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Review of Five Multilevel Analysis Programs:
BMDP-5V, GENMOD, HLM, ML3, VARCL

Ita G. G. KrEFT, Jan DE LEEUW, and Rien VAN DER LEEDEN

BMDP-5V

Designed by Jennrich and Schluchter. Available as a
procedure in the BMDP package. We used release 6.0.
There are a number of different BMDP implementations
with corresponding prices. The software and manual for
BMDP-5V on a MS-DOS PC costs $17.50, it requires the
BMDP core package. All the options are available from
BMDP Statistical Software, 1440 Sepulveda Boulevard,
Suite 316, Los Angeles, CA 90025.
GENMOD

Written by Hermalin and Anderson, Population Stud-
ies Center, University of Michigan, from instructions pro-
vided by Wong and Mason. Available from William M.
Mason, Department of Sociology, UCLA, 405 Hilgard
Avenue, Los Angeles, CA 90024. Two diskettes, manual
$20.
HLM, Version 2.1

Written by Bryk, Raudenbush, and Congdon. Manual
by the same authors with Seltzer. Available from Scientific
Software, Inc, 1525 East 53rd Street Suite 906, Chicago,
IL 60615. The program plus manual are $300. In Europe,
the program is distributed by ProGamma (see VARCL).
ML3, Version 2.2

Software for two- or three-level analysis written by Ras-
bash. Manual is by Prosser, Rasbash, and Goldstein. Pro-
gram based on theoretical work by Goldstein. Available
from the Multilevel Models Project, Institute of Education,
20 Bedford Way, London WC1H 0AL, UK. The program
plus manual are $475 (regular version) or $570 (extended
memory version).
VARCL

Initiated by Aitkin and Longford and written by Long-
ford. Distributed by ProGamma, P.O. Box 841, 9700
AV, Groningen, The Netherlands (e-mail:gamma.post-
@gamma.rug.nl). The educational price (single-user li-
cense) for manual and software is $250. Noneducational
users pay $350. A site license costs $750 or $1050, respec-
tively. Prices include mailing and administration charges,
but exclude tax. The source code is available only upon
special request.

NOTE: Since this review was written, some of the pro-
grams were updated. The most recent update information
we can present here dates from October 1993:

BMDP-5V is now available under software Release
7.0. Enhancements include additional built-in covariance
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structures and an ESTIMATE keyword-statement provid-
ing extra options for estimation and testing.

HIM is now available as Version 2.2. A three-level ver-
sion of the program is soon to be released. Enhancements
should include improved portability, a dynamic memory
allocation, and more options for estimation and testing.

ML3 is now in Version 2.3. The program now can fit
models with more parameters and some new commands
were added for handling random cross-classifications.

The present version of VARCL is dated January 1990.
A preprocessor is soon to be released, which will provide
options for data transformation, aggregation and selection,
as well as an interactive menu structure.

1. INTRODUCTION

We discuss five programs for the analysis of data with
a hierarchical or nested structure. All programs compute
maximum likelihood estimates of the parameters in a class
of mixed linear models, known under various names such
as multilevel linear models, hierarchical linear models,
empirical Bayes models, seemingly unrelated regressions,
or random coefficient models.

Hierarchical data structures are very common in the so-
cial and behavioral sciences. Individuals, for instance, are
in social groups, and we can have variables describing
the individuals as well as varjables describing the groups.
In multilevel models there is a separate (first-level) linear
model for each group usually with the same predictors and
outcome, but with different regression coefficients. The
models are linked together by a second-level model in
which the regression coefficients of the first-level regres-
sions are regressed on the second-level predictors. We
shall illustrate this structure with a number of examples.

The simplest type of application is in repeated mea-
surement or growth curve analysis. Growth curves differ
for individuals, which makes individuals the higher level
within which the (repeated) observations are nested. Sup-
pose we have n individuals, ¢ time-points, m first-level
regressors, and p second-level regressors. The first-level
model is of the form Y = BX + E, where Y is the n x t data
matrix, X is the m x ¢ matrix of first-level predictors, B is
the n x m matrix of random regression coefficients, and E
is the n x ¢ matrix of disturbances, which are all indepen-
dent (0, 5%). The second-level model is B = ZI" + A,
with Z the n X p matrix of second-level predictors, I' the
p x mmatrix of fixed second order regression coefficients,
and A the n x m matrix of second-order disturbances. The
rows of A are independent of (0, §2), and A is indepen-
dent of E. Substituting the second-order model into the
first-order one gives Y = ZI'X + AX +E, which shows the
close similarity to the familiar Potthoff-Roy model. ZI'X
can be called the fixed part and AX + E the random part of
the model. Compare Strenio, Weisberg, and Bryk (1983)
for further details.

(© 1994 American Statistical Association



A second type of application is in the analysis of large-
scale nonexperimental data. The observations have a hi-
erarchical structure, but now individuals are nested within
contexts or groups. Individuals represent the lower level
instead of the higher one. The leading example here is in
educational research, where the data are often on two or
more levels. Pupils are in schools, schools are in districts,
districts are in counties, and counties are in states. In
most cases these data are not balanced, because classes
have different numbers of students. The first-level model
is now written as y; = X;3 + ¢, and the second-level
model is 3; = Z;y + §;. The terms ¢; are independent of
N(0, 0%Z,;), and the terms &; are independent of (0, ).
Disturbance terms of both levels are independent. Also,
Z; has a direct sum structure, with m rows and mp columns

Z, 0 0 --- 0
Z,-=(o g 0 .- 0).
0 0 0 - 2,

Suppose, for example, that the three first-level predic-
tors are the intercept, student’s 1Q, and parental income,
and the dependent variable is school success. School-level
variables are the second-level intercept and school size ¢;.
In z;; we collect the school-level variables predicting the
intercept 3;1, zj, predicts the slope of IQ 3, and zj3 pre-
dicts the slope of parental income (3. Each zj; could be
taken to be equal to (1, ;). On the other hand we could also
decide that school size only affects the intercept, not the
slope of intelligence or income. Then z;; = (1,£;), while
zj and z;3 have the single element 1.

Substituting the second-level model into the first-level
model gives y; = X;Z;y + X;0; + ¢;, which means that U; =
X;Z; has block-rank-one structure (De Leeuw and Kreft
1986),

I xjmzj/'m )

These types of applications were discussed in detail by
Kreft (1987), Goldstein (1987), and Bryk and Raudenbush
(1992).

Once we realize that social science data are often mul-
tilevel, we can easily find many other applications. In a
sense the basic problem of the social sciences is to model
the interaction between properties of individuals and prop-
erties of social groups. Children are in sibships, adults are
in marriages, insects are in colonies, and so on. Multi-
level linear models make it possible to combine variables
of different levels quite naturally, and they model within-
group correlations between observations in a simple way
(Hanushek, 1974).

In the last few years a number of articles in the statisti-
cal and methodological literature have directly attacked
the problem of analyzing variables measured at differ-
ent levels of a hierarchy. From our point of view, the
most important ones are Jennrich and Schluchter (1986),
Mason, Wong, and Entwistle (1984), Raudenbush and
Bryk (1986), Goldstein (1986), and Aitkin and Long-
ford (1986). These articles describe the basic model, the
likelihood function, an algorithm to maximize the likeli-
hood, and a computer program. The programs we dis-
cuss in this article are (in alphabetical order) BMDP-5V,
GENMOD, HLM3, ML3, and VARCL, corresponding to
the five papers mentioned above. Except for BMDP-5V,

U = (lez;’l |

these programs were developed mainly with nonexperi-
mental grouped data in mind. BMDP-5V was developed
primarily for the analysis of repeated measurement data.

In our review, each program is described and evaluated
in turn for

design philosophy,
implementation details,
models,

routines,

data setup and data handling,
output, and

user friendliness.

We also performed extensive numerical experiments on
a number of representative data sets. The programs are
slightly different in their computational outcomes, but ba-
sically they seem to converge to the same solutions in
all cases (although sometimes very slowly and sometimes
erratically). For more details on these computations, we
refer to the reports by Kreft, de Leeuw, and Kim (1990)
and Van der Leeden, Vrijburg, and de Leeuw (1991).

2. THE PROGRAMS

2.1 BMDP-5V

2.1.1 Design Philosophy. The BMDP-5V program
was designed by Jennrich and Schluchter and described
in Schluchter (1988). The theory on which the program
is based was given by Jennrich and Schluchter (1986).
The program was also documented and illustrated in the
general BMDP user’s guide.

BMDP-5V is especially designed for the analysis of
repeated measures with special emphasis on unbalanced
situations, including imbalance caused by missing data.
Although the program has many possible applications, it
is developed with small experimental data sets in mind,
especially in a biological context. When there are many
observations and/or a large number of parameters to be
estimated, the program becomes expensive and somewhat
clumsy to use.

2.1.2  Implementation Details. BMDP-5V is pro-
vided at any site where the BMDP package is running.
Usually this package has been implemented on main-
frames and mini computers, so there are versions work-
ing under different operating systems such as MVS, VM,
VAX/VMS and so on. More recently, PC versions of the
package have become available for use under MS-DOS.

The BMDP procedures can be operated either in batch
mode or in interactive mode, depending on the user’s pref-
erences and the available computer facilities.

BMDP-5V shows no limitations concerning the num-
ber of individuals and variables. However, the memory
needed for data storage will increase with these numbers
and will also depend on the specified model. Probable im-
plementation restrictions could therefore arise depending
on the computer system used for running BMDP.

2.1.3 Models. The models that can be fitted in
BMDP-5V belong to a general class of multivariate linear
models. In these models a set of regression parameters
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describes the structure of the expected values of the obser-
vations, and a set of covariance parameters provides for a
general parametrization of the within-subject covariances.
A number of special structures for these covariances are
built in. User-defined covariance structures can be speci-
fied too.

When repeated measures data are analyzed using a gen-
eralized multivariate linear model such as in BMDP-5V,
the individuals are considered as data records and the ob-
servations on multiple occasions are interpreted as sep-
arate dependent variables. In a multilevel context, this
makes individuals the second level within which the (first-
level) observations are nested. By using missing data op-
tions (cf. Sec. 2.1.8) we can analyze unbalanced situa-
tions in which some individuals do not have observations
on some timepoints.

Fitting multilevel models with random slopes with
BMDP-5V is restricted to situations in which the values
of the within-group predictors are identical for all groups,
that is, in the case of repeated measurements the matrices
X| (see Sec. 1) are required to be equal for all individuals.

2.1.4 Routines. BMDP-5V allows the user a choice
from three different algorithms to compute maximum like-
lihood estimates for all model parameters: a Newton—
Raphson, a Fisher scoring, and a generalized EM algo-
rithm. Producing identical results, these methods differ
with respect to the number of iterations required and the
costs periteration. Generally, EM will converge slowly but
with low costs per iteration, whereas Newton—Raphson
will require the smallest number of iterations but has the
highest cost per iteration. BMDP advises to use Newton—
Raphson if the number of covariance parameters is 15
or fewer; otherwise EM is preferable. BMDP-5V offers
two different algorithms to compute restricted maximum
likelihood estimates for the covariance parameters: gener-
alized EM and a quasi-scoring algorithm. Results will be
identical but convergence is faster for the scoring method
with higher cost per iteraton and vice versa for the re-
stricted ML method. For any of these procedures, the
maximum number of iterations is set to 15 by default. If
necessary, this number can be altered by the user.

2.1.5 DataSetup and Data Handling. The datainput
file must be organized so that individuals are the records
and the repeated measurements are the variables (we must
have a one-record-per-individual file). Note that this is
different from the usual way in which hierarchical data
are organized.

We have run the program in batch mode. BMDP is
a command language driven program. The instructions
are given by keyword statements, comparable to SPSS or
SAS statements. Input data and BMDP instructions can
be stored in the same file or in separate files. Keywords
control the names of the variables, their number, format,
transformations, and so on. The actual modeling of the
data is controlled by three keyword statements: DESIGN,
MODEL, and STRUCTURE.

The DESIGN statement specifies the structure of the
data. It identifies variables classifying subjects and vari-
ables measured repeatedly. The model itself is spec-
ified in the MODEL statement, using variable names.
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The STRUCTURE statement specifies the structure of
the within-subject covariances. Covariances can be un-
restricted. Other built-in special structures include first-
order autoregressive models, compound symmetry, and
banded or general autoregressive structures. For some
structures additional input is needed. A factor analytic
structure requires the number of factors to be specified.
Random effects require some known matrix to be spec-
ified. A general linear structure requires the number of
parameters to be specified as well as a set of known ma-
trices. Finally, a user-defined covariance structure that is
not built in and not linear can be specified by adding a
FORTRANT77 subroutine to the program input. This rou-
tine becomes a part of the program, called in each iteration.

2.1.6 Output. Theoutputof BMDP-5V is controlled
by the PRINT statement and can be very comprehen-
sive. There are no special output files. Program instruc-
tions, model specifications, and (default) values of various
program parameters are extensively listed. An extended
output presents, for each iteration, a table with the log
likelihood of the specified model, the values of the re-
gression parameters, and the values of the covariance pa-
rameters. Akaike’s information criterion is provided to
check the appropriateness of a chosen covariance struc-
ture. Asymptotic standard errors and z values are given
for all maximum likelihood estimates of the model pa-
rameters. For the terms of the regression model, Wald
(chi-square) tests of significance are included. Within-
subject and all-pairs within-subject covariance and cor-
relation matrices are given. A very useful option is a list-
ing of individual responses (at the different time-points),
their predicted values, residuals, and standardized residu-
als. With this listing, Mahalanobis distances are provided.
These distances can be helpful in detecting cases that may
be outliers.

2.1.7 User Friendliness. The BMDP user’s guide is
written very clearly. Any BMDP procedure, and thus also
BMDP-5V, is extensively discussed and commented. The
different options are very well illustrated presenting a va-
riety of real data examples. Most technical details can be
found in the appendix. The program is easy to use. The
keyword command structure and the ability to run BMDP
in interactive mode are considered user-friendly; the pro-
gram is too.

When repeated measures are to be analyzed, the built-
in autoregressive structures for the within-subject covari-
ances can be very useful. However, including a user-
defined covariance structure by adding a FORTRAN77
subroutine to the program may be quite annoying for reg-
ular users. Moreover the possibility of adding such sub-
routines is not available in the microcomputer versions.

2.1.8 Special Features. From an analysis-of-vari-
ance point of view, the ability of BMDP-5V to analyze
incomplete data is a unique option. The data may be in-
complete by design (e.g., a value of a grouping variable
is missing) and/or some observations are missing (e.g.,
a measurement of the dependent variable or a measure-
ment of a covariate is missing). To a certain extent, values
for missing data can be imputed using an EM algorithm



[further details can be found in Jennrich and Schluchter
(1986); an example is given in the BMDP user’s guide].
This property is very useful because it has been known
to improve the reliability of the data analysis [see Little
and Rubin (1987)]. The other packages have no possibil-
ities for imputation, and cases with missing data are just
listwise deleted. In case of repeated measurements, indi-
viduals with less observations than others are dealt with
quite naturally, because they are simply considered level-
two units with a smaller group size.

BMDP-5V can easily handle time-varying covari-
ates. For instance, in the case of multivariate repeated
observations—that is, two or more dependent variables
measured repeatedly—we could take one (or more) of
these variables as a covariate. This feature is built-in and
easy to use.

2.2 GENMOD

2.2.1 Design Philosophy. The program implements
the general model proposed by Wong and Mason.
GENMOD is developed to accommodate two broad
classes of applications: comparative analysis and contex-
tual analysis. Contextual analysis is the usual type of anal-
ysis, also found in HLM, VARCL, and ML3. Comparative
analysis is specific to GENMOD. The assumption here is
that we have a different data file for each context; these
files may have different formats and variables. Moreover,
the micro data file for one context may also contain vari-
ables that are different. This characteristic of the program
is very valuable in demography, the field for which this
program was developed. Originally designed to analyze
this kind of data, the most recent version, released in April
1989, provides the opportunity to use a single micro file
as input and a single associated format statement (compa-
rable to the other programs).

2.2.2  Implementation Details. GENMOD is written
in FORTRAN77 and is currently compiled to run under
the MS-DOS and MTS operating systems. File names
must satisfy MS-DOS file-naming conventions. Under
MS-DOS, the program reads and writes ASCII files only;
MTS uses EBCDIC. The manual assumes that the program
is running under MS-DOS; MTS tailoring is given in the
appendix. There are three versions (GEN30, GEN40 and
GENS50), which differ in the size of the real array stor-
age that has been allocated (35,000, 45,000 and 55,000
elements of REAL*8 storage, respectively).

The distribution includes source code, however, which
means that (at least in principle) any MS-DOS or OS/2
users with a suitable FORTRAN compiler can make their
own version, with storage requirements adapted to their
own environment.

2.2.3 Models. The basic model fitted in GENMOD
is a two-level model. A special version of the program
(GENMOD?3) allows different contexts to have different
first-level error variances. In the other programs, this vari-
ance is assumed to be equal over groups.

2.2.4 Routines. The maximum number of iterations
is specified in the batch job. If convergence has not
been achieved by the NUMITth iteration, the program

will nonetheless stop, giving complete output as of the
NUMITth iteration. The estimation procedure is restricted
maximum likelihood. The EM algorithm used is based on
equations developed by Mason and Wong.

2.2.5 Data Setup and Data Handling. The program
runs in batch mode only. To run the program the user must
create a setup file, a micro file, a macro file, and (option-
ally) an auxiliary data file. The setup file in GENMOD
describes the model to be estimated and provides instruc-
tions for reading and saving information. The structure of
the setup file is similar to an SPSS or SAS job, with the
header being a specified output file name and three options
of data input to choose from (raw data, cross products, or
macro error variances and covariances). When the first
setup is ready for a particular data set, only a few changes
are needed in the setup for fitting further models. The setup
files can be quite complex.

2.2.6 Output. The output consists of the usual ba-
sic information: information about convergence at every
iteration, and restricted maximum likelihood (REML) es-
timates of the o? and (2 parameters at the last iteration,
as well as estimates of all the parameters. More can be
obtained on request.

2.2.7 User Friendliness. The software is in some re-
spects quite puzzling. The present version of the manual
is not very clear about how and when to use certain options
(the authors are working on this). An experienced user, or
somebody who understands the methodology behind the
program quite well, will encounter fewer problems than
a novice. There is no example of the output files and no
explanation of the outcome in the manual (although there
are examples on the disks). The error messages, giving a
clear idea of what goes wrong, are helpful.

23 HLM

2.3.1 Design Philosophy. HLM is an acronym for
hierarchical linear model. The HLM program, Version
2.1, that implements this model is written by Bryk,
Raudenbush, and Congdon. It is designed to handle mul-
tilevel data with two levels. Two broad classes of ap-
plications are accommodated by the program: contextual
analysis and growth curve analysis. In contextual analy-
sis we have the familiar multilevel data. For instance, in
a study on school effects, we have a first level represent-
ing within-school analysis and a second level represent-
ing between-school analysis. In growth curve analysis,
the first level represents individual change in a within-
person model, whereas the second level represents effects
of other variables upon these individual regressions (Bryk
and Raudenbush 1992).

According to Kreft, de Leeuw, and Kim (1990), HLM
is the most popular program in the United States because
of its ease of use, interactive interface, and the availability
of many significance tests. The informative and clearly
written manual certainly contributes to this popularity. It
provides a theoretical background for multilevel modeling
and many useful references.
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2.3.2 Implementation Details. There are two ver-
sions of the program available. The first is for worksta-
tions or mainframe computers with no real restrictions
on the memory. The second is an adaptation for the PC,
and it takes the 640 K memory limit of MS-DOS into
account. Both versions are written in FORTRAN77, al-
though for the MS-DOS version the main program and
some screen control functions have been written in C.
This mixed language feature of HLM and the particular
type of screen control used make the program less than
completely portable, although the computational routines
are in straightforward FORTRAN77. Current program
limitations for the PC version are as follows: There is
a maximum of 10 within-unit variables per model. The
input file and sufficient statistics file can contain 25 within-
unit variables, 25 between-unit variables, and 300 units.
In the between-unit model there is a maximum of 15 vari-
ables per equation, and the maximum on the total num-
ber of fixed effects over all equations is 35. A newer
version with dynamic memory allocation has been an-
nounced.

2.3.3 Models. The basic model fitted in HLM is
again the two-level model. By default, both the micro
model and the macro model have an intercept, but the de-
fault can be overridden. For growth curves, for example, it
can be interesting to fit models without a micro intercept.
At the time of the run the user can introduce additional re-
strictions on the parameters. Some fixed regression coeffi-
cients and some covariance components can be set equal to
zero. Thus we can have micro variahles with only a fixed
effect and micro variables with only a random effect, the
default being that a micro variable has both.

2.3.4 Routines. Two routines are given in the man-
val: (a) an EM algorithm with an Aitkin accelerator, used
as the core routine in the HLM program, and (b) a V-known
routine. The V-known routine assumes the variance and
covariance components are known quantities. It is useful
mainly in research synthesis (meta analysis). See Bryk
and Raudenbush (1992) for details and references. The
number of iterations is, as usual, left to the decision of the
user. The suggested number of iterations for exploratory
analysis is 10. In most packages the advice is similar:
10 to 15 iterations. Our numerical experiments show that
even for exploratory analysis 10 EM iterations are often
not enough to get a good idea of where we are heading.

2.3.5 Data Setup and Data Handling. The raw data
input file is usually plain ASCII, but it can also be either a
“V-known” file or a system file for the SYSTAT statistics
package. In case of a SYSTAT input file, the residual file
(which is produced by the program) will alsobe a SYSTAT
file. A V-known file has parameter estimates for each
context and their associated sampling variance/covariance
estimates (in addition to other second-level variables).

2.3.6 Output. Theoutputof the v coefficients is sim-
ilar to the output of the other software packages. HLM
provides a large number of statistical tests, both ¢ type
for the regression coefficients and chi-square type for the
variance components. It also outputs so-called reliability
coefficients, which are defined as the proportion of vari-
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ance in the OLS regression coefficients that is second-level
parameter variance.

2.3.7 User Friendliness. The program is of the inter-
active question-and-answer format, which makes it very
easy to use. The manual contains the annotated output of
several runs with different data sets. The organization of
the manual, easy as it is for first use, also has its draw-
backs. Specific information is not easy to find, since it
is not organized under special headings. Special remarks
and basic information are interwoven with examples of
different kinds of output. There is only a small amount of
background information. A nice feature of the program is
that it allows many possibilities for exploration of the data.

2.3.8 Special Features. With BMDP-5V, HLM is
the other program in our list that delivers a variety of tests.
These are: (a) the ¢ test for significance of the fixed pa-
rameters, (b) a chi-square test for residual unexplained
variance in the first-level parameters, (c) a reliability es-
timate of the first-level variables, (d) the three hypothesis
tests mentioned before, and (e) a test for homogeneity of
variances. Homogeneity of variances is assumed, which
means that a single micro-level error variance is estimated.

Three options are available for data input. Two of
them are unique to HLM. One is the possibility of us-
ing SYSTAT files instead of ASCII files. For those with
SYSTAT, this provides additional possibilities for data
handling. Although it is not clear that SYSTAT is a par-
ticularly good choice in this context, it certainly is nice to
have the additional option. The other unique input option
is the V-known file.

24 ML3

2.4.1 Design Philosophy. ML3 is produced as part
of the Multilevel Models Project of the Institute of Educa-
tion at the University of London. This project is funded by
the Economic and Social Research Council of the United
Kingdom to extend the theory of multilevel modeling, to
study the practical application of the models to real data
sets, and to disseminate information about the theory and
practice of this form of analysis. Among the specialized
models that'can be estimated using the program are growth
curve models and multilevel logit models.

2.4.2 Implementation Details. ML3 is provided
only in binary form. It runs on MS-DOS and OS/2 com-
puters and needs 540K of RAM. There is also an extended
memory version ML3E and a VAX/VMS-version ML3-V.
Perhaps the most remarkable aspect of the ML3 imple-
mentation is that the multilevel software is merged with
the kernel of the general-purpose package NANOSTAT,
which offers a whole set of data-handling and data-
transformation operations. NANOSTAT also provides de-
scriptive statistics and high-resolution plots.

One important difference between ML3 and the other
four programs is that the data are not first reduced to suf-
ficient statistics and then kept in core memory. In ML3
the complete data matrix is read into core memory, which
means that the restrictions on the size of the problem are
more serious. The manual gives no clear-cut rules. In
more practical terms this means that big examples cannot
be analyzed unless you buy the extended memory version.



2.4.3 Models. The basic model fitted in ML3 is
again the two- or three-level model. There is also the pos-
sibility, however, of having more complex error structures
by incorporating more level I random terms. Also, log-
linear and logistic models can be analyzed using standard
GLM-type extensions.

2.4.4 Routines. An iterative, generalized, least-
squares (IGLS) algorithm provides estimates of model pa-
rameters, and, when normality assumptions are met, these
estimates are equivalent to maximum likelihood estimates.
ML3 can also compute unbiased or restricted RIGLS es-
timates, which are called restricted maximum likelihood
(REML) estimates in other contexts. Thus we distinguish,
further on, ML3-F and ML3-R, for the options that use full
or restricted maximum likelihood estimation. The user
has the corresponding choice between IGLS, described
by Goldstein (1986) and RIGLS, described by Goldstein
(1989). That the distinction between the two is not really
discussed in the manuals is a problem in all packages, but
it is especially missed here because the choice between
the two is stressed.

The number of iterations can range from 1 to 999. The
default value is five iterations. This number is sufficient for
reaching convergence when the conditions are favorable—
that is, when the number of observations per unit is large
enough to obtain stable estimates, the number of parame-
ters to be estimated is small, and the tolerance/convergence
criterion is not too stringent. It is advisable to increase
the number of iterations when the convergence is reached
slowly, the amount of data is small, and/or the number of
parameters to be estimated is large.

2.4.5 Data Setup and Data Handling. The input file
can be either raw data or a modified data set in one single
file for the micro and macro data together. The data have
to be sorted by context. ID’s are needed for each level of
the hierarchy. There can be missing data, but they have to
be assigned a numerical code.

2.4.6 Output. The default output is minimal. Spe-
cial output can be required by using special commands.
For instance, the RESI command stores the residuals in
columns to be specified by the user. The user’s guide
explains analysis of residual structures and gives some
practical applications.

2.4.7 User Friendliness. The manual is a well-
written and complete document. It is actually more than a
manual, because it introduces the reader to the hows and
whys of multilevel analysis with a multitude of references.
A disadvantage of the manual is the somewhat delayed in-
struction on how to do a multilevel analysis. This is due to
the extensive documentation of the NANOSTAT package.
Because in most model fitting cases the user may need the
use of NANOSTAT commands, we do not know how the
authors could have prevented this circuitous route. But a
HELP program is built in. This online help facility shows
the commands and/or the format of the commands.

Of the multilevel programs, ML3 allows users the most
freedom to choose input and even to make adjustments
during the run. Our impression is that in order to make use
of the full potential of the program, extensive experience

(or going to one of the many workshops offered by the
program authors) is necessary. The reward for the user is
that the program obviates the necessity of preparing the
data in advance in another package. Another advantage is
that it is easy to make adjustments or new interactions in
a later modeling stage.

2.4.8 Special Features. There are several special
features. For instance, the option to enter starting val-
ues for the parameter estimates other than the default OLS
estimation is special, as is the fact that a simple multilevel
logit and log-linear model can be fitted. This allows the re-
searcher to analyze survey data with proportions or binary
variables as the dependent variable. Information about
the convergence process is provided, and during the run
the program can be interrupted to “freeze” the estimation
of individual parameters for the rest of the run. Freezing
slowly converging estimates speeds up the overall conver-
gence of the model. Of course all the exploratory, graphi-
cal, and residual options of the NANOSTAT packages are
also unique (and valuable) features.

2.5 VARCL

2.5.1 Design Philosophy. VARCL implements ran-
dom coefficient analysis. This can be used to analyze
multilevel data. It provides the option to fit random slopes
but offers no possibilities for fitting interactions between
variables of different levels. It comes in two versions.
VARL3 analyzes data of at most three levels. VARL9
can be used for analysis of data with up to nine levels of
nesting, but it permits only a simple variance components
structure of the random effects. There is no requirement
for the balance of the nesting structure in either program
in the sense that group sizes are not required to be equal
at the various levels.

2.5.2 Implementation Details. Both programs are
written in FORTRAN77 and require an interactive com-
puting environment. VARCL was originally written for
VAX/VMS, but it has been ported successfully to MS-
DOS, MAC-0S, and many UNIX environments. Since
1991 the program has been maintained on a UNIX work-
station. VARL3 is complex and has a more elaborate in-
terface than VARLO, but the two are similar enough to
warrant a single user’s guide. The interface of VARCL
combines interactive and batch features. The batch fea-
ture is in the control file that contains declarations related
to the data set such as the title, data file names (the data set
may consist of several data files), formats, variable names,
nesting structure, and so forth. Having this information
available in a separate file makes the interactive session
less tedious.

The implementation restrictions are defined in a small
file IMPLE.ADD), included in the main code, and so
they can be changed very easily by recompilation. There
is no limit on the maximum number of elementary level
units. With the MS-DOS version we have worked with a
maximum number of variables equal to 24, a maximum
number of regression parameters of 24, and a maximum
number of sufficient statistics equal to 30,000. The suf-
ficient statistics are the regression coefficients, residual
sums of squares, and cross-product matrices for each of
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the groups. Thus for N groups and m individual level pre-
dictors, we have approximately Nm? of these quantities.

2.5.3 Models. The models fitted by VARCL are
somewhat different from those fitted by GENMOD, HLM,
and ML3. More precisely, they are somewhat differently
specified. This is because the program does not build in
cross-level interactions by default. By using an input ma-
trix with specially created interaction variables between
levels, the program can be used in the same way as the
other programs. Here again, no missing data can be han-
dled in the model fitting stage. In VARL9 we have an
inherently simpler structure for the error terms, because
only random intercepts are allowed (i.e., first-level vari-
ables do not enter into the error structure).

2.5.4 Routines. For his VARCL program, Longford
(1987) uses the Fisher scoring algorithm. The manual
describes the algorithm in detail (quite unlike the black
box approach in the ML3 and the HLM manuals). If at
an iteration the estimated dispersion matrix has a negative
eigenvalue, the corrections for all the parameters are cut
in half. The program prints the message that a covariance
adjustment has taken place. When the information ma-
trix used in the scoring iterations becomes singular, the
offending parameter is aliased (excluded from the model).
Aliasing obviously improves the convergence but results
in fitting a different model. It is irreversible (once a pa-
rameter is aliased, it will not be unaliased and left free
to vary again). It has been our experience with VARCL
that aliasing occurs frequently in situations with compli-
cated models, in which the EM algorithms of GENMOD
and HLM exhibit very slow convergence. In the case of
aliasing and covariance adjustment, the VARCL manual
suggests fitting a smaller model.

2.5.5 DataSetup and Data Handling. Theinputdata
matrix has to have a hierarchical ordering, as in the other
programs. The basic information has to be provided in a
separate batch file.

2.5.6 Output. A session of VARCL can be saved in
a binary “dump” file containing the entire information re-
quired to carry on, in a new session of VARCL, where the
old session was terminated. The dump files can only be
used for data with normally distributed error terms. The
output file contains the results of the analysis and a sum-
mary of the initial specifications. Several models can be
fitted in a single session, and the results can be written to
one output file.

2.5.7 User Friendliness. The VARCL manual is
very useful. It contains much valuable background in-
formation concerning output and interpretation. The pro-
gram is very easy to use, because it is interactive in the
sense that questions have to be answered. Some work
is involved when a batch job has to be prepared. Extra
preparation is also needed when interactions between first-
and second-level variables are of interest to the researcher.
This happens in traditional multilevel models, which have
cross-level interaction variables. VARCL requires the user
to create these variables before starting the analysis. The
model fitting part of this program is user-friendly. It is
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possible to fit a large number of models within the de-
clared maximal model in a single session. The speed of
the convergence is another nice feature. Comparable pro-
grams, such as ML3, take much longer to do the same job.
The scoring is indeed fast. The error messages and the
options to correct them are quite helpful as are the checks
and opportunities to correct mistakes in a declared model.

2.5.8 Special Features. Unique is a quasi-likelihood
adaptation for non-normal (binary, binomial, Poisson, and
gamma-distributed) outcomes. The choices of the error
structure are: normal error, binary or binomial error, Pois-
son error, or gamma error. In the interactive phase, there
are explicit questions used to declare a covariance struc-
ture. All choices can be made between the two extremes:
intercept by slope covariance only or (the other extreme)
all (co)variances. Choices between these extremes are
possible as well.

3. OVERALL COMPARISON
3.1 In the Restrictions

In the usual two-level models fitted by HLM, ML3, and
VARCL

1) all variables in the random part are also included in the
fixed part (i.e., the variables contained in matrix X in
the equations in Sec. 1),

2) all level-one coefficients are random at level two (the
full random coefficient model), and

3) the only variable for which the coefficient is random at
level one is the intercept.

All five programs have ways to deal with the first two re-
strictions, and all leave room for variables that are not
included in the fixed part to be random (HLM, ML3,
BMDP-5V) or to fit a mixed model (all programs), but
the last restriction is only overcome in ML3.

3.2 In the Output

The (default) output given by the five packages varies
from one to several pages and from many parameters and
significance tests to only the bare essentials. Both GEN-
MOD and ML3 have very little output. They differ consid-
erably from VARCL, HLM, and BMDP-5V which have a
lot of output. For example, HLM provides 7 test values for
parameters, in addition to the usual parameter estimates
and their respective standard errors. Of course these sepa-
rate ¢ tests must be taken with a grain of salt, because there
are so many (correlated) parameters. In addition, tests are
more heavily dependent on statistical assumptions, such
as normal distributions, than parameter estimates. The
overall test (test of differences between deviances for the
goodness of fit) may be more reliable here. The default
output given by BMDP-5V is quite extensive too, and ad-
ditional output options are available.

3.3 In the Handling of Raw Data

Packages differ in the way they handle the raw data set.
Centering is a much discussed issue in recent publications
[cf. Bryk and Raudenbush (1992), Kreft, de Leeuw, and
Aiken (in press)]. The reason often given for grand-mean
as well as context-mean centering is that it facilitates inter-
pretation. Itcanalsobe used, however, asa way to improve
the numerical performance of the estimation algorithm.



3.4 In the Algorithm

Information about the convergence process and ways
to use this information differ significantly among the pro-
grams. In the program ML3 it is possible to interrupt the
run and freeze the estimation of individual parameters for
the rest of the estimation during the run. Setting the resid-
ual parameter variance at zero in the next run for those
variables that slowly converge gives the same effect in
HLM as is reached in ML3 by freezing during the run.
Boundary problems are handled in various ways. Pro-
grams using the EM method need no special provisions
to deal with boundary constraints. Estimated variance
matrices are not permitted to have a negative/nonpositive
eigenvalue. Nevertheless, EM methods that converge to
boundary points generally have sublinear convergence. It
is not entirely clear that the boundary is treated efficiently
in ML3 and VARCL. The number of iterations needed
to reach the same convergence criterion is very differ-
ent over packages. VARCL and ML3, with fast linear or
superlinear convergence, stay within the limit of 15 iter-
ations, while GENMOD and HLM exceed that number
considerably. Our experiments also show that more com-
plicated models need many more iterations in packages
that use the EM algorithm (GENMOD and HLM) than in
the packages that use scoring (VARCL) or weighted least
squares (ML3). In BMDP-5V, one can choose between
Newton—-Raphson, scoring, and EM.

EM algorithms for (co)variance component analysis are
helpful, because they are relatively simple to program
(especially in atray-oriented interpreted languages such
as APL, MATLAB, GAUSS), because they give mono-
tone convergence and because they always stay within
the boundaries of the parameter space. Their convergence
can be tediously slow, especially for more complicated
models. HLM uses Aitken acceleration, which makes a
difference. The convergence of GENMOD is sometimes
intolerably slow. This is due in part to the very strict con-
vergence criteria in GENMOD. The scoring algorithm of
VARCL will tend to give much faster convergence, al-
though sometimes various parameters of the process have
to be adjusted because of singularity, boundary condi-
tions, negative eigenvalues, and divergence. We have
observed sublinear convergence of VARCL in some ex-
amples, probably a result of making smaller and smaller
steps to keep the variances positive definite. Using the
results of Lindstrom and Bates (1988) could very well
produce a more robust implementation of the scoring al-
gorithm. The ML3 algorithm works quite well in almost
all cases. Because all the data have to be kept in (limited)
core memory, it cannot analyze really large examples. We
think that this is a high price to pay for the relatively small
gain in additional generality.

3.5 In Measurement Level of the Dependent
Variable

ML3 and VARCL allow dichotomous dependent vari-
ables or variables that are multinomial frequencies. We
understand that there is also a version of GENMOD for
dealing with logistic multilevel models, called MULTI-
LOGIT, but we have no experience with it.

3.6 1In the Results

The reports by Kreft, de Leeuw, and Kim (1990) and
van der Leeden et al. (1991) presented comparisons of the
results of analyses with GENMOD, HLM, ML3, VARCL,
and BMDP-5V. For the first set of comparisons we used
two different datasets: SIMS and WEBB. The programs
were compared with the exception of BMDP-5V, since the
structure of the datasets used did not allow the straight-
forward use of this program. In a second comparison,
BMDP-5V was compared with ML3 and HLM in a growth
curve analysis using the data set DENTAL containing re-
peated measurements. We summarize the results here,
after briefly describing the data sets and models used.

The Second International Mathematics Study (SIMS)
data set (available on the ftp server ftp.stat.ucla.edu in
pub/data/various/SIMS) was taken from a national sample
of United States eighth-grade students who took a series
of mathematics achievement tests conducted by the In-
ternational Association for the Evaluation of Educational
Achievement in 1981-1982. For this study, 3,691 cases
out of approximately 7,500 were extracted. There were
190 school classes. Only two student-level variables, the
sum of PRETEST core items and the GAIN score (differ-
ence between POSTTOT and PRETOT), are used. The
second-level variable is Opportunity to Learn (OTL).

The within-group model is

(GAIN); = By; + B;(PRETOT);; +¢;
and the between-group model is

Boj = Yoo + 01(OTL); + b,
Bij = 710 + 111(OTL); + by;.

The first version of the model has 6;; = 0 and 7y =
~v11 = 0 (a random intercept model); the second version
has a random intercept and a random slope but still no
second level variable (so vo; = 711 = 0). Results of the
analyses are summarized in Tables 1 and 2. By comparing
computing time (iterations multiplied by time), we found
that VARCL and HLM are clearly the two fastest programs
for simple models (with only a random intercept). The
time needed to reach the convergence criterion in the more
complicated models was much longer for all programs, but
extremely so for HLM. VARCL is still by far the fastest,
and GENMOD is by far the slowest, but the HLM program
is fairly slow in this case as well. The faster programs
for fitting complicated models are the two that use full
information maximum likelihood (FIML), VARCL, and
ML3-F. In fitting the above SIMS data on a 286 machine,
for example, GENMOD used 145 iterations, which took
515 seconds each. HLM converged in 59 iterations, which
took 25 seconds each. ML3 needed 10 iterations of 200
seconds each, and VARCL 13 iterations of 18 seconds
each. The GENMOD total time (more than 20 hours) is
exceptionally high, but it is partly due to the fact that
GENMOD uses a default stop criterion that is much more
stringent than HLM, for instance.

As can be seen from Tables 1 and 2, the programs gave
very similar results for fixed as well as random parts, for
the first level as well as for the interaction coefficients.

The American Statistician, November 1994, Vol. 48, No. 4 331



Table 1. SIMS Data, Random Slope Model, No Macro Variable
GENMOD HLM ML3-R ML3-F VARCL
Yoo 7.060 7.060 7.060 7.055 7.0553
Y10 —0.186 —0.186 —0.186 —0.186 —0.186
o 22.23 22.23 22.24 22.24 22.240
woo 14.52 14.53 14.49 14.36 14.33
w11 0.009 0.009 0.009 0.0088 0.00885
wio —0.2342 —0.237 —0.234 —0.229 —0.229
Iterations 189 . 76 10 10 14
Time 480 16 180 142 11
Deviance 22382.4 223731
Table 2. SIMS Data, Random Slope Model With OTL as Macro Variable
GENMOD HLM ML3-R ML3-F VARCL
Yoo 0.06273 0.06916 0.06191 0.03242 0.03913
Yo1 0.23419 0.23402 0.2342 0.2349 0.23470
Y10 —0.22833 —0.22938 —0.2282 —0.2236 —0.22447
Y11 0.00086 0.00089 0.00085 0.00072 0.00075
o 22.13 22.13 22.13 22.14 22.14
woo 12.65 12.68 12.64 12.38 12.36
w11 0.0119 0.0114 0.0111 0.0104 0.0100
w10 —0.2302 —0.2329 —0.2300 —0.2205 —0.2200
Iterations 145 59 10 10 13
Time 515 25 242 165 18
Deviance 22367.8 22340.7

The main difference is between restricted and full infor-
mation maximum likelihood. Other differences are be-
tween VARCL and the other programs. However, gen-
erally the differences are small. We expected that much,
since the groups are of about equal size, the predictors
are not too correlated, and a large number of observations
within and between groups was present. The outcomes of
comparable programs are the same up to two decimals. A
difference is that the first three programs use a restricted
maximum likelihood method, while the last two use full
maximum likelihood. This is also the difference between
ML3-R and ML3-F, since ML3 offers a choice between
the two estimation procedures. The difference in the solu-
tions produced by the different estimation methods (R or
F) is clear in the two tables, while the difference is more
pronounced in complicated models with random slopes or
when a small data set is used.

One such small dataset is the WEBB data (available on
the ftp server ftp.stat.ucla.edu in pub/data/various/webb)
(Webb 1982). This set comprised data from 96 students
(grades 7 and 8) in three average-ability Los Angeles ju-
nior high schools. They were in 35 small groups. The ex-
ample (data provided by Noreen Webb, Graduate School
of Education, UCLA) is interesting, because the number
of groups was relatively large, and the number of individ-
uals per group was small. Individual level variables were
post-test (POST), which is the dependent variable, pretest
(PRE), and a student-variable (NOA): asking a question
and not getting an answer.

The group level variable was the pretest mean in the
group (PREM). The model was

(POST)U = ,6()]' + ,Blj(PRE)U + ,BZJ(NOA)U + €jj
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and the between-group model was

Boj = Yoo + Yo1 (PREM); + &y
Bij = Y10 + 1u(PREM); + 4y
B2j = Y20 + ¥21(PREM); + 65;.

After some preliminary exploration we decided on amodel
with both é;; = 0 (coefficient of PRE is nonrandom) and
11 = 0 (no effect of pretest mean on pretest slope). Thus
the single-equation specification of the model was

(POST);; = 00 + ¥01(PREM); + 71o(PRE);; + 720(NOA);;
+721((NOA);(PREM);)
+ 52](NOA)U + 50]' + €.

In this example the number of variables outnumbered the
number of observations per group. Traditional packages
(SPSS for instance) that use LS estimation cannot estimate
parameters uniquely within such small groups. GENMOD
did not work either and gave an error message about sin-
gular matrices. Results of the analyses are summarized in
Table 3. We can conclude from Table 3 that, in general,
estimates differ quite a lot between programs, even among
those that use the same estimation method.

The DENTAL data, familiar to anybody working in
growth curves (Potthoff and Roy 1964), were collected
at the University of North Carolina Dental School and
concern measurements of the distance (DIST) from the
center of the pituitary to the pteryomaxillary fissure for 11
girls and 16 boys at ages 8, 10, 12, and 14. We have ana-
lyzed these data by fitting linear growth curves found as a
regression of distance on age. In a multilevel framework
this applies to the first level: the repeated measurements
are nested within subjects. The growth curve coefficients



Table 3. WEBB Data, Random Slope Model, PREM Macro Variable

GENMOD HLM ML3-R ML3-F VARCL

Yoo 10.9277 11.6600 11.3500 12.0932

~Yo1 0.2545 0.0764 0.0921 0.0171

Y10 3.2786 3.3420 3.3540 3.3428

Y20 0.1677 0.1204 0.2575 —0.0959

Y21 —3.9235 —-4.1170 —4.0640 —4.1021

o 25.8800 26.1700 25.3300 25.7877

woo 43.4384 46.1800 43.8600 3000.8270

wag 4.4773 4.8680 4.4580 3.8280
Iterations 200 26 168 13

Time 5.3 9.5 6.4 4.7
Deviance 619.9 611.2

were treated as random variables at the second level. We
used SEX as a second level explanatory variable (defined
as a dummy variable with values —1 for girls and 1 for
boys). Thus, apart from random variation across subjects,
we account for growth curve coefficient variability across
sex groups too.

The within-subject model can be written as

(DIST),! = ,Boj + ,Blj(AGE)U + €
and the between-subject model is

Boj = Y00 + Vo1 (SEX); + ¢
Bij = Y10 + 111(SEX); + dy;.

This random coefficient growth curve model allows each
person to have her own unique set of parameters y; and 3y,
that is, her own growth curve. Solutions were computed
using BMDP-5V, HLM, and ML3. Results are given in
Table 4.

Comparing solutions, we find that the three programs
produce similar though not identical results. Estimates
for fixed and random parameters (i.e., the variance com-
ponent estimates) are the same for BMDP-5V and ML3-F.
However, results from HLM differ from these to a certain
extent. This also holds for the estimates of the random
parameters in the ML3-R solution. For the most part the
differences in the solutions can be explained by the use
of different estimation methods: HLM and ML3-R use
restricted maximum likelihood, whereas our BMDP-5V
runs and ML3-F uses maximum likelihood. Differences
may also arise because we use a small data set here (see
the previous analyses with corresponding remarks).

If we compare the number of required iterations, our
results clearly indicate the slow convergence of HLM.

3.7 In the Smoothness of the Finished Product

Some of the programs were still under development
during our testing. We discovered bugs in GENMOD,
HLM, ML3, and VARCL. We reported these problems to
the authors, and the problems were largely corrected. We
are now reasonably sure about the stability of ML3 and
BMDP-5V, somewhat less about VARCL, and even less
about HLM, for which a major upgrade is still overdue.

The comparisons are also made difficult because the
programs are different in various unfortunate aspects (at
least for our purposes). ML3 in earlier versions did not
write the value of the likelihood function or the deviance,
HLM writes the value of the restricted log-likelihood,
VARCL the value of the unrestricted deviance, and GEN-
MOD writes both values (but minimizes only the first one;
moreover, it seems to write the wrong value). For large ex-
amples GENMOD does not give sufficient precision in the
output to compare values of the likelihood function with
those of other programs because the authors want to have
the output for each iteration on a single 80-column line.

The default stopping criteria for the programs are very
different. ML3 and VARCL have fast linear convergence;
in fact, the convergence is actually close to superlinear if
the model fits well. GENMOD and HLM typically have
slow linear convergence, and the default stopping criteria
for GENMOD are much more conservative than those of
HLM. Thus comparisons of convergence should really be
in terms of the likelihood function, but we have already
seen that this leads to unexpected difficulties. Some pro-
grams have restrictions. HLM refuses to perform at least
some functions if a within-group cross-product matrix is
singular. BMDP-5V requires the within-group predictors
to be identical for all groups when fitting models with

Table 4. DENTAL Data, Random Coefficients Growth Curve Model

BMDP-5V HLM ML3-F ML3-R

Yoo 16.8567 16.8993 16.8570 16.8570

Y10 0.6320 0.6287 0.6320 0.6320

Yo1 —0.5161 —0.3824 —0.5161 —0.5161

Y11 0.1524 0.1419 0.1524 0.1524

o 1.7162 1.7651 1.7162 1.7162

woo 4.5569 5.7509 4.5569 5.7861

wo1 —0.1983 —0.3082 —0.1983 —0.2896

w11 0.0238 0.0356 0.0238 0.0325

Iterations 2 60 2 4

Deviance 427.80 431.73 427.81 —
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random slopes. VARCL uses aliasing and covariance ad-
justment to avoid negative eigenvalues of the estimated
covariance matrices. This is perhaps a good idea, but again
it makes comparisons very difficult.

Thus if we say that our results indicate that programs
usually converge to the same solution, we do not mean
that they do so in the very first try. What we mean is that
we arrive at similar results, but sometimes only after quite
a bit of program coaching.

4. CONCLUSIONS

It is difficult to summarize the results of our compar-
isons, but we shall try to give the main conclusions. For
ease of reference, we collect some of the more important
conclusions in Table 5.

In general, it follows from our analysis that even if
we restrict ourselves to only two-level models with ran-
dom slopes, we have very complicated likelihood surfaces.
Maximizing the likelihood is inherently a difficult prob-
lem, unless the model is approximately true and the sample
size is really large (in which case OLS will give very good
starting values). Investigators (if the past is any indica-
tion) will tend to choose models that are too complicated
(5 levels with 10 variables on each level). This leads to im-
possibly difficult search problems over the space of models
and to impossibly difficult likelihood maximization prob-
lems. None of the programs reviewed here can handle such
problems gracefully; but this is clearly not a shortcoming
of the programs. All five can be misused rather easily.

None of the bugs we found is very serious. All five
programs tend to converge to the same solutions, which is
reassuring, although there are some unpleasant exceptions.

The five programs cover different though overlapping
sets of problems. BMDP-5V analyzes repeated measures
and has to be forced into multilevel mode. It is batch-
oriented and requires the basic BMDP driver. More inter-
active use is also possible, using the line editor or the full
screen editor.

HLM is very simple to use, has a pleasant interface,
and makes many decisions for the user. This is a major
advantage in some respects, a major disadvantage in oth-
ers. It invites uncritical use, and it gives little indication

if something goes wrong. Of all the programs we tried,
HLM seemed to be the least reliable, which is probably
the reason the authors are working on a complete rewrite.
We think HLM, which is undoubtedly the most popular
multilevel program on this side of the Atlantic, is domi-
nated in speed by VARCL, in flexibility and completeness
by ML3, and in reliability by both.

ML3 is much less easy to use; the user has to know more
and obviously gets more value for the money (NANOS-
TAT data, generalized linear models, choice between loss
functions, nonstandard modeling of levels, more exten-
sive manual, faster convergence). But uncritical use and
lack of failure indicators are problems here too. ML3 is
upgraded regularly, and the team developing the program
and the supporting documentation seems to be very active
and responsive. Recently, ML3 modules that can be used
to extend the program to binary response variables have
become available for anonymous ftp. Experienced users
can easily write similar extensions. We think ML3 is the
most appropriate program for serious users and certainly
for people doing research in multilevel analysis.

VARCL is not less expensive than HLM, but never-
theless VARCL is not a true commercial product. The
main reason for the distinction is that VARCL comes with
source (at least it used to), and that VARCL can be freely
distributed within an institution (although user support
and related services are only provided to registered users).
This may seem to be of limited interest to the average user,
but we think it is very important. These days, mixed net-
works are the rule with maybe six or seven different com-
puter systems. For commercial packages this means that
either not all versions are available or one has to buy six
different versions. For a noncommercial product, VARCL
is excellent. The source is very portable, the interface is
easy, and the errors and warnings are informative. To do
complicated cross-level analyses, however, you have to do
quite a lot of preliminary data handling. Convergence is
rapid, many levels are possible, and the GLM extensions
are quite useful. VARCL is possibly the best program
for rapid and reliable multilevel analysis for the incidental
user. Itis easy to switch models, and with a well-prepared
set of data the analyses can be done very rapidly.

Table 5. Summary of Comparisons

Characteristics GENMOD HLM ML3 VARCL BMDP-5V
Availability Shareware Commerecial Commercial Commerecial Commercial
Ease of use Hard Easy Fairly easy Easy Fairly easy
Loss function REML REML REML and ML ML ML
Data manipulation None Limited Unlimited None Limited
Interface Batch Interactive Interactive Interactive Batch or interactive
Preparing the Identify and Identify and Interactive Code inter- Code dispersion
dataset order data order data actions matrices
Weighting No Yes No Yes No
Variance-covariance EM algo- EM algo- Unclear Aliasing EM algo-
adjustments rithm rithm and covari- rithm or
ance adjust- adjustments
ments
Small data sets No Yes Yes Yes Yes
Documentation Not good Good Very Good Good Good
Ease of learning Hard Very easy Hard Easy Very easy
Error Handling Good Moderate Moderate Moderate Good
Speed Slow Not fast Not fast Very fast Fast
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GENMOD, finally, is certainly inexpensive. It comes
with source, but both source and manual are not fin-
ished products and may require quite a bit of tinkering to
port. The interface is batch and thus very old-fashioned.
There are some options the other programs do not have,
but generally we feel that GENMOD is for the hobbyists
among us.

In our comparisons we have not addressed the useful-
ness of the statistical information: Are the likelihood ra-
tios close to chi-squares? How accurate are the standard
errors? Do the estimates really improve the mean square
error of OLS and WLS estimates? Such questions are im-
portant, in fact more important than computational speed
or a friendly interface, but they require more complicated
research. Once you know that hierarchies exist, you see
them everywhere. Thus the applicability of the software
seems almost unlimited. This pleases the authors of the
programs, who have no interest in pointing out limita-
tions and shortcomings of their products. We think that it
is time to do sampling, resampling, and cross-validation
studies to get a more realistic idea about the possibilities
and limitations of the techniques.
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