for making causal statements. The number of intervening variables that
could explain the different results of the private versus the public sector is
large. In observational data most of the conclusions depend on which
variables are present in the model, or which variables the researcher controls
before making statements about sector effects. What is interesting in this
discussion is that even manipulation of the data, such as centering, can
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Table 4.11 Results of model 4 for all of NELS-88

Llevel 2
Parameter Estimate Standard error
Variance intercept 18.26 1.28
Variance slope 0.44 0.10
Covariance slope and intercept -0.18 0.28
level
Parameter Estimate Standard error
Variance 71.72 0.72

lead to different conclusions. We will return to this discussion in Section 5.2,
where group mean centering of explanatory variables is discussed. The
example used in that section is based on the same data and again includes
the testing of sector effects. It shows that centering significantly affects our
conclusions regarding the sector effect, from negative for the public sector
to positive for the public sector. This is again a sign that regression
models, random or fixed, need to be interpreted with caution when multi-
collinearity is present among variables in the model.

4.3.6 Deleting 'HomePublic’ and adding 'White’ using the
small data set again

The analysis of our small data set did not show promising results for the two
school-level variables ‘SchoolSize’ and ‘Public’. Both school characteristics
failed to ‘explain’ the variances of intercept and slope of ‘HomeWork’ . In
the next analyses we redirect our attention to differences in student character-
istics. Later we may build a model that includes school characteristics again.
The next model tests whether being white (coded as 1) or being non-white
(coded as 0) has an influence on math achievement (see the Appendix for
the original categories of the variable ‘White’). White students are in the
majority (75%) in our data.

To go from our previous model to the next model the cross-level inter-
action ‘HomePublic’ is deleted and the student-level variable ‘White’ is
added, as indicated in the box below.

EXPL "homepub’ ‘white’

The school-level variable ‘Public’ and the student-level variable ‘HomeWork’
are kept in the model. The results of this analysis are

‘MathAchievement’ =~ 46.61 + 1.91 x ‘HomeWork’ + 3.36
(212)  (0.88) (0.96)

x ‘White’ — 3.91 x ‘Public’.
(1.72)
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Figure 4.2 Effect of homework by ethnicity and school type

The fixed effects show that being white improves the predicted ‘Math-
Achievement’ by 3.36 points if ‘HomeWork’ and ‘Public’ are taken into
account. The coefficients of the variables ‘White’ and ‘Public’ have opposite
signs but are close in magnitude. Based on these two coefficients we could
conclude that the predicted math score is lowest for a non-white student in
the public sector and highest for a white student in the private sector,
given that they both do the same amount of homework. This can be empha-
sized by plotting four separate lines, as in Figure 4.2. In the figure for each
sector two lines are plotted, one for non-whites and one for whites. More
so than the magnitude of the coefficients, the figure makes a strong case
for the private sector in two ways. It shows an overall private sector effect,
since all students score higher in this sector, and it shows an interaction
effect, where the non-white students in the private sector do better than
both groups in the public sector. But is the conclusion based on this figure
reliable? Of course the comparison between the two sectors is not exact,
since the coefficient for ‘White’ has a much smaller standard error, showing
that it is a more precisely determined coefficient, than the coefficient for
‘Public’. But of greater importance is the possibility of our making a mistake
when interpreting the four lines the way we just did.

There are two ways to get an impression of the strength of our findings. One
way is to look at the individual coefficients, and the other way is to look at the
total model fit. The first information is obtained from the magnitude of the
coefficients of ‘White’ and ‘Public’ compared to their respective standard
errors. It shows a barely significant effect for ‘Public’ with a z-score of 2.27,
and a statistically significant effect for ‘White’ with a z-score of 3.5. Although
statistically significant, the real effect can be close to zero for both coefficients,
since the large standard errors show that both are unreliable estimates. The
lines in the figure suggest a ‘false’ sense of certainty. The next way of gauging
the strength of the effect of ‘White’ and ‘Public’ is to compare the deviances of
this model and one that has only ‘HomeWork’ as an explanatory variable,
without the variables ‘Public’ and ‘White’. Such a model can be found in the
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Table 4.12 Results of model 5

Llevel 2
Parameter Estimate Standard error
Variance intercept 52.28 17.88
Variance slope homework 15.83 5.25
Covariance slope and intercept -25.34 9.08
Level 1
Parameter Estimate Standard error
Variance 52.64 3.42
Deviance 3623.25

previous section (see Table 4.4). The deviance and variance components of the
current model are reported in Table 4.12. The difference in deviance between
this model and the model reported in Table 4.4 is 15.79. This improvement is
relatively small, given the fact that two more variables are added to the model.
It is small enough to warn against overstatement of the effect of the private
sector, as is done in the figure.

4.3.7 Adding a random part for ‘White’

In the next model a random part is added for the student-level variable
‘White’. A single statement is needed for such a change, as shown in the
box below. The box shows that the variance for ‘White’ is set at level 2.

SETV 2 ‘white’

The results of such a minute change are more extensive than expected. This is
true for the fixed effects as well as for the random effects. The fixed effects are

‘MathAchievement’ ~ 48.18 + 1.95 x ‘HomeWork’
(226)  (0.38)

+ 2.67 x ‘White’ — 4.94 x ‘Public’.
(1.50) (1.58)

This solution shows that the fixed effects for ‘HomeWork’ and ‘Public’ are
close to the estimates in the previous model. But the coefficient of the variable
‘White’ has changed considerably, and is no longer statistically significant
with a z-score of 1.78. Freeing parameters to be random can introduce
instability to a model, which is indicated here by the larger standard error
for the fixed part of the coefficient for ‘White’, which changes from 0.96 in
the previous model to 1.50 in the present model.

The same change in significance level of the fixed effect was observed in an
earlier section, when the slope for ‘HomeWork’ changed from fixed to
random (compare Tables 4.3 and 4.4).
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Table 4.13 Results of model 6

level 2
Parameter Estimate Standard error
Variance intercept 64.41 25.86
Variance slope ‘HomeWork’ 15.68 5.20
Variance slope 'White’ 24,22 14.13
Covariance 'HomeWork’ and intercept -26.97 10.41
Covariance "White' and intercept -20.27 15.40
Covariance 'HomeWork’ and ‘White’ 2.75 6.31

Level 1
Parameter Estimate Standard error
Variance 51.15 3.37
Deviance 3618.85

The price to pay for a random slope seems to be a less stable fixed part of
the parameter estimate. The question what to do, whether to make ‘White’
random or not, is a valid one in this situation. The best way to decide is
based on theory. For instance, we may reason that math achievement is
not an individual student effect (being white or non-white), but a school
characteristic. In the light of that theory our present model fits reality
better than the previous model did. In any case, it is clear that the two last
models, seemingly the same, show different results in the fixed effects. That
the changes in the random part are also large is clear from the variance
components in Table 4.13.

Addition of a single random slope has added three more variances to the
model, one variance for the slope of ‘HomeWork’, and two covariances
between the latter variance and the variance of the constant and the variance
of ‘HomeWork’. The variance for the coefficient of ‘White’ is not significant
with its value of 24.22 and a standard error of 14.13, resulting in a z-score of
1.71. It seems that there is no support for the hypothesis of school character-
istics causing the differences in white versus non-white students in math
achievement.

But again we have to be careful with this interpretation. Multicollinearity
again comes into play. When the variance components in Table 4.13 are
compared to the ones in Table 4.12, some unexpected changes are observed.
One of these is the decrease in the within-variance component, from 52.64 to
51.15, as a result of the addition of a second-level variance component. This
is unexpected, since the error terms at different levels are assumed to be
uncorrelated (for more details on variances and their inter-relationships,
see Section 5.3). Larger changes are observed in the intercept variance,
which increased from 52.28 to 64.41, while its standard error increased as
well. This change can be explained by the correlations among the variances,
as indicated by the covariances. Altogether it tells us that estimates can no
longer be interpreted at face value.
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A more technical approach to deciding if the random slope is a worthwhile
addition to the model is to look at the goodness of fit. The deviance of the
present model (see Table 4.13) is 3618.85, an improvement of 4.40 with
three degrees of freedom lost. Adding a random slope has not had the
expected result of an improvement of fit.

In the first session in this chapter we found that a model with a random
slope for ‘HomeWork’ improved the fit of the model considerably. The
same cannot be said for the random slope of ‘White’. If we have a theory
to guide us, a decision could be made to delete either the random slope for
‘HomeWork’ or the random slope for ‘White’. Since we have no such
theory we base our decisions on the goodness of fit, and set the variance
for the coefficient of ‘White’ to zero again.

Note, however, that we do not claim that the decision to make the slope for
‘White’ fixed again is the correct one. If other variables entered the equation,
or if some are deleted, the slope for ‘White’ could be found to be significantly
random.

4.3.8 Making the coefficient of ‘White’ fixed and
adding ‘MeanSES’

In the next multilevel analysis an aggregated school-level variable ‘MeanSES’
is created. The student-level variable ‘SES’ is aggregated to school level by
calculating its mean for each school. In MLn the statement MLAV creates
this mean, as is shown in the box below. This aggregated variable is put in
the first available column in our data set, which is C20, under the name
‘meanses’.

MLAV ’school’ ‘ses’ C20
NAME C20 ‘meanses’

The effect of ‘MeanSES’ is first explored. If ‘MeanSES’ has a signifi-
cant influence it should lower the significant between-school variance in
intercepts. Later the same variable is used to ‘explain’ the other significant
variation in the model, which is the variance of the coefficient for
‘HomeWork’. In the box below the MLn statements are reported that
clear the variance at level 2 for the variable ‘White’ and add ‘MeanSES’
to the model.

CLRV 2 'white’
EXPL ‘meanses’

Before the results of the analyses are reported we need to point out a
source of multicollinearity in the data. There is a high correlation between
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Table 4.14 Results of model 7

Level 2
Parameter Estimate Standard error
Variance intercept 50.11 17.20
Variance slope ‘HomeWork’ 15.43 5.10
Covariance slope and intercept -25.50 8.92
Llevel 1
Parameter Estimate Standard error
Variance 52.72 3.43
Deviance 3616.83

the two school characteristics ‘Public’ and the average SES level of a school.
In our small data set this correlation is r = —0.78, while for the full NELS-88
* data set the correlation is r = —0.54 (see Table 4.1). The negative sign of this
correlation indicates that students in public schools have, on average, lower
SES than students in private schools. This correlation affects the estimated
values for these coefficients, as the results of the analysis show. The value
of the coefficient for ‘Public’ falls close to zero, and is no longer significant.
The coefficient for ‘MeanSES’ is, however, significant with a z-score of 2.76,
as will be seen from our new model:

‘MathAchievement’ ~ 44.58 + 1.93 x ‘HomeWork’ + 3.14 x ‘White’
(2.14)  (0.87) (0.95)

+ 0.17 x ‘Public’ + 5.03 x ‘MeanSES’.
(2.12) (1.82)

The important question is whether the difference is due to ‘Public’ or
‘MeanSES’. Again this should be decided based on some theory. Such a
theory, for instance, discusses the influence of ‘SES’ on math achievement.
We can also proceed with observing deviances. Based on goodness of fit,
we can decide what ‘explains’ more, the variable ‘Public’ or the variable
‘MeanSES’. The deviance of the current model is reported in Table 4.14,
together with the variance components. The model shows a slight improve-
ment over model 5, the model without ‘MeanSES’, with a difference in
deviances of 3623.25 — 3616.83 = 6.42.

4.3.9 Deleting the school characteristic ‘Public’

Based on the knowledge that ‘SES’ has an influence on students’ achieve-
ment, let us keep ‘MeanSES’ and delete ‘Public’. The deviance of a model
with only ‘MeanSES’ as a school-level characteristic can be compared with
that of a model with only ‘Public’ as a school characteristic. A difference
in deviance will give us a measure of goodness of fit of one model compared
to the other.
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To set up this new model one command is needed, which is the toggle com-
mand EXPL. This deletes ‘Public’ from the model, as shown in the box below.

EXPL ‘public’

The results for the fixed effects are
‘MathAchievement’ =~ 44.68 + 1.93 x ‘HomeWork’

(1.74)  (0.87)
+ 3.15 x ‘White’ 4+ 4.93 x ‘MeanSES’.
(0.95) (1.28)

It will be evident that the standard error for the coefficient of ‘MeanSES’ is
now lower than in the previous model. This is the direct result of removing
the correlated variable ‘Public’. The prediction here is that being white
in the school with the highest ‘SES’ will result in the best math results,
given the same number of hours of homework.

~ The random effects and the deviance of this model are given in Table 4.15.
The deviance shows that the deletion of the variable ‘Public’ does not worsen
the model fit. The deviance reported in Table 4.15 is 3616.83, equal to that in
the previous model (see Table 4.14), indicating that deleting the variable
‘Public’ does not change the fit of the model. Comparing the deviances of
models 5 (see Table 4.12) and 8 (see Table 4.15) shows that the model with
the school-level variable ‘MeanSES’ fits better than the model with
‘Public’; compare the deviances of the two models, respectively 3623.25
and 3616.83. Based on the better fit of a model with ‘MeanSES’, we decide
to continue our exploration of the data with this model. Again we want to
stress that this decision, based on goodness of fit, is not an optimal decision.
The best decision is made on theoretical grounds. In this case we also happen
to believe on theoretical grounds that ‘MeanSES’ is a better predictor of
math achievement than ‘Public’. We proceed with a model that contains
‘MeanSES’ and add a cross-level interaction with that variable and the
student variable ‘HomeWork’. A cross-level interaction means here that

Table 4.15 Results of mode! 8

level 2
Parameter Estimate Standard error
Variance intercept - 50.01 17.20
Variance slope ‘HomeWork' 15.42 5.10
Covariance slope and intercept -25.49 8.92
Level 1
Parameter Estimate Standard error
Variance ] 52.72 3.43

Deviance 3616.83
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‘MeanSES’ is used to ‘explain’ the significant variance in the slope of
‘HomeWork’.

4.3.10 Adding an interaction between ‘HomeWork’ and
‘MeanSES’

In previous analyses we concluded that the slope for ‘HomeWork’ is signifi-
cantly random, but were unable to ‘explain’ th'. variation among schools.
Neither ‘SchoolSize’ nor ‘Public’ showed a significant interaction with
‘HomeWork’. In this session the aggreg.:ed school-level variable
‘MeanSES’ is used with the same purpose: to ‘explain’ the variation in
schools in the slope for ‘HomeWork’. First we need to create a cross-level
interaction. This is done in MLn, as before, by using the calculation state-
ment CALC, as shown in the box below. (In Section 4.3.4 the interaction
term was constructed by using the multiplication statement MULT. Both
ways will produce the desired effect.) The new variable is named ‘HomeSES’
and added to the model with the EXPL statement.

CALC C21= "homework’ * 'meanses’
NAME C21 'homeses’
EXPL ‘homeses’

The results for the fixed effects of this model are

‘MathAchievement’ &~ 44.58 + 1.99 x ‘HomeWork’ + 3.15 x ‘White’
(1.76)  (0.88) (0.95)

+ 3.99 x ‘MeanSES’ + 0.57 x ‘HomeSES’.
(2.88) (1.56)

These results are disappointing. The cross-level effect is non-significant and
the model fit has not improved. In fact the model is at face value a worse
model, since the standard error of the variable ‘MeanSES’ has changed
from 1.28 to 2.88, while the magnitude of the coefficient has dropped. The
main effect for ‘MeanSES’, which was previously a significant effect with a
z-score of 3.88, has become a non-significant effect with a z-score of 1.40.
If this model were our only analysis, we would conclude that ‘MeanSES’
has no effect, neither as a main effect or as a cross-level effect. This would
be an incorrect conclusion given what we know from the previous analysis.
The same conclusion is reached here as in model 4. The high correlation
between the main effect ‘MeanSES’ and the interaction effect ‘HomeSES’
(r = 0.83; see Table 4.9) has made the model unstable.

In Table 4.16 the deviance and variances are reported. By comparing the
deviance with the deviance reported in Table 4.15, it appears that adding
the cross-level interaction has not improved the model fit. The difference in -
deviance between the two models is 0.13. The price paid for the addition
of the interaction term is an increased instability of the individual coefficient
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Table 4.16 Results of model 9

level 2
Parameter Estimate Standard error
Variance intercept 49.90 17.13
Variance slope homework 15.28 5.06
Covariance slope and intercept -25.32 8.86
Level 1
Parameter Estimate Standard error
Variance 52.73 3.43
Deviance 3616.70

for ‘MeanSES’, as indicated by the larger standard error. This shows again
that adding correlated variables to a model, in this example the addition of
cross-level interactions, increases instability in parameter estimates. Multi-
collinearity affects models fitted to small data sets more than it affects
large data sets, as we have already shown.

4.3.11 Adding another student-level variable

In the literature on school effectiveness SES plays an important role. It is well
documented that higher-SES students score on average higher on achieve-
ment tests than low-SES students. The same is observed for schools, where
high-SES schools have, on average, higher-scoring students than low-SES
schools. In the previous analyses we fitted models with ‘MeanSES’. In this
analysis we add the individual ‘SES’ variable as a student-level explanatory
variable to the model.

Our new model has three student-level explanatory variables, ‘Home-
Work’, ‘White’ and ‘SES’, with one school-level explanatory variable,
‘Public’, and no cross-level interactions. To fit this new model in MLn, the
variable ‘SES’ is added and the interaction term ‘HomeSES’ deleted by
means of a single EXPL statement, as shown in the box below.

EXPL ‘homeses’ 'ses’

The results for the fixed effects are

‘MathAchievement’ =~ 45.65 + 1.83 x ‘HomeWork’ + 2.22 x ‘White’
(1.71)  (0.83) (0.96)

+2.21 x ‘SES’ 4+ 2.97 x ‘MeanSES’.
(0.53) (137)
All variables have z-scores of around 2.00, except for the student variable

‘SES’, which has a z-score of 4.17. As expected, adding the student-level
variable ‘SES’ to the model lowers the estimate for the school-level variable
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Table 4.17 Results of model 10

level 2
Parameter Estimate Standard error
Variance intercept 46.60 16.10
Variance slope ‘HomeWork' 13.78 4.60
Covariance slope and intercept —23.02 8.16

level 1
Parameter Estimate Standard error
Variance 51.12 3.32
Deviance 3600.08

‘MeanSES’ (r = 0.70; sce Table 4.1). Comparing parameter estimates shows
a change in the magnitude of the coefficient for ‘MeanSES’ from 4.93 in
model 8 to 2.97 in the model above. The standard error changed from 1.28
in model 8 to 1.37 in the model above.

The deviance is reported in Table 4.17. As before, the deviance is used to
check if adding the variable ‘SES’ improves the overall model fit. Comparing
the deviances of this model and that in Table 4.15 shows a difference of 16.75
with one degree of freedom lost. The same table shows that the within as well
as the between variances are slightly lower as a result of the addition of the
variable ‘SES’.

Models fitted to larger data sets suffer less from unstable results when
multicollinearity is present among the explanatory variables in the model.
Another advantage of large data sets is that they are more powerful in detect-
ing cross-level interaction effects. We illustrate this again by repeating the last
model with the full NELS-88 data set.

4.3.12 Analyses with NELS-88

The model repeated with NELS-88 is the previous one, model 10. This model
has three explanatory variables — ‘HomeWork’, ‘SES’ and ‘MeanSES’ — that
are highly correlated (for the correlations, see Table 4.1). The variables ‘SES’
and ‘MeanSES’ in particular have a high correlation, r = 0.65.

The results of model 10 with the large data set are

‘MathAchievement’ =~ 47.61 + 1.22 x ‘HomeWork’ + 1.78 x ‘White’ +3.73
(0.17)  (0.05) (0.15) (0.09)

x ‘SES’ + ﬁ)(z)g x ‘MeanSES’.

The results for the fixed effects are very different from the effects of the
previous model. There are several reasons. First, our previous analysis was
based on a small data set, which is not a random sample from the large
NELS-88 data, but selected for a specific purpose. For that reason the
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Table 4.18 Results of mode! 10 for all of NELS—88

level 2
Parameter Estimate Standard error
Variance intercept 7.39 0.74
Variance slope '"HomeWork’ 0.35 0.08
Covariance slope and intercept -0.79 0.22
level |
Parameter Estimate Standard error
Variance 66.12 0.66

magnitude may have changed. Secondly, the standard errors are much
smaller, which is a direct result of the larger number of observations at
both levels in the NELS-88 data. The very small standard errors have chan-
ged the significance level for all coefficients. The z-score for ‘HomeWork’ is
24 .4, whereas it was 2.20 in the model fitted to the smaller data set. The same
is observed for the coefficients of ‘White’ with a z-score of 11.87 (previously
2.31), for ‘SES’ with a z-score of 41.4 (previously 4.17), and for the coefficient
of the school characteristic ‘MeanSES’, with a z-score of 19.05 (previously
2.17). Thus the barely significant coefficients for the reduced data set
become very significant when the larger data set is used.
The random effects are reported in Table 4.18.

4.4 Session 3
4.4.1 'SES’ as a student-level explanatory variable

In this session hypotheses are tested relating math achievement to the envir-
onment of the student. Environment is defined at two levels, the individual
home environment, and the school environment. Individual environment
is measured by the socio-economic status (SES) of the parents, which is a
composite of their educational level and income. As proxies for the school
environment, percent of minorities in a school and the mean SES are used.

We begin a new session in MLn, defining the response (RESP) variable
‘MathAchievement’, the explanatory (EXPL) variables ‘cons’ (for the inter-
cept or constant) and ‘SES’, plus the variance at level 1 and level 2 for the
intercept.

RESP ‘math’
EXPL ‘cons’ ‘ses’
SETV 1 ‘cons’
SETV 2 ‘cons’
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Table 4.19 Results of model 1

Parameter Estimate Standard error
level 2 variance 11.80 4.61
Level 1 variance 75.20 4.77
Intra-class correlation 0.22

Deviance 3748.36

The statements in the box indicate that we start with the single explanatory
variable ‘SES’ at the student level. The random coefficient for the intercept is
the only variation at the student and at the school level. The results of fitting
this model are
‘MathAchievement’ ~ 51.20 + 4.35 x ‘SES’.
(0.83)  (0.56)

The results show that the fixed coefficient for ‘SES’ has a highly significant
effect, with a z-score of 7.77. This individual effect of ‘SES’ can only be
taken seriously if the total model fit is improved. Model fit is again measured
by a comparison of the deviance of this model with the deviance of this model
without the explanatory variable ‘SES’, which is the null model fitted in
Session 1.

The deviance, together with the random effects of this model, is reported
in Table 4.19. Comparing the deviance of this model with the null model
(with a deviance of 3800.78; see Table 4.2), shows a difference of 52.42.
The difference is large enough to support the earlier finding that the student’s
home environment has an effect on math achievement.

The variance components have also changed, as compared to the null
model. The between variance of the intercept has fallen from 24.85 in the
null model to 11.80, a reductlon of 53%. By our definition of ‘explained’
variance we can say that R} is 0.53. The within variance has also fallen,
from 81.24 in the null model to 75.20 in our new model, a reduction of
7%. It could be said that R%, is 0.07. Based on this analysis, we find that
the effect of “SES’ is largely a between-schools effect. The larger between-
schools component of the variable ‘SES’ raises the expectation that the
coefficient of ‘SES’ may be significantly random among schools.

For a further discussion of the within and between R? in multilevel models,
as well as the limited usefulness of such concepts, we refer to Section 5.3.

4.4.2 Adding a random slope

In the next analysis we add a random slope to the model, based on the argu-
ment that a different relationship between ‘SES’ and ‘MathAchievement’
may exist among schools, for instance as a result of different teaching
styles. An egalitarian teaching style, such as mastery learning, sets as a
goal that all students reach the same results, irrespective of their background.
Other teaching styles are more meritocratic, where pre-existing differences in
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students are enhanced, perhaps by ability grouping. Differences in teaching
styles may lead to different relations between ‘SES’ and ‘MathAchievement’.

To add a random slope for ‘SES’ to our previous model we need a single
MLn command, which sets the variance of the slope for ‘SES’ random at
level 2 as is shown in the box below.

SETV 2 ‘ses’

The results for the fixed effects are very similar to the previous model:

‘MathAchievement’ = 51.20 + 4.35 x ‘SES’.
©.83)  (0.56)

From previous analyses we know that adding a random part to a coefficient
can change the magnitude of the fixed effect, and may change the standard
error of that coefficient as well. This effect of the addition of a random
slope was observed in two previous analyses, one in Session 1, where the
explanatory variable was ‘HomeWork’, and one in Session 2, where the
affected variable was ‘White’. In both cases the addition of a random part
to the model changed a highly significant effect into an effect close to zero.
But in this analysis nothing changed.

A look at Table 4.20, which contains the variance components and
deviance, shows the reason why the fixed effect for ‘SES’ is not affected by
adding a random part. Remember that adding a random slope adds two
more parameters estimates to the model, one for the variance of the slope
and one for the covariance between this slope and the random intercept.
The most obvious feature in the table in the variance components at level
2 is the zero variance for the slope of ‘SES’, as well as for the covariance.
Everything in this table is equal to the previous model, where no random
slope was present, the variance of the intercept is the same, as are the level
1 variance and the deviance. It is clear that this model is equal to the previous
model, since no random slope for ‘SES’ is estimated. Setting variances that
do not converge to zero is the result of the way MLn is programmed. If

Table 4.20 Results of model 2

Llevel 2
Parameter Estimate Stondard error
Variance intercept 11.80 4.61
Variance slope 0 *
Covariance slope ond intercept 0 *

Level 1
Parameter Estimate Standard error
Variance 75.20 4.77

Deviance 3748.36




ANALYSES 93

variances become close to zero the iteration process is slowed down. The
solution in MLn is to set to zero variances that are close to zero, in order
to speed up the process. Other software may take different decisions in
such cases, and produce non-significant variances after an endless number
of iterations. An unusual number of iterations is in all cases a sign that a
model does not fit the data very well.

The hypothesis that some schools are different from others in their rela-
tionship between ‘SES’ and ‘MathAchievement’ is not supported by the data.

4.4.3 Adding ‘PercentMinorities’

Our model is expanded by adding a school characteristic, which is
‘PercentMinorities’. The slope for ‘SES’ is changed from random to fixed,
by a statement that clears this variance at level 2 (CLRV). The two MLn com-
mands necessary for fitting this new model are in the box below.

CLRV 2 'ses’
EXPL ‘minority”

The results of the analysis are

‘MathAchievement’ ~ 53.12 + 4.34 x ‘SES’ — 0.80 x ‘PercentMinorities’.

(1L.13)  (0.56) (0.35)
‘SES’ has a coefficient that is very similar to the estimates in previous models,
with much the same magnitude and standard error. It is very clearly statisti-
cally significant, with a z-score of 7.75. The coefficient of ‘PercentMinorities’,
with a z-score of 2.29, is significant. Comparing deviances among models
also reveals minor changes in model fit as a result of the addition of
‘PercentMinorities’. The deviance and the random components of our
analysis are reported in Table 4.21. The effect of ‘PercentMinorities’ is
present in the variance component of the second level. Variances can be
affected at one or both levels by addition of variables to the model. For
instance, both variances may become smaller when a first-level variable is

Table 4.21 Results of model 3

Level 2
Parameter Estimate Standard error
Variance intercept 9.43 3.90
Level 1
Parameter Estimate Standard error
Variance 75.02 4.76

Deviance 3743.39
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added to the model. The expectation is that a student-level variable will have
a large within component, and as a result reduces the within variance the
most.

In the analyses presented so far the student-level variables ‘SES’ (used in
this session), and ‘HomeWork’ (used in the first session) both have larger
between component as indicated by the larger reduction of the between
variance. Addition of a school-level variable affects the between variance
only, since it has by definition only a between-schools effect, and a zero
within effect. The expectation is that the between variance (of the intercept)
is smaller in our current model as a result of adding ‘PercentMinorities’ as
compared to a model without ‘PercentMinorities’. As predicted, the intercept
variance of 11.80 in Table 4.19 is reduced to 9.43, a reduction of 2.37, or an
increase of 9.5% in the ‘explained variance’ of the between part. Forcing
student-level variables to affect the within variance only, can be done by
way of school mean centering. That centering explanatory variables in this
way has consequences for the interpretation of analyses results is discussed
in Section 5.2. The trade-off here is that centering has technical advantages
(see also Section 5.3), by splitting within and between variances into two
distinct parts.

The deviance of this model (see Table 4.21) is 4.97 smaller than the
deviance of the model without ‘PercentMinorities’ (see Table 4.19) where
the deviance is reported to be 3748.36. This small improvement and the
increase in R} are reasons for keeping ‘PercentMinorities’ in the model.

The within variances of level 1 are not compared over models. We assume
that adding a second-level variable will not change the within variance. In
multilevel models the within and between disturbances are uncorrelated.
Second-level variables only have a between component, unlike first-level
variables, which have a within and a between part. In the next analysis
‘MeanSES’ is added as another proxy for school environment. We will
demonstrate that model fit, increase in R? and individual parameter
estimates show contradictory results, and we will indicate that the total
model fit is the best way to measure the improvement of a model, as well
as the reliability of the individual parameter estimates.

4.4.4 Adding ‘MeanSES’

Our next model is an extension of the previous model, with a second proxy
for school environment, ‘MeanSES’.

EXPL ‘meanses’

This variable is almost not correlated with the school-level variable ‘Percent-
Minorities’ in the reduced data set, with r = —0.08 (see Table 4.1). A higher
correlation is evident in the full NELS-88 data set. This negative correlation
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Table 4.22  Results of model 4 '

Level 2
Parameter Estimate Standard error
Variance intercept 7.23 3.23

Level 1
Parameter Estimate Standard error
Variance 75.08 4.76
Deviance 3739.61

of r = —0.36 indicates that the higher the percentage of minorities in a
school, the lower the socio-economic status of that school tends to be. The
results of the analysis with both school characteristics are

‘MathAchievement’ ~ 53.08 + 3.89 x ‘SES’ — 0.68 x ‘PercentMinorities’
(1.03)  (0.61) (0.32)

+ 2.86 x ‘MeanSES’.
(1.39)

In this model the individual coefficient for ‘MeanSES’ is barely significant,
with a z-score of 2.06, while the coefficient for ‘PercentMinorities’ stays
very much the same, again significant with a z-score of 2.13. It will be
interesting to see if the model fit has improved. The deviance, used for this
procedure, is reported in Table 4.22. Checking the deviance of the model
in Table 4.22 and comparing it with the deviance in Table 4.21 or Table
4.19 shows the same result. The improvement in deviance of the current
model compared to the first model (the model without ‘PercentMinorities’
and ‘MeanSES’), is slight, with a difference of 8.75. Comparing the last
two models with each other, the difference in deviance is 3.78, showing
that the addition of ‘MeanSES’ has hardly changed the goodness of fit.

It is also interesting to observe that the between variance, the variance of
the intercept, is lower as a result of the adding of two school-level variables.
In terms of ‘explained’ variance, the two variables ‘explain’ 18 % which may
lead a researcher to the conclusion that these two variables do contribute
fairly strongly to our model. For instance, the between variance was 11.80
in Table 4.19, became lower in Table 4.21, where we concluded that the addi-
tion of ‘PercentMinorities’ ‘explained’ 9% of the between variance, while
Table 4.22 shows again a lower between variance of 7.23, again a 9% increase
in R3. Calculating the total R? within and between, using the null model, we
observe that the between variance has been reduced from 24.85 in the null
model to 7.23 in the current model, a reduction of 17.62, and comparable
to an R% of 0.71. The variable ‘SES’ ‘explains’ 53% of the between RZ,
while 18% is ‘explained’ by the two school characteristics. The within
variance falls from 81.24 in the null model to 75.08 in our last model, a
difference of 6.16. This reduction is comparable to an R%, of 0.08.
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We want to emphasize here that the individual parameter estimate for
‘MeanSES’ and the increase in ‘explained’ variance contradict the conclusion
based on the model fit. When in doubt, researchers should use model fit as the
criterion. The fit of the total model is a more reliable measure than individual
parameter estimates and/or increased R%.

To illustrate once again that larger numbers of observation make a differ-
ence, the second and third analyses are repeated with the full NELS-88 data
set. This will show that:

e the variance for the slope of ‘SES’ is no longer set to zero, although the
interpretation of this coefficient does not change;

e that the coefficients for ‘PercentMinorities’ is highly significant instead of
barely significant as in the analyses above; and

¢ the deviance of a model without ‘PercentMinorities’ is much smaller than
the deviance of a model with ‘PercentMinorities’.

4.4.5 Analyses with NELS-88, models 2 and 3

The first analysis is a model with ‘SES’ as an explanatory variable, and a
random instead of a fixed coefficient, which is a repetition of model 2. The
model is repeated with a more powerful data set to reproduce the reported
significant difference among schools in the relationship between ‘SES’ and
‘MathAchievement’ (see Raudenbush and Bryk, 1986). Our previous failure
to replicate these results may be due to the low power of our small sample for
finding school effects. Remember that the number of schools in our small
sample is only 23, while there are 1003 schools in the full NELS-88 data
set, making it much more powerful (for more details on power, see Section
5.4). '

Our expectation is that the earlier reported zero estimates for the variance
of the slope for ‘SES’ and its covariance with the intercept will change to a
non-zero and significant effect in this analysis. The results of a model with
a random slope fitted to the NELS-88 data are

‘MathAchievement’ =~ 50.96 + 4.82 x ‘SES’.
(0.12)  (0.10)

Smaller standard errors for all coefficients in the analysis are observed, due to
the larger number of observations. But that is not what we want to explore.
We want to check if the slope of ‘SES’ is significantly different among
schools. The results are given in Table 4.23, where the variance components
are reported. Based on the magnitude of the variance component for the
slope compared to its standard error in Table 4.23, we conclude that the
slope is again not significantly random. This time the output of MLn reports
values for both variances, but the results are the same. The slope variance is
0.54 with a standard error of 0.35. The hypothesis that the relationship
between ‘SES’ and ‘MathAchievement’ is different among schools is again
not supported by the data.
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Table 4.23 Results of model 2b

Llevel 2
Parometer Estimate Standard error
Variance infercept 1111 0.66
Variance slope 0.54 0.35
Covariance slope and intercept 1.68 0.33

Level 1
Parameter Estimate Standard error
Variance 69.76 0.70
Deviance 154336

For illustrative purposes we also reanalyze model 3 with our larger data
set. We add the school-level variable ‘PercentMinorities’ and set the variance
for the slope of ‘SES’ to zero, as illustrated in the box below.

CLRV 2 ’ses’
EXPL ‘minority’

The results are

‘MathAchievement’ =~ 53.16 + 4.76 x ‘SES’ — 0.71 x ‘PercentMinorities’.
0.19)  (0.09) (0.05)

Comparing the results reported in Table 4.21 with the fixed effects of the
same model 3 fitted to the smaller data set reveals smaller standard errors
for the full NELS-88 data set. The barely significant coefficient for the
school-level variable ‘PercentMinorities’ (z = 2.29 in the earlier model) has
become very significant (z = 14.2 in last model). The model we fitted has a
random intercept only, and the variances of the intercept at level 1 and
level 2 are given in Table 4.24. The variance components show the same fea-
ture as the fixed effects, which is smaller standard errors. Comparing the
deviance of 154 184 with the earlier model, fitted to the same data, shows
that the deviance in Table 4.24 is much smaller, with a difference of 152.

Table 4.24 Results of model 3b

Level 2
Parameter Estimate Standard error
Variance intercept 8.78 0.55
Level 1
Parameter Estimate Standard error
Varionce 69.93 0.69

Deviance 154184
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Calculating R?, as before, shows comparable effects of the variables on the
between and within variance. For that purpose we need to fit first a new null
model, with no explanatory variables. This null model shows a within
variance of 76.62, and a between variance of 26.56. Comparing the between
variance in Table 4.24 with the null-model between variance shows a reduc-
tion of 17.78 , which amounts to a between R? of 0.67. Comparing the within
variance of our last model with the potential within variance of the null
model shows a reduction in within variance of 6.69, showing a within R?
of 0.09. Although the small data set is not a random sample of the NELS-
88 data, the effects of the same model on the within and between variance
are very similar. The two variables ‘SES’ and ‘PercentMinorities’ together
‘explain’ a large part of the between variance, while the variable ‘SES’
explains a small part of the within variance.

Our exploration of the influence of environment, as defined at student level
by ‘SES’ and at school level by ‘PercentMinorities’ and ‘MeanSES’, has
shown some effects of the environment on math achievement. The one
thing that is still puzzling is the non-significant variance for the coefficient
of ‘SES’. We return to the topic of a random or non-random slope for
‘SES’ in Section 5.2. For the discussion here, the effect of centering on the
random part of the slope for ‘SES’ is of interest. It will be illustrated in
Section 5.2 that centering around the school mean changes the slope for
‘SES’ so that it becomes very significantly random over schools — an obser-
vation not made when a raw score model is used, as illustrated above.

4.5 Session 4
4.5.1 Analysis with class size and a cross-level interaction

In our analyses of the small data set we have not yet found a significant cross-
level interaction. Since we have more school-level explanatory variables in
the data set let us try again, this time by using class size as measured by
the teacher—student ratio; this variable is called ‘Ratio’. A higher ‘Ratio’
means a larger class size. Class size is an important determinant of student
achievement given the latest school reforms in California, where millions
of dollars have been spent on reducing class sizes in an attempt to improve
the low standing of California’s public school system. If smaller classes
predict higher achievement, we expect the sign of the coefficient for ‘Ratio’
to be negative in our data analyses.

This effect of class size is measured in two different ways: first as an overall
effect, and secondly as an interactive effect. The interaction effect will be
between ‘Ratio’ and ‘HomeWork’. This interaction is added as a test of
the hypothesis that students need to do less homework when class sizes are
small. Under this hypothesis we expect a positive interaction effect, where
the strength of the relationship between ‘HomeWork’ and ‘MathAchieve-
ment” will be stronger when classes are larger.
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Table 4.25 Results of model 1

Llevel 2
Parameter Estimate Standard error
Variance intercept 59.30 20.01
Variance slope ‘HomeWork’ 16.80 5.55
Covariance slope and intercept -26.25 9.67

Level 1
Parameter Estimate Standard error
Variance 53.30 3.47
Deviance 3638.82

To prepare the model for the new session in MLn we start again by defining
all the variables that are needed. The response (RESP) variable is ‘Math-
Achievement’, the explanatory (EXPL) variables are ‘cons’ (for the intercept
or constant), ‘HomeWork’ and ‘Ratio’. For the variance part we define the
variance at level 1 and level 2 for the intercept, and at level 2 for ‘HomeWork’.

RESP ‘math’

EXPL ‘cons’ ‘homew’ ’ratio’
SETV 1 ‘cons’

SETV 2 ‘cons’ ‘homew’

The results of the analysis are

‘MathAchievement’ ~ 47.97 + 1.99 x ‘HomeWork’ — 0.10 x ‘Ratio’,
(392)  (091) (0.20)

which do not support our hypothesis, since the individual coefficient for
‘Ratio’ is not significant. However, interpreting individual parameter
estimates can be misleading when explanatory variables are correlated. The
correlation between the two explanatory variables is not large because
r = —0.16 in this data set. Just to make sure we are correct in concluding
that there is no main effect for ‘Ratio’, the deviance of the current model is
compared with a model with only ‘HomeWork’(see Table 4.4), where the
deviance is 3639.04. The deviance of our current model is reported in
Table 4.25, with a value of 3638.82. This deviance show a decrease which
is too small to contradict the earlier finding. The conclusion is that ‘Ratio’
has no effect on math achievement for our small data set.

4.5.2 Interaction between ‘Ratio’ and ‘HomeWork’

After this lack of success we test a second hypothesis, also related to ‘Ratio’.
This hypothesis states that in smaller classes the relationship between math
achievement and number of hours of homework will be less strong. As a
result, we expect that students who need to do a lot of homework benefit
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the most from smaller classes. In statistical terms we state that ‘Ratio’ has an
interaction effect. If the hypothesis is supported we expect to find a significant
cross-level interaction effect between ‘Ratio’ and ‘HomeWork’.

We create this cross-level interaction in MLn by multiplying (MULT) the
two variables with each other and put the new variable in the first available
empty column of our data set, which is C22 in this case. Next we name this
variable ‘HomRatio’, as shown in the box below. With the familiar command
EXPL the new variable is added to the model, while ‘Ratio’ is deleted in the
same command. Note that the assignment of the newly created interaction
term to C22 is arbitrary. The rule is to assign a new variable to an empty
column, which in this case was 22.

MULT ‘homew’ ‘ratio’ C22
NAME C22 'homratio’
EXPL 'ratio’ 'homratio’

The results of this analysis are

‘MathAchievement’ ~ 46.32 + 2.91 x ‘HomeWork’ — 0.05 x ‘HomRatio’.
(1.72)  (2.06) (0.11)

Again the results do not support the hypothesis of an interaction effect of
‘Ratio’, since this parameter is not significant. The same is observed when
the deviance is compared with the deviance of a model with only ‘Home-
Work’, as we did before. We found that the deviance of such a model was
3639.04 (see Table 4.4), while the deviance of our present model is 3638.79
as reported in Table 4.26, showing again a negligible improvement of fit.
When comparing the fixed effect estimates over the last two models it appears
again that introducing a cross-level interaction introduces instability, as a
result of the correlations among the variables. The correlations between
the two variables in the current model, ‘HomeWork’ and ‘HomRatio’, can
be found in Table 4.9, where the interaction term has a correlation of
r = 0.86 with ‘HomeWork’. As a result of this high correlation the (barely)

Table 4.26 Results of model 2

Level 2
Parameter Estimate Standard error
Variance intercept 59.35 20.03
Variance slope ‘HomeWork’ 1679 5.55
Cavariance slope and intercept ~26.27 9.68
Llevel 1
Parameter Estimate Standard error
Variance 53.3 3.47

Deviance 3638.79
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significant slope for homework in model 1, with an estimate of 1.99 and a
standard error of 0.91, is no longer significant in model 2, with a higher
estimate of 2.91, but also a higher standard error of 2.06.

Again a different conclusion is reached when the same model is analyzed
with the larger NELS-88 data set. Cross-level interactions are more easily
detected when the number of observations (within as well as between) is
larger than 23 schools and 519 students. (For more on power, see Section
54.)

4.5.3 Repeating the modeling session with NELS-88

Using the complete NELS-88 data set, three models are fitted with the expla-
natory variables ‘HomeWork’, ‘Ratio’ and ‘HomRatio’. In all three models
‘HomeWork’ is included, with a random coefficient. The results are reported
together in Table 4.27 for easy comparison. The top half of the table shows
the fixed effects, while the bottom half shows the random effects. The first
model in the table includes all three variables. The second model contains
only a main effect for ‘Ratio’ and is the same as model 1 with the small
data set in this session. The third model has the interaction term, but not
the main effect of ‘Ratio’, as in model 2 with the small data set in this session.
The results in Table 4.27 show that the high correlation between
‘HomeWork’ and ‘HomRatio’ (r=0.89) affects the estimate for
‘HomeWork’ in the same way as in the small data set. If the interaction
term is part of the model (see the new model and model 2 in Table 4.27)
the standard error of the coefficient for ‘HomeWork’ is much larger. The
magnitude of the coefficient for ‘HomeWork’ is also larger in model 2,
which may be the result of the deletion of the variable ‘Ratio’, which has
correlation r = —0.06 with ‘HomeWork’ (see Table 4.1) and r = 0.31 with

Table 4.27 Analysis with ‘Ratio’ and cross-level interaction on full
NELS-88 data set

New model Model 1 Model 2
PARAMETER EST SE EST SE EST SE
Cons 51.43 0.70 51.52 0.61 47.90 .
Homew 1.52 0.18 1.48 0.05 2.00 0.16
Ratio -0.20 0.04 -0.21 0.03
Homratio -0.003 0.01 -0.03 0.008
level 2
Cons/cons 23.29 1.51 23.28 1.51 24.19 1.55
Homew/cons -0.91 0.31 -0.91 0.31 -1.06 0.32
Homew/homew 0.52 0.10 0.52 0.10 0.54 0.10
tevel |
Cons/cons 71.74 0.72 71.74 0.72 71.74 0.72

Deviance 155679 155679 155706
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‘HomRatio’ (see Table 4.9). The cross-level interaction term has a significant
coefficient in model 2, where the main effect for ‘Ratio’ is deleted. Comparing
deviances (see last row in Table 4.27) shows that the two first models fit the
data equally well, indicating that the cross-level interaction does not add to
the fit of the model. For reasons of fit we can opt to delete the interaction
variable, and keep the main effect of ‘Ratio’ in the model — but only if we
have strong beliefs that this interaction is not important in a theoretical
sense, as compared to the main effect.

Summarizing the differences in results between the large data set and the
small data set, we see that the coefficient for the interaction term is significant
when introduced without the main effect of ‘Ratio’. Secondly, we find a
strong effect for ‘Ratio’ with a z-score of respectively 5.00 in the new
model and 7.00 in model 1 of Table 4.27.

4.6 Discussion

The analyses in this chapter illustrate one important fact. Do not bother to
do any hypothesis testing for individual regression coefficients, look at the
model fit. In the life of the real (rather than virtual) scientist, hypothesis test-
ing is almost never useful. Usually researchers are interested in exploring to
see what the data tell them. They want some notion of how fuzzy the situa-
tion is, based on the data only, or, in certain desirable but rare situations,
wish to understand what conclusions can be drawn from the data based on
both their prior understanding and the current data. Neither of these situa-
tions is handled by hypothesis testing.

To illustrate, we can compare the analysis of the 23 schools with the same
analysis over 1003 schools in the large NELS-88 data set in Section 4.5.3. It is
hard to defend any conclusions based on a hypothesis test (a z- or t-test) of a
single parameter estimate when using a small data set. We have discovered
that some models show no single parameter to be significant in the small
data set, but the model fit has significantly improved over the null model.
In large data sets many parameters are statistically significant, even small
and unimportant ones. The deviance seems to be a better way to judge
model improvement. But again, with large data sets every little change
causes the model to improve significantly.

As we illustrated in the sessions in this chapter, adding variables can
change parameter estimates, while the model fit does not change. Changes
in parameter estimates can be dramatic, as exemplified in the last session.
Especially in small data sets, adding cross-level interactions can cause
instability, with large standard errors as the symptoms. If we talk about
small data sets in multilevel analyses we mean a small number of contexts
rather than a small number of individual observations. After all, a data set
with n = 519 is usually not considered to be that small. Still the differences
between our reduced data set and the full one are considerable, especially
for standard errors (as expected) and for second-level estimates. We want
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to stress again that in multilevel analysis practice there is a tendency to
expand the data set, by adding interactions and contextual variables such
as means. Data reduction is a very necessary strategy before starting any
multilevel analyses. Multilevel analysis is not a tool for exploring large num-
bers of variables. Multilevel analysis is a nice tool for exploring small num-
bers of variables and making small changes in the models one at a time. As
we have illustrated in this chapter, a small change in the way we treat the data
can sometimes cause a large change in results.

Notes

9

By basic variables we mean all variables that are present in the data, which excludes the
variables constructed later, such as interactions and aggregates such as means.

In addition to the notational convention outlined in note 2 of Chapter 2, we now also have to
distinguish the variable from the label we use in MLn, with its restriction to eight characters.
The MLn label is used in boxed MLn instructions, and it is written without capitals and in a
non-proportional font, as in math.

The data are made available in this book as a service to the reader. They can be used to prac-
tice the execution of multilevel analyses in general and the use of MLn in particular,

The intercept is called a ‘variable’ in this context, even though it is a constant. All observa-
tions have the same value.

This means that a variance component is defined corresponding to the variable.

In this book explanatory variables vary only at a higher level than the level at which they are
measured. An exception is the coefficient for the intercept cons. MLn allows users to declare
coefficients random at their own level, as well as at a higher level. The option to allow
coefficients to be random at their own level is not discussed in this book. This issue goes
well beyond the scope of multilevel analysis.

Two R?s in two-level analyses, but of course three Rs with three levels, etc. It is assumed that
errors across levels are uncorrelated. More about the calculation, the use, and the meaning of
the two different R%s in two-level analyses can be found in Chapter 5.

The between variance becomes complicated when random slopes are also present, as
discussed earlier.

Fixed, as opposed to random. ‘Fixed’ means that we do not assume that the effect of
‘HomeWork’ on math achievement is different among schools.

10 The correlation can be calculated by dividing the covariance —26.14 by the product of the

11

standard deviations of slope and intercept.

First-time users of multilevel modeling may be confused what a second-level or context vari-
able is. Conceptually variables may be defined as context variables, as in the case of ‘Parent-
Education’, but that does not qualify such variables as second-level variables in a multilevel
analysis, where the second level, or context, is defined explicitly (remember that the levels
are defined as student and school in our analyses). The level to which a variable belongs
in a multilevel analysis can best be assessed by looking at the data matrix. If a variable is
the same within the defined context (the school in our example), and has no variation
within that context (all observations within the same school have the same score for that
variable), then the variable is by definition a second-level variable. ‘ParentEducation’ is
by that definition a student-level variable, not a context variable. The context is in our exam-
ple defined as the school, and students in the same school have by no means equal values for
the variable ‘ParentEducation’. Of course, the variable ‘ParentEducation’ could be changed
into a school-level variable by aggregation. Aggregation can be done in many ways. The
commonest way s to calculate a mean parental education for each school. Note that the
opposite is also true. A variable that has different values within the second level is a first-
level variable.
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12 Note that in MLn coefficients can be made random at the same level as they are measured.
This can be easily accomplished by adding a statement to set the variance for that variable at
level 2 (SETV 2 ‘schsize’). This special option of MLn is not discussed here. In this book we
assume that users want to set variances for coefficients at a level higher than the level of
measurement. In multilevel analyses the coefficients for ‘SchoolSize’ and ‘SchoolSector’
would only be allowed to be random if a third level were present in the data. An example
of a third level for our data could be states of the USA. In that case we have three levels,
where students are nested in schools, and schools are nested in different states. If we were
interested in the effects of states on schools we could allow coefficients of school-level
explanatory variables to differ over states. An analysis that fits up to three levels needs
large data sets. For instance in our example, dividing our 23 schools over the 50 states of
the USA would be a pointless exercise.




5 FREQUENTLY ASKED
QUESTIONS

5.1 Introduction

Although the multilevel model is fairly restrictive, it is an important and non-
trivial generalization of the usual linear regression model. This means that
questions such as stability of regression coefficients, influence of multi-
collinearity, and testing of model assumptions, which are already proble-
matic in large multiple regression models, become even more complicated
in multilevel models. Furthermore, a host of new questions are introduced
that are specific to multilevel models. And some of the classical questions
require new, or modified, answers, because of the specific structure of the
multilevel model. Examples are the centering of explanatory variables and
the consequences of dealing with multiple sources of variation. Because of
the hierarchical nature of the data, and the fact that multilevel models
have cross-level interactions, the discussion of centering explanatory vari-
ables is especially relevant, and different from the usual case. The fact that
there are multiple sources of variation, on multiple levels, makes it compli-
cated to define ‘explained’ or ‘modeled’ variance in a unique way. Again,
this is a complication which simply does not occur in single-level or contex-
tual models.

To pay tribute to the growing importance of the Internet, we will present
this chapter in the form of a list of ‘frequently asked questions’. In compiling
our FAQs we have made extensive use of the questions asked on the multi-
level mailing list,' which often shows quite clearly what researchers using
multilevel analysis are interested in. Because of the availability of multilevel
software, researchers are now able to fit complicated models, but they may
have problems with interpreting certain features of the output. The following
six questions will be addressed.

1 What are the effects of transforming the explanatory variables to devia-
tions from the grand mean or to deviations from the group mean?

2 Howis ‘explained variance’ defined in hierarchical linear models? Is there
an analog to the multiple correlation coefficient? In particular, can we say
how much of the variation in the outcome is ‘due’ to group factors, and
how much to individual factors? What happens to the various quantities
we estimate if we add more variables?

3 What can we say about the power of regression analyses if we use
hierarchical linear models?
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4 A coefficient in a multilevel analysis can be non-random and constant for
all groups, it can be non-random and variable over groups, and it can be
random (which also means, of course, that it is variable). What does it
mean to choose either one of these options, and what are the conse-
quences of changing from one option to another?

5 What are FIML, REML, EM, IGLS, RIGLS, EB/ML, OLS, GLS?

6 How serious is the problem of multicollinearity in multilevel analysis?

The chapter is necessarily more methodological and technical than previous
chapters, but we emphasize concepts and not formal mathematical manipula-
tions. Where possible, we refer to the results and examples discussed earlier.

5.2 The effects of centering

Frequently Asked Question 1. What are the effects of transforming the expla-
natory variables to deviations from the grand mean or to deviations from the
group mean?

The effects of centering will be illustrated using the large NELS-88 data set
as in some of the examples in Chapter 4. We will argue that an answer to the
centering question is not simple, since the effect depends on the relationships
in the data and on the goals of the analysis. Researchers tend to believe that
data manipulation in multilevel analysis has effects similar to traditional
regression analysis, where addition or subtraction of a constant does not
change the relationships in the data. For that reason the discussion starts
with a summary of the known effects of centering in a traditional analysis.
Then we proceed by showing that centering in multilevel regression has dif-
ferent and sometimes unexpected effects, depending on the way the variables
are centered.

5.2.1 Centering in fixed effects regression models

The effects of centering for traditional regression models are summarized in
Aiken and West (1991), where ‘centering’ means subtracting the same value
from each score of any explanatory variable. That value is usually the grand
mean, but it could be any other value. In general, it is clear that subtracting
the same value from each score does not essentially change the relations in
the data. Simple additive transformations of a variable have no effect on
the variance of that variable, nor on its covariances and correlations with
other variables in the model, as long as the model contains only first-order
terms (Aiken and West, 1991). In ordinary fixed effects regression the inter-
cept is retained as a free parameter in order to guarantee invariance of the
model with respect to the shift of origin of the explanatory variables. Conse-
quently, centering (i.e. putting scores in deviation form) does not change the
magnitude of the regression coefficients, only the magnitude of the intercept.
This invariance of the coefficients occurs for any value added to or subtracted
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from the original variables. At the same time the change in intercept value is
directly related to the value added or subtracted.’

The practical purpose of centering an explanatory variable in traditional
fixed effect linear models is to change the interpretation of the intercept.
Using deviation scores instead of raw scores affects the value of the intercept,
and also, more importantly, its interpretation. In raw score models the inter-
cept is the value of the response variable when all the explanatory variables
are zero. In social science regression problems, such as those using attitude
or intelligence tests, variables have no meaningful zero. In such instances,
centering explanatory variables renders the intercept meaningful as the
value of the response variable at the mean of all explanatory variables.

5.2.2 Centering in multilevel models

We refer to Kreft ez al. (1995) for a more technical answer to this FAQ. Here
we follow a slightly different route. First a model is investigated that has only
one first-level explanatory variable x, a random intercept, and a random
slope. A second-level variable z is part of the model, interacting with the
intercept as well as with the slope. Thus we have the fairly general multilevel
model

Vi = ¢+ Bxi + &, (5.1a)
o = a+ %z + 8y, (5.1b)
B, =B+mz + &y (5.1¢)

If we make the necessary substitutions we can write out the three equations
(5.1) in a single-equation form. We have done this in previous chapters. The
result for the fixed part is

E(Zu) = a+ Bx; + Yz + N Xyzj, (5.2a)
and for the random part
Vi — E(yy) = boj + x84 + £4- (5.2b)

Our discussion centers around the student-level variable x;, which is in raw
score form in equation (5.1). This variable can be used in a grand mean cen-
tered form, where x;; is replaced by X;;, which is the deviation from the grand
mean X; = x; — X. Using this centered score instead of the raw score will
yield a model that is equivalent to the raw score model when we add this
subtracted mean to the model. Since the subtracted mean is a constant (the
same mean is subtracted from all scores) it gets absorbed by the intercept
o. As a result the grand mean centered model is related to the raw score
model in a simple way.

The effect of subtracting the grand mean is much simpler than when the
group means are subtracted from the scores. Group means are most likely
not equal among groups, and different numbers will be subtracted from
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some scores than from others. The group mean centered score X;; is equal to
%; = x;; — X;. Using this centered score instead of the raw score will yield a
model that is no longer equivalent to the raw score model. We can reestablish
equivalence if we add the subtracted mean back into the model, as an impor-
tant between-group effect. In such cases the mean is treated in the same way
as any second-level variable is, as shown in the following equation:

o = o+ 7% + Y022, + byy- (5.3)

That this addition of the mean has consequences for some of the parameter
estimates in the model will be discussed and illustrated with examples.

We will also indicate that statistical equivalence no longer applies when
random slopes are added. But even if models are statistically equivalent
they do not give identical parameter estimates. For all practical purposes
group mean centered models are different from raw score models. We
emphasize that using group mean centering instead of raw scores serves
different purposes and tests different theories.

5.2.3 Grand mean centering

We first study what happens to the model if we center the explanatory vari-
able around the overall mean. For this purpose, we use the decomposition of
the explanatory variable as the sum of the centered variable and its overall
mean or grand mean. If we substitute x; in equations (5.2a) and (5.2b) by
the sum of the deviation score X; and the grand mean X, and collect terms
with corresponding subscripts, we find, after some tedious algebra, that
two fixed coefficients change, the value of the intercept o and the value of
the second-level coefficient y,. Weighted values, 8x and v X, of the grand
mean are added to o and 7, respectively. These changes are indicated in
the following equation within the brackets:

E(y;) = la+ Bx] + B%; + [vo + mX|z; + m¥%;z;. (5.4a)

Equation (5.4a) shows that a constant is added in both cases. It is easy and
straightforward to calculate the raw score coefficients from the grand mean
centered coefficients. In any analysis where grand mean centering is used
the pre-centered values for the two coefficients can be obtained by subtract-
ing the mean (weighted by either the 3 or ;) from the parameter estimates of
a and 7.

Another observed change among the two models is the value of the var-
iance of the intercept. This variance changes with a value again directly
related to the (subtracted) mean. Similar to equation (5.4a), we now have

yi — E(yy) = (6o + X61;) + %56y + €55 (5.4b)

It can be shown that using raw scores or grand mean centered scores does not
change the model, but it does change the values of some of the parameters.
Comparing equation (5.2a) with equation (5.4a) and equation (5.2b) with
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equation (5.4b) shows that they describe precisely the same model, the first one
with the raw x; as the explanatory variable, the second with the centered %;.

It is quite easy to transform one model into the other. In the terminology
used by Kreft et al. (1995), the raw score model and the grand mean centered
model are equivalent linear models. This does not mean that all parameter
estimates are actually equal. Equivalent models will give the same fit, the
same predicted values, and the same residuals, while the parameter estimates
can easily be translated into each other.

5.2.4 Group mean centering

Now let us see what happens if we replace the raw scores x; by the group
mean centered scores X; = x;; — X;, where X; are the group means. Proceed-
ing in the same way as in Section 5.2.3, we substitute x; = X; + X; in (5.5),
and collect terms. This shows a similar change in parameter estimates to
that in the grand mean centered model, although we need to replace the
grand mean with the group mean in equation (5.4a), which gives

E(yy) = [a+ 8% + B%; + [ + m¥jlz; + n¥yz;; (5.5a)
for the random part we have
vi — E(py) = (8o +%;8y) + X8y + €55- (5.5b)

Equation (5.5a) shows again that the intercept and the coefficient for the
second-level variable z; are affected. The problem is that it is no longer pos-
sible to bring this form back to the raw score form as we did before. The
mean in equation (5.5a) is not a single value, as the grand mean is, but
varies over groups. As a result, different values will be subtracted from the
intercept o in each group, and no unique value exists. The same is true for
the value of the coefficient for z in equation (5.5a), and for the variance of
the intercept in equation (5.5b).

As a result the group mean centered model and the raw score model are
equivalent neither in the fixed part nor in the random part. This is true for
all situations except in two special cases. One exception is the case where
X; is equal to ¥ in all groups. This happens in repeated measures analysis,
but it is a rare situation for researchers interested in group differences,
such as school effects.

The other situation where we find equivalence of group mean centered and
raw score models is a model with only a random intercept, with slopes that
are constant (not random), and in which the group means are reintroduced
as second-level variables. This leads to some major simplifications. We find
that 7, = 0, the slope is fixed and thus §;; = 0, and z; = X;. Fitting such a
model turns out to be the same as fitting a raw score model with only a
random intercept, but without the means as second-level variable. These
two simplified models are equivalent. Again values obtained with the
centered model can easily be translated to those of the raw score model.
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5.2.5 An example

A substantial body of research (Coleman et al., 1982) reports positive effects
of the private sector on students’ achievement. One such effect is that the
private sector is more egalitarian than the public sector. We look into this
problem, using the NELS-88 data set, in this subsection. By using centered
and raw score models we show that answers to these questions do not
always agree. They depend on the way explanatory variables are treated,
as centered within contexts (CWC) or as raw scores (RS).

The results of Raudenbush and Bryk’s (1986) analysis with the ‘High
School and Beyond’ data show that the private sector has an effect on the
relationship between ‘SES’ and ‘MathAchievement’. This cross-level inter-
action between the school-level variable ‘SchoolSector’ and the student-
level variable ‘SES’ showed a significant effect, indicating that the Catholic
sector is slightly more egalitarian: ‘lower-SES students fare better in Catholic
schools, and higher-SES students fare better in public schools’ (Raudenbush
and Bryk, 1986, p. 13). In our replication of Raudenbush and Bryk’s
CWC model, we again use the NELS-88 data with 21 580 students and
1003 schools, with the same goal, to evaluate the merits of the private
school sector compared to the public sector. The model used is the familiar
one, where ‘MathAchievement’ is predicted by the student-level explanatory
variables, ‘HomeWork’ and ‘SES’. In our NELS-88 data most schools
are in the public sector (80%). The remaining 20% is divided over Catholic
schools (10%), religious private schools (4%), and non-religious private
schools (6%). In Raudenbush and Bryk’s model the variables are CWC,
while we fit both a CWC and an RS model and discuss the different
results.

In the analyses three different models are fitted to the data, using the same
explanatory variables ‘HomeWork’ and ‘SES’, but centered and added to the
model in different ways. The second-level variable ‘Public’ is always present
in the model, while some models have the second-level variable ‘Ratio’,
which measures the student—teacher ratio. Three fairly common models
are used: an RS model, a CWC model without the group means reintroduced
as second-level variables, and a CWC model with means added back to the
model.

The models are sometimes incorrectly believed to be equivalent, even when
CWC models are used without reintroducing the subtracted mean back into
the model. In this last model, the between-group variation of the centered
variable is deleted. This between-group variation may play an important
role, as we show in our examples, where the subtraction of the mean and
thus the deletion of the between variation in the variables ‘HomeWork’
and ‘SES’ has important consequences for the ‘Public’ school effect (see
Tables 5.1 and 5.2). In both tables the distinction is made between an RS
model, a CWC model without reintroduced means, CWC(N), and a CWC
model with reintroduction of the subtracted means, CWC(M). This last
way of treating the data is used by Raudenbush and Bryk.



FREQUENTLY ASKED QUESTIONS RN

Table 5.1 Effects on ‘Public’ of different treatments of the data
(note that underlined variables are centered as opposed to raw
score variables)

RS CWCI(N) CWC{M)

EST SE EST SE EST SE
Intercept 50.16 0.28 55.06 0.35 47.53 0.47
‘HomeWork’ 1.24 0.05 n.a n.a
‘HomeWork’ n.a 1.18 0.05 1.20 0.05
'SES’ 4,35 0.09 n.a n.a
'SES’ n.a 3.84 0.10 3.85 0.10
‘Public’ -2.06 0.29 -5.42 0.39 +0.62 0.28
‘MeanSES’ n.a n.a 8.14 0.25
‘MeanHomeWork' n.a na 1.65 0.20
Variance slope ‘SES’ 0.47 0.33 1.65 0.44 1.71 0.44

Deviance 163333 153968 153004

The centered variables are indicated in the tables by underlining, as in
‘HomeWork’ or ‘SES’. For instance ‘HomeWork’ is used in the RS model,
while ‘HomeWork’ is used in both CWC models. All models have one
school-level explanatory variable, ‘Public’, where private schools are coded
as 0 and public as 1. Note that the third model in Table 5.1 contains two
more school-level variables, the two subtracted means of ‘MeanSES’
and ‘MeanHomeWork’. In the RS model the means are not fitted since
they are not subtracted from the raw scores, and are still present in the
model. The models in Table 5.1 are fitted with a random slope for SES
and homework.

As Table 5.1 shows, the results of the RC model are not the same as the
results of both CWC models, either in the values of the coefficients, or in
the goodness of fit, the deviances. That the results of CWC(N) and
CWC(M) differ is caused by the deletion of the between-school variance of
the variables ‘HomeWork’ and ‘SES’ in the CWC(N) model, where the
means are subtracted from the raw scores and not reintroduced again. For
that reason the RS model is more comparable to the CWC(M) than to the
CWC(N) model, which is also indicated by the goodness of fit: the
CWC(N) model has the largest deviance.

The differences in the fixed effects are mainly present in the second-level
variable for the coefficient of ‘Public’ and in the value of the intercept. The
estimates for ‘HomeWork’ (raw and centered) and for ‘SES’ (raw and
centered) are very close, with equal standard errors. In the random part, of
which we only show the variance of the variable ‘SES’, the difference between
RS and the two CWC models leads to opposite conclusions. The magnitudes
of all three estimates of the variance of the slope for ‘SES’ are different, while
the standard errors are very close. In the RS model this variance is not
significant, while in both CWC models it is-significant.

A similar thing happens with the fixed effect for ‘Public’: this effect is large
and negative in the RS model, where we find a coefficient of —2.06; is even
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larger in the first CWC model, where we find an effect of —5.42; but
changes sign in the last CWC model, where it becomes +0.62, a small but
significant effect. All three effects are statistically significant, but unequal
in magnitude and, more importantly, unequal in sign. The conclusion is
that, depending on how the raw data are treated, a negative effect for the
public sector can be changed to a positive effect for that sector. In our
example centering has a clear effect. Centering without reintroducing the
means favors the private sector, as shown in the CWC(N) model where the
effect is —5.42, up from —2.06 in the RS model. Centering with the means
reintroduced favors the public sector, where the effect size for ‘Public’
reverses sign and becomes positive 0.62. The favorable effect for the public
sector is a direct result of the introduction of the means, which provides a
correction for the difference among sectors in ‘SES’ and ‘HomeWork’.

The models in Table 5.1 are not equivalent, which is also indicated by
differences in deviances. The three models do not fit the data equally well.
The CWC(N) model has the highest deviance, and thus the worst fit to the
data. This is not surprising since the important between variation of the
variables ‘SES’ and ‘HomeWork’ is deleted from the CWC(N) model. The
other striking difference among the models is in the random part, where
the slope for ‘SES’ is not significantly random in the RS model, while it is
significantly random in both CWC models. This finding has consequences
for further data analyses, as we will discuss next.

5.2.6 Cross-level interactions with ‘Public’ and ‘SES’

In the RS model we conclude that the relationship between ‘SES’ and
‘MathAchievement’ is not significantly different among schools, since the
slope for ‘SES’ is not significantly random. As a result we will not try to
‘explain’ the variation of ‘SES’ by means of a school characteristic such as
‘Public’ or ‘Ratio’, since we believe, based on this result, that such variation
does not exist. But the significant variance of the slope for ‘SES’ in both
CWC models is an invitation to explore whether differences in the relation-
ship among schools between ‘SES’ and math achievement can be explained
by sector differences. A new model is fitted where cross-level interactions
between ‘Public’ and ‘SES’, and between ‘Public’ and ‘HomeWork’, are
added to our previous CWC models. The results for the fixed effects with
the three models, RS, CWC(N) and CWC(M), are given in Table 5.2.
Again ‘SES’ and ‘HomeWork’ are the student-level explanatory variables,
either as raw scores or as centered (underlined) scores. The school-level
explanatory variables are the same dummy variable for sector, ‘Public’,
and a variable indicating class size, expressed as teacher/student ratio,
‘Ratio’. All models have a random intercept and random slopes for ‘SES’
and ‘HomeWork’, with the exception of the RS model, where ‘SES’ has a
fixed slope, since the RS model in Table 5.1 showed that the slope of ‘SES’
is not significantly random. For the same reason as discussed before, the
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Table 5.2 Cross-level interactions in RS and CWC

RS CWC(N) CWC(M)
EST SE EST _SE EST SE
intercept 54.00 0.57 60.30 0.68 48.74 0.65
‘HomeWork’ 0.86 0.10 n.a n.a
‘HomeWork' n.a 0.76 0.10 0.80 0.10
'SES’ 4.30 0.09 n.a n.a
'SES’ n.a 2.96 0.26 297 0.26
‘Public’ -3.35 0.37 -5.57 0.38 0.44 0.29
‘Ratio’ -0.16 0.02 -0.29 0.03 -0.06 0.02
'MeanHomeWork' n.a n.a 1.62 0.20
‘MeanSES’ n.a n.a 7.98 0.25
'Public’ x "HomeWork’ 0.48 0.1 0.53 0.1t 0.51 0.11
‘Public’ x ‘SES’ n.a 1.03 0.28 1.03 0.28
Deviance 153272 153853 152963

RS model in Table 5.2 has no cross-level interaction with ‘SES’, such as the
interaction ‘Public’ x ‘SES’.

The results of the analyses show again the consequences of centering.
Models without means at the second level, which are the RS model and
the CWC(N) model, enhance school-level effects of ‘Public’ and ‘Ratio’.
The strong effect for ‘Public’ in the RS model of —3.35 has a z-score of
9.05. The effect of ‘Public’ is even larger in the CWC(N) model, with a
magnitude of —5.57 and a z-score of 14.7. But in the CWC(M) model the
effect of ‘Public’ becomes positive, and is no longer significant, with a z-
score of 1.52. The magnitude of the school-level coefficient for ‘Ratio’ is
affected in a similar way. In the RS model it has a magnitude of —0.16
with a z-score of 8, in the CWC(N) model it is enhanced to —0.29 with a
z-score of 9.67, while in the CWC(M) model it is lower again, with a magni-
tude of —0.06 and a z-score of 3. The change of the value of the coefficients
for school-level variables shows again that adding or deleting means to a
CWC model may affect school-level coefficients.

Data manipulation, such as centering and adding or deleting means, has
consequences. Different conclusions can be drawn from one model compared
to the other regarding the school-level effects, while the student-level effects
are hardly affected and very similar over models.

“We are left to ask which is the correct model. This question cannot be
answered on the basis of technical considerations alone, since all three
models in Table 5.2 are ‘correct’. The choice needs to be made based on
the researcher’s knowledge of the data and the goals of the analysis. If the
researcher is mostly interested in a model that ‘explains’ as much variation
in the response variable as possible, without any particular interest in
second-level effects, fitting an RS model will be the easiest way to go. No
choices need to.be made about reintroducing means, since no means are
removed to start with. The RS model is also best if the researcher is more
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interested in the effects on individual students’ performance than in school
effects.

The choice of a CWC model is based on a distinct interest in separating
individual effects from school effects, with an underlying idea that two sepa-
rate models are tested: an individual student model and a school-level model.
In that situation the decision to center and not to add the mean to the model
is based on theory. If theory indicates, in our example, that the mean level
of ‘SES’ and/or ‘HomeWork’ is a sector characteristic, the question
remains whether that characteristic needs to be controlled for before any
comparison between sectors can be made. As is illustrated, it does make a
difference.

It is up to the researcher to fit either a RS, a CWC(N), or a CWC(M)
model. We have illustrated that this choice is an important one, and may
not be easy to make. Centering is good for technical purposes, since it
removes high correlations between random intercept and slopes, and high
correlations between first- and second-level variables and cross-level inter-
actions (see Section 5.7). Centering stabilizes the model, and allows one to
look at coefficients as more or less independent estimates. Statistically we
know that centered models are more stable models, for instance by deleting
the correlation between the centered first-level (= student) and second-level
(=school) variables. On the other hand, centering is fitting another model,
a model that may not fulfill the requirements of the investigation.

As we discussed in Chapter 2, a contextual model can be fitted with and
without centering. That discussion related to fixed coefficient models, and
showed how the total variance can be divided up in several ways. Depending
on the way the data are treated (as centered) or not treated (as raw scores) the
interpretation of the coefficient for the context effect changes. In the raw
score model the context effect is defined in Chapter 2 as by, — by, while the
centered context effect is b5. In RC models centering has this same effect,
plus an effect on the random coefficients. In fixed as well as in RC models |
the decision to center or not to center is, however, still the same; it needs
to be decided from situation to situation. If one decides to center, the only
advice we can give in this book is to add the subtracted mean to the
model. If this is not done, and a CWC(N) model is fitted, an uncorrected
between-schools effect is measured. This between effect is not corrected for
the mean effect of the centered first-level explanatory variables. This may
be exactly what one wants, as in growth curve models, where the explanatory
variable is time.

By showing the consequences of the choices in centering, and by illustrat-
ing it based on a real data set and a realistic research question, we hope to
have attracted the attention of researchers to this problem. Our illustration
may give researchers reasons to think hard before applying centering
merely because they desire statistical stability. If centering is used for the
right reasons it does indeed carry the reward of less confounding of the para-
meter estimates. This gain is equally large for fixed as well as for random
coefficient models.
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5.3 Modeled variance

Frequently Asked Question 2. How is ‘explained variance’ or R? defined in
hierarchical linear models? Is there an analog to the multiple correlation
coefficient? In particular, can we say how much of the variation in the out-
come is ‘due’ to group factors, and how much to individual factors? What
happens to the various quantities we estimate if we add more variables?

It is interesting, from the user’s point of view, to redefine the classical
notions of ‘multiple correlation’ and ‘explained variance’® in multilevel
models. Unfortunately, this is not simple, since two different versions of
the between variance can be defined, written below as 72 and w®. This last
definition of the between variance is used by Snijders and Bosker (1994).
Using one or other definition results in different estimates for the within as
well as for the between modeled variance. We do not discuss which of the
two ways of calculating R?s is most valuable or most correct, since the con-
cept has rather limited use in multilevel modeling. It is well defined in group
mean centered models and models with random intercept only. The main
reason for the limited use is that it cannot be uniquely defined in models
with random slopes.

The development of our discussion builds on Snijders and Bosker (1994),
where the discussion of modeled variance is related to that of centering (see
Section 5.2).

In ordinary least squares, without any partitioning into groups, we could
fit the standard regression model with a single explanatory variable x;;, given
by

yi = a+bx;+¢;. (5.6)

The error term, g, has a mean of zero and variance ¢°. The maximum like-
lihood estimate of the parameter o is the variance of the residuals. To put it
another way, the residual sum of squares around the fitted regression line
estimates the residual variance.

We also have the familiar analysis of variance table, in which the sum of
squares ‘due to regression’ and the sum of squared ‘residuals due to regres-
sion’ add up to the total variance of the y;. The same is true for the ‘contex-
tual’ models of Chapter 2, in which the estimation technique is always OLS
(although with different sets of explanatory variables). In all these examples
there is only one variance component parameter in the model, and it is esti-
mated by the sum of squares of the residuals. It continues to make sense to
call one component the modeled variance, or to define the squared multiple
correlation coefficient as the proportion of variance due to regression.

But even in this simplest of contexts, the approach (and perhaps the termi-
nology) already gets us into trouble if we wish to say how much of the
modeled variance is ‘due’ to the first explanatory variable, how much to
the second explanatory variable, and so on. For uncorrelated explanatory
variables, which basically only exist in balanced design experiments, the
modeled variance is the sum of squares of the regression coefficients. Thus
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the square of the regression coefficient of a variable is the variance modeled
by that variable. But this scheme fails miserably with correlated explanatory
variables, leading to endless discussion on how much variation is ‘explained’
by genes and how much by environment, or how much by race and how
much by socio-economic status. Social scientists have proposed various
ways out of this dilemma, but those that stay within the regression paradigm
are not very convincing. And, as we shall see below, life becomes consider-
ably more complicated if the multilevel model is true, and/or if we use multi-
level techniques to estimate the parameters.

5.3.1 Random intercept models

By now the equations of random coefficient models are familiar, with the
underlining of random variables. A random intercept model is again defined
by

Yi =+ Bx; + €5 (5.7a)

where the intercept is related to a second-level variable z,
g_j = a+7zj+§j. (57b)

The two equations each show an error term where the variance of the resi-
duals at the first (=student) level, Eij> 1s a and the variance of the residuals
at the second (=school) level, §;, is - If these two variances summed to
some meaningful total variance, our problem could be easily solved. But
unfortunately, the two variances are confounded in the between part, as
we will show when we discuss the equation for the deviance.

In the model the deviance A is given by

A = mlogw® + m(n — 1)logo® + SSQ:;S% b + SSQOEV(ﬂ) . (5.8)

In this somewhat complex equation m is the number of groups, n the number
of observations within groups. For convenience we assume that the design is
balanced, that is to say, we have m groups of size n. SSQp is the sum of
squares between and equally SSQy is the sum of squares within. The
quantity w? is the ‘total between’ variance, which is defined as the sum of
the variance within and n times the variance between: w” = o* + n7’.

For convenience we also assume that all variables are expressed as
deviations from the grand mean, so we can forget about «, the fixed part
of g, in equation (5.7). To explain why the two variances are confounded
we employ deviation scores, using X; and j; for deviations from the
group mean, and X; and ¥; for group means. The within sum of squares is
defined as

m

SS0w(B) =3 z"j — B, (592)

j=1i
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while the between sum of squares is defined as
55Q5(v,8) = nz — yz; - A% (5.9b)

What these equations tell us is that the second-level regression coefficient
only occurs in the between sum of squares, but the first-level coefficient 3
occurs in both. This is a form of confounding: we cannot nicely separate
the parameters into between and within parts.

Equation (5.8) also shows that the deviance is a weighted sum of the two
residual sums of squares, with weights given by the variance components.
But we observe more confounding: the between-group sum of squares
SSQz(7,0), the third term in (5.8), gives information about «?, and thus
about both % and 72. Both the within and between sums of squares give infor-
mation about 3 (see the last two terms in equation (5.8)). This reflects the fact,
already discussed in Chapter 2, that the regression coefficient 3 has a between
as well as a within component. It is clear from equation (5.8) that SSQy and
SSQp are confounded in 8. This confounding is not present when x is
expressed in terms of deviations from the group mean. In such cases all X;
are zero, and consequently 3 does not occur in SSQ (7, ), and the maximum
likelihood estimate 3 of 3 is simply by, . Alternatively, as we saw in Section 5.2,
we can add the group mean as a second-level explanatory variable. This means
that X; gets its own regression coefficient, and we still have g = by.

After the computation of the maximum likelihood estimates of § and ,
the variance component maximum likelihood estimates are calculated.
Again we need some formulas to illustrate the definition of the variance
within and the variance between:

= m_(mssgw(,é), (5.10a)

2 Leen oz
o = —5505(5, ). (5.10b)

Above we defined the total between variance as w?, where W =0+ n'rz,
which implies that the intercept variance (or the between-group variance)

72 is estimated by

P=2"7 (5.10c)
This formula works prov1ded that the 7 thus defined is non-negative. We run

into problems if 6 > &, which results in #2 < 0, which of course does not
make sense.

5.3.2 Using the null model as a way to calculate R?

In the analyses of Chapter 4 we sometimes used the null model to define what
we mean by multiple correlation and ‘explained’ variance in multilevel
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models. The null model is defined as a model with a random intercept only.
The intercept has error terms at both levels, the second level (6;) and the first
level (g;;). Thus

yi=a+b+ey (5.11)

The variances of the error terms are the variance components #2, which
defines the between variance, and &(2,, which defines the within variance. In
the balanced case, 'fg is simply SSW g, while &(2) = SSOw.

If we fit more elaborate random intercept models, by adding variables, we
find new variance component estimates, # and &%. Using the estimates for
the variance components obtained by the null model and subtracting the
newly found variance components, we hope to find a reduction in error
variance. For instance, in our data we expect that the addition of a
student-level variable will mainly reduce the within-schools variance, that a
group mean centered score will only reduce the within-schools variance,
and that a school-level explanatory variable will only reduce the between-
schools variance. A reduction of error variance at one or other level can be
stated in a percentage reduction, which is the value for ‘explained variance’
or R%. The calculation of the two R’s, using the null model, can be done
by using the equations (5.12) for R as well as for RY,:

a2 a2
N Ty — T
Rp= =7, (5.12a)
0
a2 A
Ry = 062"%. (5.12b)
0

These equations show that to calculate both R*s we take the variance of the
new model and subtract it from the variance of the null model. The difference
is compared to the original variance (the null model variance) as a proportion
reduction in that variance. This simple approach has its limitations, since 1t
can lead to negative multiple correlation coefficients. As noted before, the 7 2
defined by (5.10c) can be negative. And, as mentioned in the introduction, it
does not really apply to the case in which we have random slopes.

5.3.3 Using total between variance

By employing the definition of the total between variance &? as used by
Snijders and Bosker (1994), we will illustrate again what happens if we add
a variable to the within and the between variance. First, we add a second-
level variable It has no within variation, so 47 and R}, remain the same.
But wl, the total between variance, is reduced and thus, because we know
that &* = 4% + n#?, # is reduced as well. This means that R} increases,
which makes perfect sense.

If we add a variable with no between variation (i.e. in terms of deviations

from the group mean), then 6% decreases and R%, increases. Again, this
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makes sense. But &? remains the same, which implies that #% increases, and
R3 defined by (5.12a) decreases. This is strange. We add a variable, without
between-group variation, and the between-group multiple correlation coeffi-
cient becomes smaller. This is again because of confounding. If we were to
define

Rp=—7 (5.13)

instead, using the ‘total between’, then RB would remain the same, which
makes more sense. This is basically what Snijders and Bosker propose.
Generally, of course, varlables W1ll have both within-group and between-
group variation. Thus both 6 al and &} will become smaller, but it will still be
the case that adding a variable with a small amount of between-group varia-
tion will tend to increase the estimate 7'1 , and thus the intra-class correlation.

5.3.4 Conclusions

In this section we have shown that in multilevel models error variances can
increase when a variable is added to the model. This is counter-intuitive,
because we have learned to expect that adding a variable will decrease the
error variance, or at least keep it at its current level. Reasons for an increase
in SSQp and/or SSQy are discussed in the formulas of this section. It is
shown that, given that w ? remains the same changes in one part (in o? or
%) induce changes in other part (7% or ¢%). The confounding of SSQy and
SSQp can be avoided by using group mean centered explanatory variables,
with the subtracted means introduced separately as second-level explanatory
variables. That this treatment of the data has consequences for the interpre-
tation of the analysis is discussed in detail in Section 5.2. In general we
suggest not setting too much store by the calculation of an R} or Ry
Both concepts are ill defined and ambiguous, while their usefulness is limited
to random intercept models.

5.4 Power

Frequently Asked Question 3. What can we say about the power of regression
analyses if we use hierarchical linear models?

This question is far too general to be answered in a satisfactory way. The
power functions shown in this section are only a few of the many power
functions possible. The form of the function depends, among other things,
on the null model. The null model, defined earlier as a model that divides
the variance of the response variable into a within and a between part, can
have low or high intra-class correlation. Compare again Table 1.1 in Chapter
1, where the work of Barcikowski is reported. This shows that size of the
group in combination with the magnitude of the intra-class correlation
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have different effects on the power to reject the null-hypothesis, given that the
assumed alpha level is set to 0.05.

Remember also that the power is the probability of rejecting the null
hypothesis if it is not true. Thus power depends on the null hypothesis, but
also on the particular way in which the null hypothesis is not true. Many
of the assumptions of the null model can be violated, and each type of
violation leads to a different ‘power curve’. Assumptions that can be violated
are:

e that the g; are independent;

that the g ; are normal with mean zero and constant variance o%;
that all §; are also normal and independent, with mean zero and variance
7%; and
e that the §; and g, are independent.

Also power curves may differ depending on the estimation method used, the
strength of the intra-class correlation, the strength of the effect, and the
number of observations.

Let us start with a simple model again. The simplest non-trivial multilevel
model is one with a random intercept only:

Yi = o+ Bx; + g (5.14a)
o =a+; (5.14b)

In order to discuss the power of a test for a particular effect — say the effect 8
— we need to define the deviation of the fitted and true models and the
estimation method of 3. Since power is defined as the probability of finding
a significant effect, when such an effect is indeed present in the data, the test
of significance is crucial here. The test of significance leans heavily on the
standard error of the estimated 3. Thus the estimated sampling variance of
3 determines the power of the regression model. If this sampling error is esti-
mated to be small, the power is large; if the same sampling error is estimated
to be larger, the power is smaller.

This will be demonstrated by discussing three different estimates of the
sampling variance of ﬁ. One estimate is the variance of the maximum like-
lihood estimate, V(8).). Another is a variance of the OLS estimate
V(ﬁOL s) which has the correct variance for multilevel models, since it takes
the intra-class correlation into account. The third is produced by the usual
regression methods, where intra-class correlation is ignored, which is the
OLS variance estimate Vo,5. We do not give the precise formulas here,
because they are not very interesting. But it is possible to show that in general
the ‘incorrect’ variance OLS estimate is the smallest, while the ‘correct’ OLS
variance estimate is the largest. The maximum likelihood estimate lies in
between:

Vors < V(Buw) < V(Bors)- (5.15)

One conclusion is that using the incorrect OLS estimate Vs gives the
greatest power, as a direct result of having the smallest standard error. The
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trade-off is that it may not always be the best one to use. If we do not assume
intra-class correlation when it is present, we underestimate the standard error
of the regression coefficient. In that case we claim to have more precision
than we really have. In consequence we are more likely to obtain a significant
result, with the downside that we may falsely reject the null hypothesis. This
has been demonstrated by Barcikowski (see Table 1.1 in Chapter 1), and will
be illustrated again in Figure 5.1.

Thus we distinguish three choices for the standard error we may use in the
significance test.

1. The OLS estimate of 3 has standard error V(3p.s). In the test we use
Vors, which is the wrong standard error (if the multilevel model is
non-trivially true). Using these standard errors amounts to assuming
that the intra-class correlation is zero, when it is not.

2. The OLS estimate of 3 is used with standard error V(83p,s), which means
we use the correct standard error in this case, since it takes the intra-class
correlation into account.

3. The maximum likelihood estimate of 3 is used with standard error
V(B ), which is also the correct standard error in this case.

5.4.1 Some simple cases

In this subsection the power for a simple test situation is studied, and we use
a one-sided test of the null hypothesis that 3 is zero. Thus we reject Hy at
level o = 0.05 if the computed £, divided by its (known) standard error, is
larger than z(a), say z equal to or larger than 1.96, the usual normal-
theory signiﬁcance level. Actually, we allow for the possibility of using the
‘wrong’ standard error. Let us make this a little clearer. If we compute 8
by maximum likelihood, then the correct standard error to use in the test
is the square root of V(Ba) If we compute B by OLS, then we should
use V(BoLs). But we may compute 3 by OLS and use Vs, which is not a
correct estimate of the standard error in the multilevel model in equation
(5.14). The probability that we reject Hy (i.e. the power) is consequently
the probability that 8, divided by the standard error we use in the test, is
larger than z(a).

By computing the rejection probabilities for the three estimation methods
we obtain three power functions, shown in Figure 5.1. The functions are
based on one-sided testing in one specific situation. The example is one of
many possible, where the 1ntra class correlation, the ratio of Vp(x) to
Vr(x), is 0.50, and where w? =10, 6> = 1, and a = 0.05. The horizontal
axis in the figure is the true value of 3, and the vertical axis is the probability
of rejection of the null hypothesis 5 = 0.

The figure should be read as follows. The rejection of the null hypothesis
should happen whenever the ‘true’ value is larger than zero (one-sided test).
The higher the probability of rejection of the null hypothesis when it should
be rejected (i.e. when values are larger than zero), the higher the power of the
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Figure 5.1 Power functions (probability of rejection as a function

of 3).

method. But equally important is the bias of the three methods, when
chances are higher of wrongly rejecting the null hypothesis when the true 8
is zero. The three curves represent the three cases discussed earlier. The
solid line shows the power of the test of the OLS estimate if we use the
‘wrong’ standard error. The dashed line represents OLS with a correct
standard error, and the dotted line the maximum likelihood results, also
with the correct standard error.

The figure shows that for all methods the probability of rejecting the null
hypothesis increases with larger effects (the true 3). Thus all three tests are
consistent. But the three functions are not equal. The solid line, which is
based on the OLS estimate with incorrect standard error, rejects the null
hypothesis much too often when the true value of 3 is zero. We see here
(see also Table 1.1) that using the wrong standard error means that we
reject the null hypothesis with a probability of about 0.25, instead of the
correct 0.05. Thus this particular test is strongly biased. We are eager to
reject, and we do not protect Hy at all.

At the same time the power given by the solid curve (using the wrong stan-
dard error) is highest for true but small values of 3 between zero and 2.5.
When the true value of 3 reaches 2.5 the power function, representing the
maximum likelihood estimate (the dotted curve), shows the highest prob-
ability of rejecting the null hypothesis. The dashed line, which uses the
correct OLS estimate, remains the least powerful in all situations, although
it is unbiased (i.e. has the correct value 0.05 if 8 = 0).

Overall, the maximum likelthood power function shows the best results.
First, it shows a decent alpha level for the probability of committing
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a type 1 error, which is never higher than the acceptable 0.05 level. Second, it
shows the highest power by reaching most quickly a probability of 1.00 of
rejecting the null hypothesis. Using the correct standard error in OLS
lowers the power (we reject less often over the whole range). Maximum
likelihood gives us the best of both worlds: no bias and almost perfect
power.

When group size is small and intra-class correlation is high, using the
wrong OLS standard error causes even more false rejections of the null
hypothesis, as is illustrated in more detail in Figure 5.2. In this figure the
null hypothesis 8 = 0 is true, and we use the test with the wrong standard
error Vos. We plot the probability of wrongly rejecting the null hypothesis,
as a function of the intra-class correlation for two group sizes. In Figure 5.2
the intra-class correlation is plotted on the horizontal axis, and the probabil-
ity of falsely rejecting 3 = 0 on the vertical axis (note that for a one-sided test
the highest probability of rejection is 0.50). The solid line is for group size
n = 10, the dashed line for group size n = 100. The two curves in Figure
5.2 show the same pattern as the numbers in Table 1.1 in Chapter 1, based
on the work of Barcikowski. The alpha level is maximal (and close to 0.50)
with values of the intra-class correlation above 0.50, especially when the
group size is large. The solid line shows that when group sizes are small
(n =10 in our example) the probability of incorrectly rejecting the null
hypothesis is lower than when group sizes are large. Figure 5.2 shows that
in all cases, using the incorrect standard error leads to too frequent rejection
of the true null hypothesis, even for moderate values of the intra-class
correlation. It is to be expected that roughly the same results will be found
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for two-sided testing, and for the situation where we use t-tests when the
variance components are estimated.

5.4.2 Review of simulation studies

Monte Carlo simulation is another way to evaluate the power of multilevel
modeling. Many different parameters can be studied, and all have their
own ‘ideal’ conditions for maximum power. We can distinguish two broad
categories of parameters that are of interest for researchers, the fixed effects
(the gammas) and the random effects or variance components (the taus), as
summarized below.

e The gamma estimates: the micro-level parameters for slope (o), intercept
(00) and cross-level interaction between micro and macro levels (), the
macro parameters for intercept (vq;) and slope (7;).

e The variance components: micro variance (¢?), and macro variances for
intercept (7g9) and slope (71,) and the covariance between the two (7).

For the gamma estimates, there are, as far as we know, three different
simulation studies (Bassiri, 1988; Kim, 1990; Mok, 1995) and two theoretical
papers on power (Snijders and Bosker, 1994; Cohen, 1995). Bassiri and
Kim report on the power of the gammas under variable intra-class corre-
lations, sample sizes and various numbers of groups. There are two
studies that report on the behavior of the variance components in simulation
studies with different intra-class correlations and different numbers of groups
and observations within groups (Busing, 1993; van der Leeden and Busing,
1994).

The conditions used in Bassiri’s study are:

e two different intra-class correlations, 0.10 and 0.25;
e different numbers of groups, between 10 and 150; and
e different numbers of observations within groups, between 5 and 150.

Kim’s data replicate a real situation based on the Second International
Mathematics Study (SIMS) data. From his simulated data set 50 samples
are drawn, over several conditions. Kim’s conditions are:

o different relationships in the data — low-magnitude, high-magnitude and
mixed-magnitude models;

o different numbers of groups — 25, 50, 100 and 200; and

o different numbers of observations within groups — 10, 20 and 40.

The questions answered by the simulation studies are very similar. Both
conclude that the rules are different for first-level estimates than for second-
level estimates, and again different for cross-level interactions. To reach an
acceptable level of power for first-level parameter estimates the total number
of observations is important. The same rules apply as in traditional linear
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models, with the exception that higher levels of intra-class correlation need to
be offset by larger numbers of observations. The power of second-level
estimates depends clearly on the number of groups. It is reasonable to ask
whether a researcher should collect more groups or collect more individuals
within groups. Three papers address this issue. Snijders and Bosker (1994)
calculate the trade-off between an increase in the number of groups and the
power together with a minimization of cost. They show that it may be many
times more costly to collect more groups than more individuals within a
group. Two other papers dealing with the same problem, both unfortunately
unpublished, are by Cohen (1995) and Mok (1995).

Cohen (1995) takes the costs of sampling an additional school or an
additional student within a school into account. He then uses approximate
expressions for the standard errors of variance components or regression
coefficients to find the optimal number of students per school that should
be sampled. It turns out, in most cases, that this number is inversely propor-
tional to the square root of the ratio of the between- and within-variance
components. The proportionality factor is determined by the costs.

In Mok (1995), simulation is used to show the following.

It was found that, consistent with advice given in the classical literature of cluster
sampling designs, if resources were available for a sample size », comprising J
schools with 7 students from each school, then less bias and more efficiency
would be expected from sampling design involving more schools (large J), and
fewer students per school (small /) than sample design involving fewer schools
(small J), and more students per school (large I).

The power to detect cross-level interactions is studied by Bassiri (1988) and
van der Leeden and Busing (1994). Both studies show that to obtain sufficient
power to detect cross-level interactions at least 30 groups, and 30 observa-
tions within each group, are needed. It is also observed that 60 groups,
with 25 observations per group (total n = 1500), will produce sufficiently
high power. With fewer groups, for instance 30, many more observations
per group are needed to obtain a power of 0.90. When many groups are
present, for example 150, five observations per group will suffice to obtain
a power of 0.90, bringing the total number of observations to 750. Using
fewer observations (either groups or individuals) leads to a rapid decline of
power for the detection of cross-level interactions. To obtain a high power
of 0.90, Bassiri finds that collecting data over many groups, instead of over
many individuals, produces the most favorable situation for the detection
of cross-level interaction effects.

The results of the two simulation studies that report on the behavior of
the variance components under different conditions (Busing, 1993; van der
Leeden and Busing, 1994) show that irrespective of method (IGLS or
RIGLS), the variance components are underestimated or biased downward,
while bias is only absent in large data sets with 300 groups. Samples with a
small number of groups, for instance 5 and 10, produce widely different
values, none including the true value. For the conditions of these studies, see
Section 5.6.
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5.4.3 Conclusions

The difference in power is based on the error variance of the fixed effects. Our
conclusion was that maximum likelihood estimation gives overall the highest
power. Since the fixed effects are not affected by estimation methods, but
the standard errors are, we conclude that for the fixed estimates the
EB/ML estimation method, as employed in multilevel models, has on
average the highest power and the lowest probability of making a type I
error (see Figures 5.1 and 5.2).

To obtain sufficient power we need, in general, large numbers of obser-
vations, unless the effects in the data are very strong and easily detected.
The ideal number of observations will differ from situation to situation,
and from data to data. When the number of groups is small, the random
components are underestimated (in IGLS) or have large standard errors
(in RIGLS). Sufficient power for finding cross-level effects can be
obtained when groups are not too small, and the number of groups is
larger than 20.

Of course results depend very much on the strength of the effect, which is
true for all estimates, as well as on the intra-class correlation, which is espe-
cially true for second-level estimates and cross-level interactions. At the
beginning of this section, we said that it was not easy to answer the general
question posed as FAQ 3. Much can be said, but the many different factors
that are involved make it hard to state unambiguous conclusions, or even
suggest useful rules of thumb. The simulation studies show that the answer
is more straightforward for fixed effects than for random effects. For other
reasons, such as cost-effectiveness and ease of data collection, the problem
of more individual observations versus more groups becomes important, as
discussed in the three papers we cited in this section.

5.5 To be or not to be random

Frequently Asked Question 4. A coefficient in a multilevel analysis can be non-
random and constant for all groups, it can be non-random and variable over
groups, and it can be random (which also means, of course, that it is
variable). What does it mean to choose either one of these options, and
what are the consequences of changing from one option to another?

We will show that, as usual, the answer is different in different situations. It
makes a difference if a random slope is part of the model or if only a random
intercept is included in the model. The answer also depends on the relative
sizes of the between and within regression coefficients, and on the ratio of
the individual-level and group-level variances. Under simplifying conditions
we will derive some formulas that make it possible to show that the estima-
tors for the fixed effects change by adding a random intercept and/or random
slope. This change can be small or large, depending on the size of the first-
level variance o* and the second-level variance 7.
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5.5.1 ANCOVA versus RANCOVA versus simple
regression

We first look at the analysis of covariance, that is to say, at the model
-Xij = Clj + ﬂx,-j + QU (516)

This looks like an ordinary regression model, apart from the subscript j for
the intercept, indicating that it is expected to vary among groups. Since inter-
cepts are means (or, in this case, corrected means), it is assumed that means
are different. In an ANCOVA model the means are compared. Thus each
group has its own intercept, and the intercepts are modeled as fixed,
unknown quantities. All groups have the same constant slope 3 for their
regression lines.

The corresponding random coefficient model, which we call RANCOVA,
looks very similar, with the difference that the intercept is not only variable,
as in equation (5.16), but also random, as indicated by underlining « in equa-
tion (5.17) below. This distinction between an intercept that is variable or
random is important in a statistical as well as conceptual sense. We write
the RANCOVA model as

Yy =+ Bx; + g,vj,' (5.17a)

with
o =a+§;. (5.17b)

The difference between ANCOVA and RANCOVA is, in the first place, at
the conceptual level. The ¢; in equation (5.16) can be any set of numbers.
They can vary wildly, be bimodal, one of them can be very much larger
than the others, and so on. In contrast, the g; in equation (5.17a) are assumed
to be a random sample from a normal distribution with mean ¢ and variance
2. This imposes a certain regularity on them, especially when the number of
groups is large.

Also observe that if the group-level variance 7~ is zero, that is, there is no
disturbance term in equation (5.17b), then the RANCOVA model becomes
y; = a+ Bx; + g;. This defines an ordinary linear regression model, instead
of an ANCOVA model, since « is now a constant which does not vary over
groups.

In comparing the consequences of (5.16) and (5.17) we see that in
ANCOVA there is more structure in the means. The regression lines are
parallel straight lines, one line for each group (see Figure 3.1 in Chapter
3). In RANCOVA there is only a single line, but there is more structure
in the variances (see Figure 3.4 in Chapter 3). In particular, observations
in the same group are correlated. Another way of formulating the distinc-
tion is that in ANCOVA we use the means for modeling, while in
RANCOVA we rely more on the variances and covariances. These
differences are also illustrated in the figures in Sections 3.3 and 3.4 of
Chapter 3.4

2
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It is of interest to look at the differences between the maximum likelihood
estimates of the slope 3 in the ANCOVA and RANCOVA models. This
is done in detail in Longford (1993). We only give a short introduction here.

For completeness we also draw a comparison with the ordmary linear
regression model, which has a single variance component o?, but which
supposes all intercepts o; to be equal to a. Thus if we go from ordinary
regression to ANCOVA we see the effect on the slope of allowing the inter-
cepts to be varying, and if we go to RANCOVA we see the effect of allowing
them to be random. All the estimates of 3 we discuss are weighted means of
the between-groups regression coefficient by and the within-groups regres-
sion coefficient by,. They are all unbiased, in both the ANCOVA and
RANCOVA models.

Our starting point is the classical contextual formula (2.7), which we repeat
here:

br = 17 (x)bg + (1 — 7 (x))bw. (5.18)

Remember that n*(x) is the squared intra-class correlation, that is to say, the
proportion of variance that is between groups. The formula tells us what
happens if we go from simple regression, in whlch the slope estimate is b7,
to ANCOVA, in which it is by,. We see that if 7 (x) is close to zero, then
the total regression coefficient b7 and the within-groups regression coefficient
by will be approximately equal. This happens if there is very little variation
in the group means. Also, if b5 and by, are approx1mately equal, then by will
be close to both by, and bg, no matter what 7 (x) is.

It can be shown that in the balanced case in RANCOVA, in which all
groups are of equal size n, the maximum likelihood estimate satisfies an
equation very similar to (5.18). It is more complicated, because it now
involves the variance components, but the structure of the formula is exactly
the same. Both are weighted averages of by and by, with non-negative
weights that add up to one. The maximum likelihood estimate of the
slope is

N (x) (1 -7'(x)

P = S+ (-2 P T N+ (-7 200" (5.192)
where
2
g
N (5.19b)

Observe that )\? is the ratio of the first-level variance o? and the between-
group \gariance w?, discussed in Section 5.3, where we defined it as W=

+ n7°,

The maximum likelihood RANCOVA estimate of beta, ﬂML, will be
bctween the two extremes by and by . If all vanance is at the first level,
then A% = 1; that is, if the second-level variance 72 =0, then ﬂML = br.
This makes sense, because we have just shown that in this case
RANCOVA becomes the simple linear model with a fixed intercept c.
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If the between variance is very large compared to the first-level variance o’

then \? is close to zero, and BML will be close to by, the ANCOVA estimate.
This happens, for example, if the group size is very large, because in that case
nt? will be large.

If n*(x) = 1, that is to say, if x is a group-level variable and has no within-
group variance, then 3 = bg; and conversely, if x is group mean centered and
has no between-group variance, we see that 8 = by,.

Thus the question what will happen to the estimate of the slope if we make
the intercept random has the usual, somewhat unsatisfactory, answer. It
depends. Let us compare ANCOVA and RANCOVA. If n7? (i.e. either
the second-order variance or the group size or both are large), it will not
make much difference. In this case A’ is close to zero, and thus the weight
of bg in equation (5.19a) will be close to zero. As a result the maximum like-
lihood estimate in RANCOVA will be close to by,. Using the same reasoning,
if %(x) is small, it will not make much difference either. For RANCOVA to
be different from simple regression, we must have an appreciable difference
between bB and bW But even if bB and by are very different, we can still
have (3, close to by if the intercept variance 72 is small.

5.5.2 Fixed versus random slopes

If random slopes enter the picture, things are no longer quite so simple. Our
FAQ in this case can be formulated as follows. Let us first estimate slopes and
intercepts in the submodel in which the variance of the slope is zero, that is,
the slope is fixed. Then we estimate the slopes in the model which does not
make this additional assumption, that is, we ‘make § random’. What
happens to the estimates & and (3 of the intercept and slope?

Let us consider a simple model, with a single explanatory variable,

Yy =9+ Bxy + £ (5.20a)

where intercept and slope are both random
o = o+ &y, (5.20b)
B =B+ (5.20c)

In order to keep matters simple we assume various conditions that make the
design balanced.” We assume that all groups have the same size #, that the X
are expressed as deviations from the group mean, and that the sum of squares
s; of the x;; is the same for all groups too. Moreover we suppose §y; and §,;
are uncorrelated, with variances 7¢ and 7f. These assumptions may seem
somewhat specific, although they do hold in various balanced repeated mea-
sures situations. We hope that the results we find will be approximately true
in cases in which the assumptions do not hold or hold only approximately.

Under our simplifying assumptions, and after some unpleasant calcula-
tions, we find that the maximum likelihood estimate of « is always equal
to the corrected mean. Of course, the correction depends on the maximum
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likelihood estimate of 3, which is given by another equation similar to (5.18)
and (5.19), in the sense that it gives yet another weighted average of bp
and by:

3 Mg’ (x) A(1 - r'(x)
ﬁML = bg + by. 5.21a
R0+ N0 — 7o 2 X + [ - ey O
Here we have two measures of the within—between variance ratio, one (/\(2))
related to the random intercept and one (\3) related to the random slope:
2

M=o 5.21b
0 02+n'rg ( )
2
g
)\ Jp—— 521
1= 52 + s7? (5.21c)

Observe that if 7'12 = 0, that is, the slope is not random, then the estimate in
formula (5.21a) becomes identical to that in Formula (5.19a). By comparing
the two we can see what happens if we ‘make the slope random’.

The same type of d1scuss1on is possible here as in Section 5.5.1. If A (x) is
much smaller than A}(1 — 7%(x)), then Gy, will be close to by. By checkmg
equations (5.21) the reader can easily find out when these products are small
and when not.

If A} and A? are about equal, then By will be close to by. If we make the
slope random, then the estimated A? will decrease. If everything else remains
the same, then this means 3y, will become more like bp.

We can study, along similar lines, what happens to the standard error of
the regression coefficients if we ‘make them random’. But we have to be
very careful here, for the same reasons as in Section 5.4. The standard
error depends both on the model we fit and on the model that is true. We
can fit a model that is not true, such as a model that fits a fixed slope
which is ‘really’ random. But we can also fit a model with a random slope
if the slope is ‘really’ fixed. Since fixed is a special case of random, this is
not really ‘wrong’. But we can expect that ‘making the slope random’ will
have quite different effects in both situations.

It will probably not be surprising that things become a bit too complicated if
we add more variables, and look at the effect of making one variable random
on the regression coefficients of the other variables. In order to study these
more complicated model selection choices, we cannot do without matrix
algebra, and that would take us beyond what we wish to discuss in this book.

5.6 Estimation techniques and algorithms

Frequently Asked Question 5. What are FIML, REML, EM, IGLS, RIGLS,
EB/ML, OLS, GLS?

As indicated in the paper by de Leeuw and Kreft (1995), it is important to
distinguish models, techniques and algorithms.
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A model, more specifically a statistical model, consists of a number of equa-
tions that describe relationships between random quantities. Remember that
random coefficient models deal with fixed predictors, but in the model there is
always a random part (indicated by underlining in this book), consisting of
the disturbance terms and/or the random coefficients. Models generally
have a number of unknown parameters, which are used to describe particular
instances of the model. If our model is a single normally distributed random
variable, then the parameters of this model are the mean and variance of the
normal distribution. As our discussion of centering in this chapter shows,
sometimes the same model (i.e. the same family of random variables) can
be described using different parameterizations.

A statistical technique is a function, or program, that takes the data as input
and produces values of the unknown parameters. More generally, a statistical
technique transforms the data into a number of statistics. Such statistics can be
estimates of model parameters, but they can also be descriptive statistics, or
even tables or graphs. Very often, a statistical technique is derived by applying
a statistical principle to a model. The statistical principle might be maximum
likelihood or least squares. A statistical principle is used to associate a techni-
que automatically with a model. If the model is a particular multilevel model,
then applying the principle of maximum likelihood tells us to compute maxi-
mum likelihood estimates of the parameters of the model.

Techniques are implemented by algorithms. Even after we have decided
that we must compute maximum likelihood estimates in a given model, we
still can use different algorithms to carry out the computations. In fact, if
we want to be even more specific, we could argue that even choosing an
algorithm does not completely determine what we are going to do. It
makes sense in many cases to distinguish different computer programs imple-
menting the same algorithm, in the same way as we distinguish different
algorithms implementing the same technique.

With these distinctions in mind, we can now discuss some of the common
techniques and algorithms used in multilevel analysis. We have already dis-
cussed, in Chapter 1, the many different models and the different computer
programs implementing the algorithms.

The dominant principle used by the developers of multilevel techniques is
maximum likelihood. Some confusion is possible, however, because one can
apply the principle in two slightly different ways. Multilevel models describe
the dependent variable y, and apply the principle of maximum likelihood to
this model. The distribution of y is assumed to be normal, with a mean
depending on the regression coefficients, which are, in the notation used in
this book the v,, and a dispersion depending on the variance components,
in our notation w,, and o?. These are the parameters that are estimated by
the corresponding technique, which is simply called maximum likelihood,
but sometimes also full information maximum likelihood or FIML.

Alternatively, we can apply the principle of maximum likelihood to the
least-squares residuals. This is known as restricted or residual maximum
likelihood, or REML. It means that we first remove the effect of the fixed
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variables: remember that the residuals are uncorrelated with all the fixed
variables in the model. The distribution of the residuals is also normal,
because computing residuals from y just involves taking weighted sums.
But the distribution of the residuals no longer depends on the estimates of
the fixed effects, the =, it only depends on the variance components. Thus
applying the maximum likelihood principle to the residuals implies we
cannot estimate the regression coefficients. This is somewhat unsatisfactory,
and thus we invoke another principle to estimate the regression coefficients.
This other principle is generalized or weighted least squares (GLS), in which
we use the estimated variance components to construct the weight matrix.

Some other principles that are invoked in this context are Bayes and espe-
cially empirical Bayes. In a fully Bayesian approach unknown parameters are
thought of as random variables, with a known prior distribution. This makes
Bayesian regression quite similar to random coefficient regression. The distri-
bution of the regression coefficients corresponds with the prior distribution.
In fully Bayesian statistics we use the prior distribution in Bayes’ theorem to
compute the posterior distribution of the parameters. This leads to very com-
plicated computations, which are often implemented by using Markov chain
Monte Carlo algorithms such as the Gibbs sampler. In empirical Bayes we do
not assume that the prior distribution is completely known, but we assume
that it depends on a number of unknown parameters that also have to be
estimated. Thus this approach is very similar indeed to the random coefficient
or multilevel approach; in fact it turns out that empirical Bayes is basically
identical to maximum likelihood.

As far as algorithms are concerned, there are many possibilities. HLM
(Bryk et al., 1996) uses the EM algorithm to compute its REML estimates,
with some special steps to accelerate convergence. The EM algorithm is a
general method to compute maximum likelihood estimates in cases in
which there are missing data (or random parameters). The special form of
the likelihood in such cases suggests a method to approximate the compli-
cated function we are maximizing by a simpler one. In each step we maximize
the simpler function, and then we form a new and hopefully better approx-
imation. EM is constructed in such a way that convergence is guaranteed,
but often this is painfully slow.

The Gauss—Newton method, which is in this context also known as the
method of scoring, requires much more work per iteration, but because we
have faster convergence it needs fewer iterations. The method is based on
a better approximation to the likelihood function, and it can be used for
both FIML and REML. FIML is used in VARCL (Longford, 1990), while
both methods can be used in MLn, where IGLS is used to compute the
unrestricted and RIGLS to compute the restricted maximum likelihood esti-
mates. The two last methods are based on the observation that the likelihood
function is simple to optimize over the regression coefficients if we know the
variance components. And it is also simple to optimize over the variance
components if we know the regression coefficients. Thus we alternate these
two forms of minimization. First the variance components are guessed,
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then the optimal corresponding regression coefficients are computed by GLS.
Given these regression coefficients, we approximate the likelihood function
by a quadratic function of the variance components, and we minimize this
by GLS as well, giving us new variance components, and so on.
Understanding the details of the techniques and the algorithms is well
beyond the scope of this book. Our hope is that the reader will no longer
be overwhelmed by all these acronyms, but also will be able to distinguish
clearly between REML and RIGLS, for instance. REML defines a loss
function that must be minimized, that is, a statistical technique, while
RIGLS defines one way of minimizing that particular loss function.

5.6.1 Which is best, FIML or REML?

The choice between a restricted and an unrestricted estimation method is a
matter of some interest — the more so since both methods are available in
MLn, where IGLS is used to compute FIML estimates and RIGLS to com-
pute REML estimates. How and why one method is chosen over the other
is still unclear. In Bryk and Raudenbush (1992) REML is presented as some-
times superior to FIML, in particular for small data sets, where ‘small’ means a
small number of groups rather than a small number of observations per group.
Remember that REML (or RIGLS for that matter) starts the calculation
based on the residuals after the fixed effects are estimated. Goldstein (1995)
discusses the two methods in his book, but does not give precise directions
as to which method to use in which situation. That leaves us with only one
source of information, simulation studies. From these studies we learn that
over all estimation methods the most important requirement for the estimation
of the variance components is to have a large number of groups.

Since Monte Carlo simulation is a way to evaluate the statistical properties
of multilevel estimation methods, we report here the results obtained from
several such studies.

The studies are based on many replications of artificial data sets with known
parameters, and are by no means exhaustive. Most use low intra-class correla-
tions (r < 0.25), which makes the results most relevant for social and educa-
tional research. Two simulation studies examine the behavior of the fixed
parameter estimates, the gammas (Kim, 1990; van der Leeden and Busing,
1994), and two examine the behavior of the variance components under
different estimation methods (Busing, 1993; van der Leeden and Busing,
1994). The conditions of the last two studies are described in Section 5.6.3,
while for the conditions of Kim’s study we refer to Section 5.4.2.

5.6.2 The effect of estimation methods on the fixed
coefficients

The estimation methods compared by Kim are OLS, GLS and EB/ML (in
the form of REML). His results show that the estimates behave in the same
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way under all conditions of the study. He also shows that to obtain unbiased
estimates it is not necessary to use a complicated EB/ML method. All three
methods give unbiased fixed parameter estimates.

We recalculated the efficiency of the fixed parameter estimates of Kim’s
study, again comparing the three different estimation methods, OLS, GLS
and REML. We found that the precision of the gamma estimates is the
same for GLS and REML. Small differences are found between the precision
of OLS and REML, indicated by a somewhat larger variance of the estimates
in OLS. This is no longer true for large data sets, where no difference is found
between OLS and the other two methods in the efficiency of the gamma para-
meters. OLS efficiency is about 90% over all conditions in Kim’s data. This
lower efficiency means that more observations are needed to obtain the same
efficiency as obtained by GLS and REML. The overall conclusions regarding
the gammas are:

e GLS produces optimal solutions for the fixed parameters in the random
coefficient model;

o the OLS starting values of the random coefficient software are slightly less
efficient;

e GLS and EB/ML are equally efficient; and

o the gamma estimates are unbiased for all estimation methods.

Van der Leeden and Busing (1994) also compare the three estimation
methods for the values of the cross-level estimates. The methods are OLS,
GLS and RIGLS (equivalent to REML in HLM). They observed, as did
Kim’s study, no difference between the OLS, GLS and IGLS estimates for
the cross-level estimates of gamma under several conditions. All three
methods produced unbiased estimates.

5.6.3 Estimation methods for variance components

Busing (1993) and van der Leeden and Busing (1994) study the behavior of
variance components. The former studies the behavior of variance compo-
nents estimated by an unrestricted method (IGLS). The latter study reports
the results of a restricted estimation method (RIGLS). Both studies use the
MLn program (Rasbash et al., 1990) to estimate the parameters. The estima-
tion methods are compared in relation to sample size, intra-class correlation,
and number of groups under the following conditions:

o intra-class correlations of 0.20, 0.40, 0.60 and 0.80;

o correlations between intercept and slopes of 0.25, 0.50 and 0.75;

e sample sizes — all combinations of the following numbers of groups and of
observations within groups;

¢ numbers of groups — 5, 10, 25, 50, 100, 300;

e numbers of observations within groups — 5, 10, 25, 50, 100;

o results regarding relative bias of variance components for slope, intercept,
and their covariances, and relative bias of standard errors;
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¢ 1000 replications for each condition.

Comparing the IGLS and RIGLS results for the variance components shows
differences. RIGLS is less biased but also less efficient than IGLS, which
makes it hard to choose between the two methods. The trade-off between
them is complicated and the pattern over the different conditions in the
study is very irregular. The authors of these studies were unable to give a
clear indication of when to use RIGLS and when to use IGLS, or equiva-
lently when to use REML and when to use FIML.

The two studies report that the GLS estimates of the variance components,
which are obtained after one iteration, show a lower precision than the
estimates obtained after convergence is reached. The variance component
for the intercept is estimated with increased precision over iterations, while
the mean squared error decreases with the number of iterations, for both
IGLS and RIGLS. In contrast to the conclusions reached for the fixed effects,
iterations do indeed improve estimation of the random effects.

5.6.4 Conclusions

Simulation studies show that the fixed effects are equally unbiased in all
estimation methods — OLS, GLS and REML. A difference observed
among the methods is in the efficiency of the fixed parameter estimates.
The OLS method is less efficient (but still unbiased) for all but large data
sets. For the variance components it is not yet clear which method to use.
The pattern observed is that the advantage of RIGLS over IGLS of less
bias is offset by the disadvantage of less precision in RIGLS.

5.7 Multicollinearity

Frequently Asked Question 6. How serious is the problem of multicollinearity
in multilevel analysis?

In classical regression analysis a great deal of attention is paid to multi-
collinearity. A thorough review has been done by Belsley (1991). There are
some interesting multicollinearity issues that are particularly important in
multilevel analysis. In a full-blown multilevel analysis we have three types
of regressor: first-level variables, second-level variables and cross-level inter-
actions (which are products of first-level and second-level variables). All
variables can be written as the sum of a between-group and a within-group
component, as in

X = Xoj + (X5 — Xof)- (5.22)

The two components, the group mean x,; and the deviation score x;; — x,; are
uncorrelated. For second-level variables the within-group component is zero.
For first-level variables expressed as deviations from the group mean the
between-group component is zero. If variables are expressed as deviations
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from the group mean, they are uncorrelated with all second-level variables.
Moreover, if a first-level variable is expressed in terms of deviation from
the group mean, then the cross-level interactions of this variable with any
second-level variable are uncorrelated.

It is interesting to find out what happens if we add a cross-level interaction
to our multilevel model. We have seen in Chapter 4 that such an interaction
often surpresses the first-level main effect and causes various forms of
instability.

If we ignore, for the moment, that we are dealing with multilevel models
with more than one variance component, we can use the general theory of
added variables to find out the effect of adding a cross-level interaction
(Weisberg, 1985, Section 2.4).

The added-variable theory gives us the following recipe. Suppose we have
performed a regression with a number of predictors xi,. .., x, and we add an
additional predictor z. Two questions spring to mind.

e How does 3,,..., 3, change if we add z to the regression?
o What is the regression coefficient vy of z?

There is a simple recipe for answering the first question. We regress y on z,
and compute the residuals j. We also regress each of the x; on z and compute
the residuals X;. We then compute Bis..., ﬂp by regressing y on Xy, ..., X,.
This 3 is equal to the new 3 we get for X, ..., X, if we add z to the regressnon.
If z is a cross-level interaction, this means we remove the cross-level inter-
action from both the first-level and second-level predictors before we do
the new regression. Clearly if the correlation between z and one of the x; is
high, then we will remove almost all variation from that x,, and the corre-
sponding 3 will change a great deal.

The second question can be answered using a similar recipe. In order to
compute the coefficient « of the added vanable z we can first regress y on
X1, - x,, and compute the residuals y We can then regress z on the
)”cl, ., X%, and compute the residuals z'. Then we compute ~ by regressing
y on z'. If z is a cross-level interaction, this means we remove both the
first-level and the second-level variable that define z, before computing its
regression coefficient. It makes sense to suppose that almost nothing of z
will be left after doing this, and thus the regression coefficient of z will
tend to be very unstable.

Of course, as usual, in a multilevel analysis with more than one variance
component, the situation is less simple. We have seen a number of examples
in Chapter 4, but a precise mathematical description is quite complicated,
especially because a cross-level interaction is usually associated with a
random slope. Thus we will merely illustrate the discussion above with a
small example of the correlation coefficients.

In the full NELS-88 data set we select the variables ‘HomeWork’ and
‘SES’. We then compute the aggregated versions ‘MeanHomeWork’ and
‘MeanSES’. Just for the purposes of this section, we will use H and S for
‘HomeWork’ and ‘SES’, and H and S for ‘MeanHomeWork’ and
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Table 5.3 Correlations between first-level variables, second-level
variables and cross-level interactions (raw scores below diagonal,
centered-within-group scores above diagonal)

H S H S FH HS SH Ss M
H . 0.11 000 000 097 012 0.05 -0.01 0.19
S 0.21 o 0.00 0.00 0.1 0.97 -0.0} -0.19 0.25
H 0.38 0.34 o 0.52 0.00 0.00 0.00 0.00 0.30
S 020 0.65 0.52 . 0.00  0.00 0.00 0.00 0.45
AH 093 028 063 034 . 0.12 0.18  -0.00 0.18
As 023 09 039 066 0.33 . -0.00 -0.06 0.24
SH 0.2l 052 0.48 081 040 0.59 . 0.07 0.01
38 007 002 021 0.18 0.16 0.19 0.29 . -0.04
M 0.29 0.48 030 045 033 0.47 0.37 0.07 .

‘MeanSES’. Thus we can write the four cross-level interactions as HH, HS,
SH,and SS. We add the variable ‘MathAchievement’, here simply M, which
is the dependent variable in our regressions.

The correlation matrix between these nine variables is given in Table 5.3.
Below the diagonal we use H and S in raw score format, while above the diag-
onal H and S take the form of deviations from the group means. Above the
diagonal we see correlations which are generally much smaller, and many
of them are actually zero or close to zero. This indicates that there will not
be much multicollinearity if our first-level variables are deviations from the
group mean. We also see some very high correlations, for instance between
H and HH and between S and HS. This is because almost all the variation
in homework H is within schools. Thus the mean homework H is about the
same for all schools, and the cross-level interactions with mean homework
HH and HS will be almost the same as the original first-level variables H
and S. Thus regression coefficients in a model with S and HS will be very
unstable. This is true in raw score models as well as in group centered
models. S has much more between-school variation, and thus SH is quite
different from H, and much more like S.

Two conclusions seem to follow from the analysis of the correlation coeffi-
cients. First, even in fixed coefficient models, the use of cross-level interactions
is very problematic. In raw score models, and even in group centered models, it
may lead to instabilities. But overall, group mean centering seems to improve
the multicollinearity situation considerably. Correlations between second-level
variables and both first-level variables and cross-level interactions are exactly
zero, which means we only have to worry about correlations between cross-
level interactions and the corresponding first-level variables.

Notes

1 At multilevel@mailbase.ac.uk. One subscribes by sending the message ‘join multilevel your
name’ to mailbase@mailbase.ac.uk, and if one has subscribed one can post queries and
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. messages to the list. Compare also the World Wide Web homepage at http://www.ioe.ac.uk/
multilevel/, with mirrors at http://www.medent.umontreal.ca/multilevel/ and http://www.
edfac.unimelb.edu.au/multilevel/.

2 Suppose the regression is « + x, and we add a constant ¢ to x. Then the intercept changes to
a — Be. This is a consequence of the simple identity a + 8x = (a — fB¢) + B(x + ¢).

3 Following Snijders and Bosker (1994) we will use ‘modeled variance’ from here onward to
avoid unpleasant causal connotations.

4 Thisisa good place to recall a possible source of confusion, already mentioned in Section 3.9.
In RANCOVA we have the basic parameter 72, the parameter variance of the random
intercepts a;. This is the variance of the intercepts over independent replications of the experi-
ment, and we assume all intercepts have the same variance. In ANCOVA there is no intercept
variance in the model, but of course we can compute the variance of the m fixed intercepts c;,
which certainly indicates how variable the intercepts are. Finally, we can compute the
variance of the m ANCOVA estimates &. All these variance quantities are related, but far
from identical. This illustrates that it is critically important to distinguish properties of the
model from properties of the estimates.

5 Many of the results can be derived under more general conditions, but they either look more
complicated or require matrix calculus.




Appendix CODING OF NELS-88
DATA

SEX COMPOSITE SEX

Label Code Freq Prop
Male ... 1 10564 0.49
Female........cooviiiiiiiiont. 2 11016 0.51

RACE COMPQOSITE RACE

Label Code Freq Prop
Asian or Pacific Islander .......... | 1277 0.06
Hispanic, regardless of race. . ... .. 2 2633 0.12
Black, not of Hispanic origin. ... ... 3 2480 0.11
White, not of Hispanic origin. ... .. 4 14933 0.69
American Indian or Alaskan Native. 5 257 0.01

BYS79A TIME SPENT ON MATH HOMEWORK EACH WEEK

Label Code Freq Prop
NONE .« vttt et 0 1779 0.08
lessthan Thour................. ] 8949 0.41
Thour oo 2 4942 0.23
2hoUrs oo 3 2285 0.11
Bhours o 4 1653 0.08
4-BhOUrS. ..ttt 5 1563 0.07
7-9hours.......iii 6 262 0.01
TQormore ....ooviivviinnnnnn 7 147 0.01

Label Code Freq Prop
Public school.................. .. ] 16952 0.79
Catholic school ............ ... .. 2 2327 0.11
Private, Other Religious Affiliation . . 3 944 0.04
Private, No Religious Affiliation .. .. 4 1357 0.06

BYSES SOCIO-ECONOMIC STATUS COMPQOSITE

Mean -0.04
Variance 0.63
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BYPARED PARENTS’ HIGHEST EDUCATION LEVEL

Label Code Freq
Did not finish H.S................ 1 2116
H.S. gradorGED............... 2 4099
GT H.S. & LT 4yr degree. ........ 3 8627
College graduate ............... 4 3341
M.A. orequivalent.............. 5 2086
Ph.D., MD.,other .............. 6 1311

BYTXMNR MATHEMATICS NUMBER RIGHT

Mean 51.01

Variance 103.72

BYSC47D CLASSROOM ENVIRONMENT IS STRUCTURED
Label Code Freq

Not at all accurate .. ............ ] 213
2 439
3 2360
4 10588
Very much accurate . ............ 5 7980

BYSCENRL TOTAL SCHOOL ENROLLMENT COMPOSITE

Label Code Freq

1-199students................. 1 1045
200-399 .. . 2 4331
400-599 ... i 3 5404
600-799 ..o 4 4666
800-999 .. i 5 2911
1000-1199. ..ot 6 1584
12004 .o 7 1639

G8URBAN  URBANICITY COMPOSITE

Label Code Freq

Uban ... ... ] 6500
Suburban .......... .. ... 2 8998
Rural ..o 3 6082

G8REGON COMPOSITE GEOGRAPHIC REGION OF SCHOOL

Label Code Freq

NORTHEAST .........coininn.. 1 4246
NORTH CENTRAL .............. 2 5659
SOUTH. ..o 3 7470

WEST ..o 4 4205

Prop
0.10
0.19
0.40
0.15
0.10
0.06

Prop
0.01
0.02
0.11
0.49
0.37

Prop
0.05
0.20
0.25
0.22
0.13
0.07
0.08

Prop
0.30
0.42
0.28

Prop
0.20
0.26
0.35
0.19
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G8MINOR  PERCENT MINORITY IN SCHOOL

Label Code Freq Prop
NORE. .\t vii i 0 2760 0.13
1=5% oo ] 4905 0.23
6-10% ..o 2 2478 0.11
11=20% ..o ovveeeieeie i enaens 3 2928 0.14
21=40% ..o 4 3173 0.15
41-60% ...coviii s 5 1879 0.09
61-90% ... ovieeeeiiies 6 1943 0.09
O1-100%.....covvvveaeeniennns 7 1514 0.07

BYRATIO COMPOSITE STUDENT-TEACHER RATIO

Label Code Freq Prop
10andbelow. ..ot 10 1451 0.07
11 780 0.04
12 599 0.03
13 1514 0.07
14 1665 0.08
15 1895 0.09
16 2002 0.09
17 1486 0.07
18 1924 0.09
19 1423 0.07
20 1073 0.05
21 1161 0.05
22 800 0.04
23 1009 0.05
24 522 0.02
25 523 0.02
26 455 0.02
27 241 0.01
28 294 0.01
29 239 0.01

30 504 0.02
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