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PART 1

PRINCIPAL COMPONENT ANALYSIS OF THREE-MODE DATA

BY MEANS OF ALTERNATING LEAST-SQUARES ALGORITHMS

(preprint)

Summarx'

A new method to estimate the parameters of Tucker's three-mode
principal component model is discussed, and the convergence
properties of the alternating least-squares algorithm to solve
the estimation problem are outlined. A special case of the
general Tucker model, in which only over two of the three modes
principal component analysis is performed, is briefly outlined
as well. The Miller & Nicely data on the confusion of English
consonants are used to illustrate the programmes TUCKALS3 and
TUCKALS2 which incorporate the algorithms for the two models
respectively.
Keywords: three-mode principal component analysis, alternating
least-squares method, INDSCAL, successive block algorithm,
simultaneous iteration method, point-of-view analysis,

factor analysis,confusion of consonants
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Three-mode models and their solutions

The three-mode model - here referred to as the Tucker3 model - was first
formulated by Tucker (1963), and in subsequent articles Tucker (1964,19664)
and Levin (1963) extended especially the mathematical description and
programming aspects of it

In the multidimensional scaling context references to this model occur
frequently {e.g. Harshman (1970), Jennrich (1972), Carroll & Chang (1972),
and Takane, Young & De Leeuw (1977)), as the Tucker3 model is the general
model comprising various individual differences models. A discussion of
the relationships between multidimensional scaling and three-mode prin-
cipal component analysis can be found in Tucker (1972), Carroll & Wish
(197h4), Takane, Young & De Leeuw (1977), and Sands (1978).

As far as we have been able to trace the algorithms developed by Tucker
(1966) are used to solve the three-mode model in all but one case,
References to computer programmes based on these algorithms are Wainer

et al. (1971), Wainer et al. (1974), Walsch (196L), Walsch & Walsch (1976),
and one such programme is embodied in the statistical package SOUPAC de-
veloped at the University of Illinois. Numerous similar programmes have
been written, and they are mostly referred to in passing in applied articles.
The one exception is the programme ALSCOMP3 developed by Sands (1978),

who is using - just as we are - an alternating least-squares technique.

In his 1966 article Tucker remarks that his procedures "do not produce a
least-squares approximation to the data. Investigations of the mathematics
of a least-squares fit for three-mode factor analysis indicate a need for
an involved series of successive approximations." The procedures described
in the present article are designed to provide least-squares estimates of
the parameters in the three-mode model. The alternating least-squares
approach used can also be extended towards other levels of measurement as

has been recently demonstrated by Sands{1978).
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Description of the Tucker3 model

definition three-mode matrix

1xmXxn

A 1xmxn three-mode matrix Z e R is defined as the collection of

elements:

{

23 5% | d=1,...,15 j=1,...,m3 k=1,...,n}

These elements can be thought to be placed in a three dimensional block
with the index i running along the vertical axis, the index j along the
horizontal axis, and the index k along the 'depth’ axis. We will use

the word "mode" to indicate a collection of indices by which the data

can be classified. For instance, in semantic differential studies
(0Osgood , Tannenbaum & Suci,1957) one collects scores of a number of
persons on a set of bipolar scales for a collection of attributes. These

data can be classified by persons, scales, and attributes, each of these

therefore determines a mode of the data.

formulation Tucker3 model

The formal formulation of the Tucker3 model is as follows:

The Tucker3model is the factorization of the three-mode
1xmXn

matrix 7 = {Zijk} , ZeR such that
s t u
i ik = z— z_ X_ giathechaBY for i=1,...,1;
a=1 B=1 y=1 .
J=1,...,m;
k=1,...,0,

where the coefficients g. ,h.., and e are the elements of

ia’ 3B kY xs Xt xu
the columnwise orthonormal matrices G ¢ Kl , He K™ , B e -
respectively, and the c are the elements of the so-called

afy
three-mode core matrix C e RthXu.

A matrix formulation of the model is

7 = GC(H' & E')

X X
where 7 € Rk M oand € e R® tu are now ordinary two-mode matrices by

making usé of so-called combination modes (Tucker,1966, 281), and
' ® denotes the Kronecker product (Tucker,1966, 283ff). By symmetry there
are two other matrix formulations (see also section L4). ~We will not
introduce special notation to distinguish between the two-mode and three-
mode versions of ‘Z and C, as the appropriate one is indicated by the

real space where it is an element of,
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approximation to the Tucker3 model

If we would compute all the principal components, thus s=1, t=m, and u=n,
then we could decompose any data matrix exactly in its components. However,
in practical applications one is just interested in the two, three or four
firat principal components. This precludes in general finding an exact
factorisation of % in G, H, E, and C. One,therefore, has to be satisfied with
an approximation, i.e. finding G, H, E, and C such that the difference
between the model and the data is minimal according to some loss function,
or in slightly different terms, we have to look for an best approximate
factorization of the matrix Z into G, H, E, and C according to the Tucker3
model.

In our case, as in many similar situations,we define the loss function

to be the mean squared one, and propose to search for those G, H, E, and

C such that

r(G,H,E,C) = ||z - cC(H' © E')||2

is minimal. where ||.|| denotes the Fuclidean norm. The minimization has
to be carried out under the restrictions of the model, i.e. that G, H,

and E are columnwise orthonormal matrices.



3. Existence of a best approximate solution

Tn this section we will show that there exists a best approximate solution

to the Tucker3 model.

Be 7 a three-mode matrix with elements zijk , and Z an approximate

factorization with elements

S t u
%.. = . h. ¢ 3.1)
1ok Z=1 g=1 §=1 Fia"38%y gy (

th, and ekY are the elements of columnwise ortho-
normal matrices G, H, and E respectively, sad the caeyare the

where g.
842

elements of the three-mode core matrix C.

The best approximate factorization of the Tucker3 model is the
solution of the minimization of:
l m n
2

T T (. -2
i=1 j=1 k=1 K LK

] (2., - } g h.e c
. & 13k 1la k
1,3,k J asB,Y J8 Ky aby

The Z for which f attains its minimum will be designated as Z

f(G¢,H,E,C)

)2

(3.2)

-~

with elements:

Ze. = ; 85y jBechaBY (3.3)
Y
where the variables with a caret are the least-squares estimators

of the model parameters.

We will now show that there always exist some G, H, E, and C such that f
attains its (global) minimum. The proof has two parts:
1. solve the minimization of f for C with fixed G, H, and E;

2. using the resulting C show that f attains its minimum

for some G, H, and E.

We first show that there exists a unique best C, called C such that for

fixed G, H, and E f attains its minimum for C which has as its elements:

n
§=1 gGuheﬁeIYZGE1 (3.4)




To prove the above assertion we use a simplified version of a lemma by
Penrose (1955), which is presented as lemma 3.2 in Kroonenberg & De Leeuw
(1977). This lemma states that there exists a unique C such that the
function
112 2
n(c) = ||z - z||” = ||z - GcF ||

-

is as small as possible, this C is equal to G'ZF, and the absolute minimum,
i.e. 0, is reached if and only if Z = GG'ZFF'.
To apply this lemma, let us write Z as the matrix product

7z = GC(H' 8 E'). (3.5)

-~

In the same manner C can be written as
C=G'%2(H 8 E). (3.6)

If we write F for H 8 E in both (3.5) and (3.6) we may conclude that

C as in (3.L) minimizes F for fixed G, H, and E, and that
h(C) = 0 if and only if Z = GG'(H ® E)}(H' @ E') (3.7)

The further minimization is now only dependent upon G, H, and E. Once

we have found the appropriate G, H, and E, we can reconstruct C via

equation (3.4).

To proceed with the minimization of f we substitute (3.4) into (3.2),

and call the rewritten function g:

2
g(C,H,E) = Z {Zijk - Z giuhjseky( z géah9661Y2691”
ajak a,B,Y §,e,51 (3.8)

fte

A less unwieldy formula results if we use again the matrix notation:

||z - ca'z(u & E)(H' @ B')||°
||z - e'z(mm' @ BE')||° (3.9)

g(G,H,8) = ||z - z||®

i}

Let S be defined as:

S=1s|s=(GHE, cck, 1e ™ 5e ™%, (3.10)

then S is a compact subset in a finite dimensional real space.

Noting that g is a continuous bounded function
ons8 (0<g <[|Z|]2), it may be concluded that there exists some triplet
(E,E,E) in S such that g attains its minimum. In other words the minimum

problem always has a solution.




h. A solution of the minimization problem

In this section we will give the details of a solution of the minimization
problem (3.2). First we will convert the minimization problem into a
maximization problem, and subsequently we will present a theorem stating
that the component matrices 8, ﬁ, and E are nothing but the eigenvectors
corresponding to the largest eigenvalues of suitably constructed cross

products of the data matrix Z and the other component matrices.

Let us first convert the minimization problem into a maximization problem.
Hereto we rewrite (3.8) with traces instead of norms, and manipulate

the various terms somewhat:

g(G,H,E) = tr(Z - 2)(Z = 2)' = tr (22' - 22' - 22' - 22')
= trZ2' - 2trZZ' - trid’ (4.1)
Expanding each term in turn, and adding them as in (L.1), we get:
-2trZ3' = -2trGG'Z(HH' 8 EE')'Z'
£r22' =  trGG'Z(HH' ® EE')(HH' ® EE')Z'GG

=  trG'Z(HH' ® EE')Z'C

trzZ' = trz7’'
+

g(G,H,E) = trZZ' - trG'Z(HH' 8 EE')Z'G (4.2)

We define p to be equal to the last term on the right hand side of (k.2):
p(G,H,E) = tr G'Z(HH' @ EE')Z'G (4.3)

clearly the minimization of g comes down to the maximization of p, as

both are bounded. It is advantageous to rewrite p a bit further:

p(G,H,E) = tr G'{Z(HH' & EE')Z'}C (L.4)
= tr G'PG with (h.5)
P = P(H,E) = Z(HH' 8 EE')Z! (4.6)

So far we have always placed H and E in the Kronecker product term, but
we could equally well have done so with G and E, or G and H. Such sub-
stitutions entail only a change in notation, and not in the model itself.
The model is indifferent to such notational changes as can be clearly

seen from (3.1).



In the following we will also need the other forms, and thus all three

are given below:

1. p(G,H,E) = tr G'PG with (4.5)
P = P(H,E) = Z(HH' # EE')Z' and Z ¢ RO™  (4.6)
2. p(G,H,E) = tr H'QH with (h.7)
Q = Q(E,¢) = 2(EE' & GG')Z' and Z ¢ ROPL  (4.8)
3. p(G,H,E) = tr E'RE with (4.9)

R = R(G,H) = 7(GG' ® HH')Z' and Z ¢ RV (4.10)

The maximization of p is not unconstrained, but restricted to the set
S. We can incorporate the constraints in the maximization

problem by using Lagrange multiplier matrices L, M, and N.
p(G,H,E,L,M,N) = p(G,H,E) - tr L(G'G - IS) - tr M(H'H - Im) -

- tr N(E'E - In)
(k.11)

The maximum of p follows from the requirement that the first order
partial derivatives of P are simultaneously zero at the maximum of p, and
that the Hessian is negative.

We will here only state the exact nature of the solution as Theorem 1,

but refer the reader for a proof to Kroonenberg & De Leeuw (1979).

Be 7 a three-modedats matrix, and be p, P, Q, R, and S defined as in
(4.3), (4.6), (4.8), (4.9) and (3.10) respectively, and finally be
U, V, and ¥ defined as follows:
U is an eigenvector matrix of P;
V is an eigenvector matrix of Q;
W is an eigenvector matrix of Rj;
and (U,V,W) e S.
Then: .
a. (E,H,E) e S is a stationary point of p if and only if
. 5 = U, ﬁ =V, and E = W, or some orthonormal rotation thereof;
b. (G,ﬁ,ﬁ) € S maximizes p if and only if their columns are eigen-
vectors corresponding to the largest s, t, and u eigenvalues of
P(ﬁ,%), Q(E,a), and R(a,ﬁ) respectively, or orthonormal rotations
thereof.




The following theorem provides the necessary and sufficient conditions
for the existence of an exact solution to the maximization problem (3.2),
and provides such a solution. The proof of part. A and part B(?) follow
directly from the definitions, and the proof of part B(1) can be found
in Kroonenberg & De Leeuw (1979).

Theorem 2

A: Be 7 a three-mode data matrix, and let f, g, and p be defined as above.
Furthermore let (G,H,E,C) satisfy the constraints of (3.1). Then the
following statements are equivalent:

(1) £(G,H,E,C) =0

(2) g(G,H,E) = 0
(3) p(G,H,E) = tr 22' 7 ¢ RO
(4) Z = GG'Z(HH' & EE') 7 ¢ RIS (4.12)

Such a (G,H,E,C) is called an exact solution.
B(1):Let (G,H,E,C) be an exact solution of the minimization problem. Then:

G is the eigenvector matrix (or an orthonormal rotation
thereof) associated with the P non-zero eigenvalues
of 22" with z ¢ RV, (4.13)
H is the eigenvector matrix (or an orthonormal rotation
thereof) associated with the q non-zero eigenvalues
of Z7' with 7 ¢ RO, (4. 14)
E is the eigenvector matrix (or an orthonormel rotation
thereof) associated with the r non-zero eigenvalues
of 772" with Z ¢ RO, (4.15)

C=06'2(H®E) (4.16)

B(2):0n the other hand if:
(1) G, H, E, and C are defined as in (4.13) through (4.16),
(2) the eigenvalues associated with G, H, and E are diffe-
rent for each matrix separately, and
(3) (4.12) is satisfied,

then (G,H,E,C) is an exact unique solution.

Tt should be noted that statement B(2) is not as strong as one would like
to have it, as any (G,H,E,C) which satisfies (L.12) determine an exact so-

lution. A more satisfactory statement, however, has not been found yet.




_a_

5. Towards an algorithm for the solution of the Tucker3 model

Obviously we would like to construct an algorithm for the maximization
of p that converges to a global maximum of p Unfortunately p is the
cross—product term of a multivariate polynomial of the sixth degree, and
in general it is not possible to prove that methods to solve such non-
linear problems attain a global maximum. in the present case this also
seems to be true. We willhave to be satisfied with proving that the
algorithm outlined below will converge to some stationary point, which

ig not a minimum, rather than a global maximum.

The method to be described utilizes the so-called alternating least-
squares (ALS) technique. The essential feature of the ALS approach is
that in solving optimization problems with more than one set of para-
meters, each set is estimated in turn by applying least-squares procedures
holding the other sets fixed. After all sets have been esvimated once

the procedure is repeated again and again until convergence. Early
applications of this technique include solutions of regression problems
with autocorrelated error terms (Cochrane & Orcutt,1949). Further details
and references to applications of the ALS appraoch can, for instance, be

found in Young, De Leeuw, and Takane (1979).

Tn order to see how the ALS approach can be applied in the present con-
text, let us return briefly to (3.9):

g(",H,E) = || 2 - GG'Z(HE' @ EE')|| 2 (3.9 repeated)
Clearly the sets of parameters are here G,H, and E. Minimizing g over
G holding H and E fixed is identical to solving one least-squares problem ,
minimizing over H with E and G fixed, and minimizng over E with G and H

fixed are the two others. That we are in practice maximizing P does not
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prevent the problem from being an ALS one.

From the above discussion a rough outline for an algorithm is readily
deduced. First choose an arbitrary Ho and Eo’ maximize p over G with
these fixed Ho and Eo yielding a new G1 y maximize subsequently over H

with the just computed G1 and Eo fixed yielding a new H, , and finally

1
maximize p over E with G1 and H1 fixed yielding a new E1 , and iterate
this procedure until - one hopes - convergence. According to theorem 1
the maximizations are essentially identical to searches for eigenvectors
and eigenvalues of matrices of the order 1l,m, and n respectively. As
l,m, and n can be quite large, while s,t, and u are typically very small,
say 2,3, or 4, we want to use a technique for solving the eigenvector-
eigenvalue problem (or eigenproblem for short) which is particularly
efficient in finding just a few eigenvectors.

A very appropriate technique in this situation is the so-called simulta-

neous iteration method (or Treppen lstaircase)iteration) of Bauer-Rutishauser

(Rutishauser,1969). For further details on this method see section 6.

The maximization of p consists thus of an in principle infinite iteration
process, in which at each step three eigenproblems have to be solved.
Clearly solving these eigenproblems by yet another in principle infinite
iteration process has its drawbacks. The whole procedure is likely to be-
come computationally burdensome. In order to avoid this we perform only
one single step towards the solution of the eigenproblems, instead of

the complete iterations. A similar approach has been applied by De Leeuw
¢.S. in a number of cases when using an ALS technique. Their experience
has been that carrying out the complete iteration for solving the eigen-
problem only serves to decrease the overall efficiency of the procedure,
while it has no effect on the eventual convergence point if one uses
only one step {cf. Young, De Leeuw, and Takane, 1979). They suggest that
the reason for this behaviour might be found in the same reason that
often cause relaxation procedures to be more efficient than non-relaxa-

tion procedures.




6. The Bauer-Rutishauser method

As the algorithm is based on the method of Bauer-Rutishauser for computing
eigenvectors and eigenvalues it seems in order to describe this method in
some detail. In addition, some of‘the formulations developed here &ill be
used in the rest of the paper.

Let Ae R™™ be a symmetric positive definite matrix, and p the desired
number of eigenvectors. Furthermore let X ¢ R™P pe defined as the matrix
which has as its columns the iteration vectors. If we write X after k
iterations as Xk then the method of Bausr-Rutishauser is described as:

a. Choose an arbitrary orthonormal Xo

b. Yk = AXk

— 1
mBk—ng
d. Solve the eigenproblem for;Bk, i,e.
determine an orthonormal Tk , and a diagonal Ik
: k k k
with 1 2122...211) , such that Tl'{Bka =L X’ and
%:is the eigenvector matrix of Bk , and Lk is the

eigenvalue matrix of Bk.

3,

- - t
ee Xy = BTl T

Schwartz et g}:(1968) show that for k -+ Ii% converges to the matrix with

the largest p eigenvalues of A on the diagonal, and the columns of Xk
converge to the associated eigenvectors, provided A is positive definite,
and the columns of X are not orthogonal to one or more of the eigenvectors
concerned, and in addition the pth and (p+1)st eigenvalues are different.

We may write b. through e. somewhat more concisely as:
_ "'% 1 "% — ' 2 _%

Xppr = ROITY = A BE = a0 (GATKG) T
With a view to what follows it will be convenient to define the
function s

2 .
= ! 2 .

5 (%) = AX (A%K) | (6.1)

When we use in the sequel a recursive formula like (6.1) we mean to say

that Xk+ can be computed by carrying out one step of the Bauer-Rutis-

1
hauser method.
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It should be noted that the inverse square root of X'A2X exists and is
uniquely defined, if the expression is positive definite. This implies that
¢ 1is well-defined, and it can be proven that ¢ is continuous as well

(vide Kroonenberg & De Leeuw,1979). As will be shown in section 8 rather
strong convergence theorems can be used for the algorithm to be described
if ¢ is continuous. Tt seems therefore worthwhile to take measures in
constructing the algorithm to ensure the positive definiteness of X'AZX.

An inspection of the method to arrive at (6.1) shows that in fact only

the inverse square root is taken of the eigenvalues 11, 12""’lp of Bk'

One only has to check in each iteration step if all eigenvalues are larger

than zero, or in pratice larger than some very small number, If one of the
eigenvalues is too small, one can restart the iteration procedure with a
smaller number of eigenvectors. There is, however, no guarantee that this
will solve the singularity problem. On the other hand if no singularities
have occurred, one knows that at each step ¢ must have been uniquely defined
and continuous on RnXp. As we have taken the above precautions we may from

now on assume that expressions like X'A2X are positive definite.



~13-

T. The TUCKALS3 algorithm

Be 7 a 1xmxn three-mode matrix,and let s,t, and u be the desired number of
components for the three component matrices. Furthermore let 813853058
h1,h2,...,ht ,and €1 Cpsevesly be systems of orthonormal iteration vectors

lxs’ He Rth, and

which are combined into the orthonormal matrices G & R
Ee RTY respectively.

If we write the matrices G, H, and E as they are after i iteration steps as
Gi’ Hi’ and Ei’ then one main iteration step of the TUCKALS3 algorithm can

be deseribed by (7.1) through (7.6):

G substep

P, = B(HHI6EE!)2' (z e R (7.1)
_ _ 2. \-2
Cipq = 04(05) = P;G; (GIPIC,) (7.2)
H_substep
Q; = Z(E;E18G,,01,,)2" (z ¢ B0 (7.3)
- - 2. -3
Hoyp = op(H;) = QH, (HIQH, ) (T.4)
E _substep
= nxlm
R, = Z(GiﬂGJ'._H@HiHHiH)Z' (Z ¢ R ) (7.5)
- - 2. y-2
Bipq = ¢3(E;) = RE (EIRGE,) (7.6)

As mentioned before each G, H, and E substep are one step of an 'inner'
iteration to find the eigenvectors of P, Q, and R respectively, and together

they define one step of the main iteration.

Because we want to discuss the properties of the TUCKALS3 algorithm in the
sequel it is useful to introduce some notation.
-~ F: 8 » 8 is a function on S, F defines a complete step of the
main iteration, and S is defined as in (3.10)

- F = F3-F2-F1 with Fi: S ~>8S8 1=1,2,3 s.t.



F1(Gi SH ,Ei) = (¢1(Gi),Hi oE; ) = (GiH,Hi »E; )

Folbiypoly BBy) = (Gp, 0 w0,(H),E ) = (Gjypaly o8y )

F3(Gi+1’Hi+1Ei) = (Gi+1 ’Hi+1 ’¢3(Ei>) = (Gi+1’Hi+1’Ei+1)
thus F(si) = F(Gi,Hi,Ei) = (Gi”,HiH,EiH) =5,

In section 6 we remarked that ¢ as defined in (6.1) was a continuocus function
and thus ¢], ¢2, and ¢3 are continuous functions, and because F is the com-
posite of continuous functions F is continuous as well.

It can be shown that both at each step of the main iteration and at each sub—
step the value is increased. (For a proof that at each substep p is maximized
see Kroonenberg & De Leeuw (1979) ). Thus p(F(si)) = p(si+1) > p(si).

If p is not/increased strictly, i.e. p(F(si)) = p(si), the algorithm stops,
In that case (G,H,E) satisfies the necessary conditions of lemma 3. Conse-

quently we can assume without loss of generality that the algorithm generates

an infinite sequence with p(F(si)) > p(si).

Obviously we need some Go’ Ho’ and Eo to intialize the procedure. It seems
sensible to choose them in such a way that they are optimal in some sense.

We chose such an initialization that it would solve the maximization problem
exactly if the problem had such a solution., In other words the eigenvector
matrices mentioned in theorem 2 point L were used as initializations. Comparing
this with the .method 1 of Tucker (1966, p. 297) we note that the initiali-
zation is nothing but the final Tucker solution. In practice we do not need

to know the eigenvectors exactly as they are only used to intialize,and there-

fore we made only five iteration steps of again the Bauer-Rutishauser method

towards their solution.,
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8. Discussion of the convergence of the TUCKALS3 algorithm

It is of course of prime importance to show that the algorithm outlined in
(7.1) = (7.6) converges, and moreover that it converges to a maximum of p,
or at least not a minimum.

The algorithm considered here is a type of algorithm that has been described
in the non-linear programming literature, and in that field various theorems
about the convergence of algorithm such as ours exist. The most appropriate
one in our case is the following "fixed point" lemma described and proven

by d'Esopo(1959):

Let F,p,S satisfy the following conditions:
1. a. S 1is a subset of a finite dimensional real space
b. F is a continuous transformation of S to S
c. p is a real function defined and continuous for all se S
2. p(F(s)) > p(s)
3, if p(F(s)) = p(s), then F(s) = s

4, if the sequence s_, S;5 Sppeeece satisfies p(si+1) > p(si) with s; ¢ 8

S .

Then for every limit point § of Sy Sqs Spareoes F(s)

Tn section 3 we noted and discussed properties la,c, and in section 7 we
did the same for 1b,2,3, and k.

We may therefore conclude that the lemma applies to the TUCKALS3 algorithm,

As S is a bounded real subspace, any infinite sequence $_,8{3sS55--- is

bounded, and thus the sequences generated by the algorithm are bounded as

well. A theorem due to Welerstrass shows that such sequences have at least

one 1limit point.

Kroonenberg & De Leeuw (1979) show that every point s such that F(s) = s

is a stationary point of p, and because we know that at every step p increascs,

we know that Lhe stationary points will not be minima.
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As has been shown by Ostrowski (1966) the set of limit points of {si} consists
either of a single point or a continuum. The latter case is, however, a very
unlikely one in practical applications, as is the occurrence of ecqual eigen-
values in real data.

The above results imply that from any arbitrary starting point Sy the algorithm
converges to a stationary point of p, but the algorithm "like all numerical
methods based on local searches for solutions, can at best be expected to

yield local minima [here: maxima ] (...). Global minimality [ here:maximality ]
could be assured only by exhaustive searches over succesively finer grids"

(Meyer,1970,p.45).
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9.

Special cases: the Tucker2 and the Tucker!l model

Tucker2 model
An important special case of the Tucker3 model is obtained if the matrix
E in the formula (3.5) is taken to be the identity matrix. This defines the
Tucker? model, which can consequently be written as
t

s
Z. . = X Z g. h. c
ik a=1 g=1 100 JB aBk

i=1,...,13 j=t1,...,m; k=1,...,n
(9.1)
with the same meaning of, and restrictions on G and H as before.

The matrix notation is
7 = GCH' (9.2)

where Z and C are three-mode matrices.

Instead of specifying principal components of all three modes, the

Tucker? model only specifies them for two (say the first two) of the

three modes. In other words, the third mode is not condensed, and remains

intact. This will enable one to study the interrelationships between the
components of the other two modes for each element (variable, person,
moment in time) of the third mode. The Tucker? model has been indepen-
dently formulated by Israelsson (1969),Carroll& Chang (1970), and Jennrich

(1970).

The Tucker? model has three important fields of application:

1. In those analyses of data for which no natural condensation of the
third mode can be defined. An obvious example would be the multi-
variate analysis of time series. In general no useful meaning can
be attached to the components of a time mode. In certain other
applications one is interested in persons are replications,and one
does not want to investigate person components, but rather the inter-
relationships between the other two modes for each person.

2. In individual differences scaling with asymmetric similarity matrices.
A typical example would be the analysis of the confusion matrices of
the now famous Miller & Nicely (1955) data. (See section 10).

3. In testing the appropriateness of various individual differences models
in multidimensional scaling, such as INDSCAL, IDIOSCAL, and PARAFAC.
These models can be seen as a specilal case of the Tucker2 model. For
instance in the INDSCAL model it is assumed that the core matrix is

diagonal in each of its frontal planes, i.e.

c =0, if a # B

oBk




If such an assumption is true for the data at hand remains to be seen

in many cases.

Technically the estimation of the parameters of the Tucker? model poses

no problem; in the algorithm outlined in section 7 one simply leaves out
the E substep, and inserts the identity matrix for E in the other sub-
steps. Computationally it is, however, more efficient to solve the

model directly by the analogon of the TUCKALS3 algorithm, than solving

the model through the TUCKALS3 algorithm itself. Because of the analogy
the proofs of the properties of the TUCKALS? algorithm are exactly the
same as in the TUCKALS3 case. Details are given in Kroonenberg & De Leeuw
(1977).

Tucker 1 _mode1
Instead of performing s principal component analysis over two or three
modes, it is very well feasible to perform such an analysis over Just
one mode of the data. This would give the Tucker! model:

Zas =

idk i=1,...,1; J=1,...,m; k=1,...,n

(9.3)

g
=1

Q~1

ia%ajk

with the standard meaning of, and restriction on G.

The matrix formulation is:

Z = Gc, (9.4)
where 7 and C are three-mode matrices.
For the case that the horizontal planes of the data matrix 7 are similarity
matrices, the principal component analysis of the Tucker! model is iden-
tical to the procedure proposed by Tucker & Messick (1963,336ff.). The
Tucker! model has, of course, wider application as it does not restrict
the horizontal planes to be similarity matrices.
There is no need to write separate programmes to solve the Tucker? model
as the analysis can be carried out with any principle component analysis

brogramme by properly organizing the datsa input.
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Example: the Miller & Nicely data

data

The data froma classical study of confusions of English consonants were
used as an example to show a number of the possible features of the TUCKALS
programmes. The data consist of confusions among the 16 most used Fnglish
consonants under 17 different degrading conditions (Miller & Nicely, 1955).
Five North American female subjects serves as talkers and listening crew;
when one talked, the other four listened. One syllable stimuli consisting
of |a| (as in father) preceded by one of 16 consonants were spoken -lpl,
[t], 1%}, [€], |8| (as in thought), ElR [J‘ (as in should), |b], |4],

7

.

lel s , [él (as in that), |z|, |3] (as in vigion), |mf, |n
The consonants spoken were fed through a transmission circuit which was
degraded each of the 17 times in a different way. Notably there were diffe-
rences in signal-to-noise ratio, low-pass filtering, and high-pass filtering,

some details of which are listed in Table 1.

Table 1 here

In each condition tested some 4000 observations were collected, be it that

not each consonant was spoken equally often. In our analysis we first

corrected for this by dividing each entry by its row total, for each row
corresponds to the consonant svoken, while each column corresponds to the
consonant heard. The entries in the matrix therefore indicate for that
particular condition, the number of times each of the consonants was heard,
when the consonant associated with that row was spoken.

In our analysis we added two more matrices to provide zero-point references,
i.e. a matrix with verfect discrimination (only entries on the main diagonal),
and a matrix with total uniform confusion (equal entries in all cells). Strictly
speaking the former matrix does not belong to any of the series of degrading
conditions, as perfect discrimination would probably require increasing both
the signal-to-noise ratio above 12 db, and extending the frequency range on

the high and the low side. With regard to the latter matrix, we could interpret
it as referring to noise coming from just one frequency wave band for any signal-
to-noise ratio, or as coming from any frequency band with very low signal-to-

noise ratio. It therefore would fit into any degradation series.




TABLE 1
Degradation conditions in the Miller & Nicely study

of confusions among consonants

Degradation Signal-to-noise Frequency response  Amount of information
condition ratio in hz per matrix
Masking
REF'1 - - L. o0
N1 12 db 200-6500 3.55
N2 6 db 200-6500 3.23
N3 0 db 200-6500 2.81
Y - 6 db 200-6500 1.84
N5 ~12 db 200-6500 0.96
N6 . -18 db 200~-6500 0.06
REFO - - 0.00

Low-pass filtering

REF1 - - 4.00
L1 (=N1) 12 db 200-6500 3.55
L2 (=H1) 12 db 200-5000 3.20
L3 12 db 200~-2500 2.83
LL - 12 ab 200-1200 2.38
L5 12 db 200~ 600 2.18
L6 12 db 200- L4oo 1.67
LT 12 db 200- 300 1.15
REFO - - 0.00
High~pass filtering
H1 (=L2) 12 db 200-5000 3.20
H2 12 db 1000-5000 2.67
H3 12 db 2000-5000 1.59
Hh 12 db 2500-5000 1.07
H5 12 db 3000-5000 0.62
H6 12 db 4500-5000 0.4k
REFD - - 0.00

Based on Miller & Nicely (1955), ana adapted from Carroll & Wish (1974)
Higher numbersdenote more severe degradations.

REF1= perfect intelligibility; REFO= total uniform confusion

o
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The Mjller & Nicely data have been extensively used both in the field of
phonetics as support or disproof of the distinctive feature theory, and

as demonstration material for various scaling procedures. In the
latter class fall most notably Shepard (1972,1974), Wish(1970), Carroll &
Wish(197L4), Smith (1973), and Smith & Jones(1975).
Substentially with respect to the structure of the consonant space we have
not much to add to the very detailed and thoughtful analysis of Shepard(1972).
We give, however, a new interpretation of the dimensions in the noise-condition
space. We want to emphasize that our primary aim in presenting the analysis
of these data is to demonstrate the developed computer programmes, rather
than provide a substantial contribution to theory in other domains. At the
same time it should be realized that it is impossible in the present context

to do full justice to all the various aspect of the two programmes.

stimulus spaces

Inspection of the Tucker2 and Tucker3 models shows that the principal component
matrices G of the first mode and H of the second mode, respectively consonants
spoken and consonantsheard are treated independently. There is therefore the
possibility to compare these two configurations, based on the same 16 consonants.
It turned out that only small differences were present - an interesting
phenomenon in itself ~ therefore we will discuss for the moment the stimulus
spaces, as if they were one, and come back to their difference later on.

In principal component analysis the number of components to retain is a
primary problem, essentially it amounts to deciding how much distortion one
allows of the original stimulus space. In three-mode principal component analysis
the situation is the more problematic, because of the interwovenness of the three
modes in the estimation procedure. Changing the number of components in one mode
implies immediately a different (whether substantial or not) solution of the other
modes. It was to us, however,surprising how stable many solutions were to such
changes.

The usual criterion based on the amount of variance explained by the components
is again problematic, as the components are eigenvectors not of the original
inproducts of the data, like the eigenvectors G, H, and E in theorem 2  but they

are eigenvectors of P, Q, and R (see section Y4) which all are functions of the




other modes as well. At this moment we have not worked out a satisfactory guide
yet, and in the case of the Miller & Nicely data we have used both the inspection-
of-eigenvalues criterion and the alltoo fallible interpretation criterion.

In interpreting the output of analyses such as ours one can lock for homogeneous
group of variables (here: groups of consonants which are very often confused) or
search for meaningful directions (axes) in the stimulus space. We have used both
approaches simultaneously.Especially the comsonant stimulus space has both very
clear interpretational axes and homogeneous subgroups, as can be seen from table

2 and figure 3.

Table 2 and figure 3 here

Figure 3 shows the rotated solution in three dimensions. The first component
roughly corresponds to the energy content of the various components, the IJI
being the most energetic consonant, while the voiceless stops are the least
energetic; we will refer to this component as "energy'". The second axis separates
the voiceless stops, voiceless fricatives, voiced.fricatives and voiceless stops
(except for |b|): we will refer to' this axis as "voice", although it is clear
that this is an oversimplification. The third axis, finally, serves to set the
nasals off from the rest, and we will refer to it as "nasality". Furthermore we
can easily identify a number of homogeneous subgroups as is indicated in

figure 3. A four dimensional solution did not give any additional information
about the group structure, it only served to set off the voiceless stops and
voiceless fricatives against each other, a distinction already contained in the
three dimensional configuration. A problem is, of course, to separate the group
of consonants more formally. If a some type of average similarity matrix would
have been available an appropriate cluster analysis could be called to assistance
(see e.g. Shepard {(1972) for the use of such a procedure on the same data after
the symmetrization of the matrices). In our case we have used another feature

of the TUCKALS programmes as a rough guide. The programmes generate an "average"
matrix between the elements of each two of the three modes on the basis of the

components. In table Lt this "average" confusion matrix - GCH' - is given.

Table b here

A visual analysis indicates four major, partially overlapping clusters, and some
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TABLE L

"average" confusion matrix
consonants heard

t k¥ p £ & s J 3 oz v b» g a n m
£ 11 11 10 4% 3 1 -5 -7-h4-o3-3-2-k-6 -L-N4
k| 11 11 10 4 3 1 -4 -—6-h-2-3-2-b-5 -bL-L
pl 10 10 9 4% 3 1 -4 -6-k-2-2-2-Lb-5 -3-14L
f b b 2 11 -0 -2-3-1-1-1-1-2 -3-3
9 33 3 1 1 1 17 =1-3~-1-1=1=-1=-2 =-2-3
s T 1 1 13 9 1=1=-2-2-2-2-3 =~3-3
Ifos-u-u-0 2 9 33 8-1-4-6-6-5-8 -h-L
2l-717-7-6-2-1 2 8 6 3 1 1 1 3 L -3-14
zl-b-b-b4-o1-1-1 = 3 3 2 3 2 4 5 ~-3-3
5|-3-3-3-1=-1~2 -5 2 2 2 3 3 3 5 -1=-2
vl-2-3~-2-1-1~2 -6 1 2 2 3 3 Lk 5 -1-2
pl-2-2-2-1-1-2 =6 1 2 2 3 3 3 5 =-1-2
gl-44-5-b-2~-1-2 -5 Yy 3 4 LW 5 7 -3-14
i|-5-5-5-2-2-3 -7 » 4 5 5 6 9 =-L-5

-h-okh-o3-3-2-3 -4 -3-3-1-2-1-3-14 18 21
ml-4%4-L4b-3-3-2-3 -4 ~h-3-2-2-2-3-5 20 2k

Notes:— the "average" confusion matrix is constructed on the basis of the

two component matrices G and H, and the average frontal plane of
the core matrix, i.e. GCH'

— each entry indicates the weighted product of the row stimulus and the
column stimulus. High positive values indicate that the row and column
stimulus are often confused, and large negative values indicate that they
are very seldom confused. High values on the main diagonal indicate that
the consonant is very distinct, and is seldom confused with other consonants
in nearly all degradation conditions.

_ the order of the consonants is different from the one in Miller & Nicely.

- decimal points omitted
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further distinction within the major clusters. At the same time we can see

that the second component'"voice"corresponds very close to the entries on the
main diagonal of table 4 (disregarding the | s|,|J| s miy [n]).

The above analysis has been carried out on per noise condition double centred
matrices (i.e. Ekij = Zkij - zkj - Zki + Z?. ), and tap therefore the main
structure of the data. . '

Another way of looking at the same data using the same programme, is to centre
the data for each consonant heard- consonant spoken combination over all noise
conditions (a procedure for instance used by Tucker & Messick (1963) in their
point-of-view analysis). This will bring to light if the various noise conditions
treat the consonants differently. For instance, a consonant which behaves more
or less similarly in all conditions, will now be located close to the centre of
the configuration; on the other hand a consonant (such as | t |) which is treated
differently for high-pass filters from low-pass filters will have a high loading

on some component. Figure 5 illustrates this clearly for the Miller & Nicely data.

Figure 5 here

Figure 6 is a joint plot of the component matrices for the first and the second
mode of the first analysis showing how well the correspondence is between the
understood and the spoken consonants. (For details on the method to produce these

plots, see Kroonenberg & De Leeuw, 1977).

Figure 6 here

In passing it should be noted that for the same number of components the TUCKALE?
and TUCKALS3 solutions were virtually identical. Finally it should be remarked

that our substantive results resemble those of Shepard (1972) quite closely.

The INDSCAL analysis of Carroll & Wish (1974) seems to us to involve far too

many dimensions, and our impression is that they needsix dimensions to separate

the various groups, where we need only three. The fact that they performed the

analysis on the raw data might have something to do with this.
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noise condition

As is shown in table 1 we can define three large groups of noise conditions
- varying signal-to noise ratios, filtering the high frequencies, and fil-
tering the low frequencies respectively. As mentioned by Miller & Nicely
(1955) and confirmed by Shepard(1972) low-pass filters and low signal-to-
noise conditions look somewhat alike, and are both different from high-pass
filters. A two dimensional rotated solution is given in table 7, and

figure 8.

Table 7 and Figure 8 here

The stimulus space for the noise conditions has been rotated in such a way
that one of the axes passes through the two reference points, i.e. uniform
total confusion and perfect intelligibility.
In the original publication Miller & Nicely use a measure of covariance
between input and output to classify the various noise conditions. In
particular this measure is

T(x,y) = - ) .. 1ogpipj .

i,5 7 Pij

where T is often referred to as the amount of information transmitted

from input variable x to the output variable y in bits per stimulus, and

where it is assumed that x takes on discrete values (here consonants) 1=1,2,..,k
with probability ps> and similarly y takes on the values j=1,2,...,k with
probability pj, and pij is the probability of the joint occurrence of input

i and output j. We have recalculated the values of T for the confusion
matrices based on proportions, and these values are listed in table 1.

By a heuristic method a direction in the noise condition space can be found
which corresponds to (a nonlinear transformation of) the amount of informa-
tion contained in each matrix (see figure 9B). This direction is indicated

in figure 8. One would have preferrred this direction to be one of the axes

of figure 8, but this is unfortunately not the case, as can be clearly seen from

figure 9A.

Figure 9 here

It is , however, interesting to note that the higher
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TABLE 7

Stimulus space of the third mode (noise conditions)

g§§§i§§ low-pass filtering high-pass filtering
1 2 1 2 1 2
REF1 30 0 REF1 30 0
N1 30 0 L1 30 0 H1 30 1
N2 30 1 12 30 1 H? 30 -7
N3 | 29 3 L3} 28 6 H3 |26 -20
N} 24k 9 Ly | 18 32 Hs {2k -28
N5 | 13 25 L5 | 18 33 H5 |21 -=ko
N6 1 T L6 18 27 H6 18 -=kh2
REFO 0 o0 LT 9 Ly REFO 0 0
REFO 0 0
Notes:-decimal points omitted
~component weights .31 and .01 (unrotated)

-stimulus space has been rotated, such that the first comp

the reference points, REFO and REF1
-sum of all unrotated weights is equal to one

onent runs. through

FIG. 8 NOISE CONDITION SPACE - rotated
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points in figure 10 A are all high-pass filtering conditions. 2 particular

feature distinguishes these filter conditions from the other conditions, i.e.

the amount of information in the confusion matrix is transmitted by just a

few stimuli ([f], |3], |s|, ana |t|). Inspection of the core matrix (see below)
shows that, in addition, the "energy"-axis of the consonant space stands out

in the amount-of-information plane of the core matrix. Conceiveably, therefore,
this feature might have caused their different behaviour.

As far as the other component of the (rotated) noise condition space is concerned,
it reflects something like the average frequency 6f the filtering or masking but

& proper measure to account for the numerical values is not known to us.

core matrices
Finally we should say something about the core matrices, both of the TUCKALS3
and TUCKALS 2 analysis. As mentioned above we have in the former analysis per-
formed a number of rotations. The stimulus spaces for the consonants were rotated
in such a way that the frontal planes of the core matrix were far more diagonal
than before. At the same time this improved the interpretability of the axes of
the stimulus spaces of the consonants. The above mentioned rotations of the noise
condition space - here through point L3 - is of course also compensated by a counter
rotation of the core matrix. The final effect of these three rotations on the
core matrix is shown in figure 10, where the frontal planes are shown, and where,

as far as possible, the appropriate labels of the components have been added.

Figure 10 here .

The main pattern of the frontal planes is that each of the components of the

first mode (consonants spoken)is predominantly related to the same one of the
second mode (consonants heard). Secondly all components have their largest
loadings on the "average frequency of unfiltered band" frontal plane, and

thirdly that the "energy" component seems to be the only one substantially
contributing to the amount-of-information distinetions, while all three components
nearly play an equal role in the frequency distinction. We are unfortunately not
versed enough in the substantial theory of filtering to further interpret these
findings. The frontal planes of the core matrix in the TUCKALS2 analysis provide
us with the relations between the components of the first and second mode for

each of the degradation conditions. In a sense these planes provide a summary of
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how the noisc conditions affect the three major components of the stimulus

space of the consonants. In table 11

TABLE 10

some typical examples are given.

Frontal plancs of core matrix from the TUCKALS3 analysis

"amount of information"”

(component 1 noise conditions)

(component 2 noise conditions)

energy voice nasality energy voice nasality
1 2 3 1 2 3
energy 1 13 -0 -1 1 18 -2 -2
voice 2| 1 5 0 2 2 23 1
nasality 3 1 -0 L 3 2 -2 23

TABLE 11 Frontal planes of core matrix from the TUCKALS? analysis - rotated
masking low-pass high-pass reference
filtering filtering matrices
N6 LT H6 REF1
-18db 3200-6500 12db; 200- 300 12db;4500-5000) perfect intelligibility
e v n e v n e v n e v n
1 2 3 1 2 3 2 3 1
energy 1 1 -1 1 15 -5 2 Qb5 - 0 67 T -
voice 29 - 2 9 - -3 57T -3 - 2 10 1 -1 67
nasality 0 2 1 -3 57 2 12 0 -0 67T
N5 Lh H3 REFO
-12db ;200-6500 12db; 200-12004 12db;2000-5000 total uniform confusion
energy 1 26 -4 3 36 2 3 60 1 L 0 0 0
voice 2|l - 1 UBE 5 65 -1 1 W7 -k 0 0 0
* nasality 3 3 - L ot 1 -1 66 2 0 37 0 0 0
| Note : — all values have been multiplied by 10

"aveirage frequency of unfiltered band"
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PART TIT

PROOFS

Introduction

In part II of this report proofs are given of a number of statements

made in part I.
In order to make part IT slightly more readable a number of definitions
which also appear in part I have been repeated in sections 1 and 3. For

the rationale behind the definitions we refer the reader to the first

part of this report.



Notation and terminology

Matrices

All matrices used in this report are real,-and in general the number

of rows will be larger than or equal to the number of columns.

The following classes of matrices will be used throughout:

nxm
R

g

the class of real nxm matrices

the class of all columnwise orthonormal matrices, i.e. if
Xm . .

Ue K then U'U = Im 1f and only if n=m; the rank of any

U e Knxm is m

x
p ™ . the class of all nxm diagonal matrices; E ¢ D™ is & 'truly!'
. .. . . mxm
diagonal matrix if n=m; if n < m then E = (F 0) with F ¢ D
. . . . . F . mxm
and O is a matrix with zeroes; if n > m then E = 0 with F ¢ D .
In : the nxn identity matrix
A 1lxmxn block matrix Z is defined as the n
collection of elements: k’ i
. . 1° -
{zijk | i=1,...,13 J=1,ee0,m3 k=1,,..,n} . !,'
1 ~r< 7
These elements can be thought to be . .s‘ k
. . . i | ASRUS
placed in a three dimensional block 3 Dot intll o
with the index i running along the 1 1..j..m
vertical axis, the index j running
Fig. 1-1

along the horizontal axis, and the

index k along the 'depth' axis.

A three-mode matrix

We will also view a block matrix as collections of normal (two-mode)

matrices. This can be done in three different ways:

e

Three different ways to view a three-mode

. A Z.
“y 4 &/ J

matrix Z as a collection of two-

mode matrices.



a: the collection of frontal planes : Z={2. 1. _ fig. 1-2A
k k—1goco,n

{z;}

17 1=1,000,1

b. the collection of horizontal planes: Z fig. 1-2B

c. the collection of lateral planes: 7 =1{Z.} ._ fig. 1-2C
J7 J=T,ee.,m

1.2 Stationary points

For convenience we will use in this report a more restricted definition

of a stationary point of a function than is customary:

X
Let S ={(G,H,F) | G e K, He K", Ee K7}, and
let p be a real continuous differentiable function on S
then (G,H,E) ¢ S is a stationary point of p if (G,H,E)

is a solution of the stationary equations:

i--[p(G,H,E) - trL(G'G —Is) - trM(H'H - It) - trN(E'E - Iu)]
8X
=0

with X = G, H, E, L, M, N respectively, and L, M, and N

being matrices of Lagrange multipliers.



Analytic

solutions of the principal component problem

Theorem 1

Then:

. Z a three-mode matrix,

p(G,H,E) = tr G'{Z(HH' ® EE'")Z'}G , (2.1)
P(H,E) = Z(HH' ® EE')Z' with Z e R~ ™0, (2.2)
Q(E,¢) = Z(EE' @ GG')2Z' with 7 ¢ RO, (2.3)
R(G,H) = 2(GG' ® HH')Z' with 7 ¢ Rnxlm, (2.4)
s=1{s|s=(6,0E), ce k%, 0e ™", eV, (2.5)

. U is an eigenvector matrix of P with rank s,

V is an eigenvector matrix of Q with rank t,
W is an eigenvector matrix of R with rank u,
G,H,E) € S is a stationary point of p if and only if

-~

-~ oA A

{
G=U, H=V, and E = W, or orthonormal rotations thereof.
(G,H,E) e S maximizes p if and only if their columns are
the eigenvectors correspondlng to the largest s,t, and u
eigenvalues of P(H,E) Q(E G), and R(G H) respectively or

orthonormal rotations thereof.

1. Let us first determine the stationary equations for
p(G,H,E) = tr G'PG = tr H'QH = tr E'RE
Incorporating the constraints on the parameter space
into the function to be maximized, we get:
p(G,H,E,L,M,N) = tr G'PG - tr L(G'G - 1) -
tr M(H'H - It) - tr N(E'E - Iu).

Differentiating with respect to all the parameter
matrices, and setting all the derivatives equal to zero,
we obtain the following set of equations, which have to

be solved 51multaneously for all the parameter matrices:

PPN PN

"P(H,E)G =GL & G'G = I (2.6)
QUE,G)H=HM & H'H= I, (2.7)
R(G,H)E = EN & E'E = I (2.8)




N

To simplify the notation we will drop the carets from now on.
Note that L, M, and N are necessarily symmetric, because
e.g. the restriction gigj = 6ij is identical to the re-

striction gjgi = Gji, where g; is the i-th column of G.

As G and L are solutions of (2.6), it follows from PG = GL

that L = G'PG. Furthermore I is positive definite,

because P is, and because in addtion L is symmetric, there

exists an F ¢ K°°° such that L = FAF' with A ¢ D¥°°.

Substituting this in (2.6), and postmultiplying with F we

get PGF = GFA.

By defining U = GF (and thus G = UF') it follows that A is

an eigenvalue matrix of P, and U is the associated eigen-

vector matrix.

Analoguously it follows that:

- if H'and M are solutions of (2.7), then there exists an
F e kY guch that H = VF' and M = FAF'; in other words
H is an orthonormal transformation of an eigenvector
matrix of Q;

-~ if ¥ and N are solutions of (2.8), then there exists an
% € K% such that E = W%' and N = %R%'; in other words
E is an orthonormal transformation of an eigenvector

matrix of R.

Conversely, if we let U,V,W, and A,K,R be eigenvector matrices
and eigenvalue matrices of P, Q, and R respectively, then
(U,V,W) as well as their orthonormal transformations (G,H,E)
With G = UF', H=VF', E=Wi', F e K55, F ¢ KU, and

Fe kO satisfy (2.6) through (2.8), and are thus

stationary points of p.

Define:

T={t | t = (G,H,E); G, H, and E are eigenvector matrices
of P, Q, and R respectively, or orthonormal trans-
formations thereof}

We already know that there exists a (G,H,E) € S such that

p attains its maximum (see Part I , section 3). Now we




can state that this maximum will and can only be attained
for some (G,H,E) e T.

. Any (G,H,E) € T can be written as (UF',VF',WF') with F ¢ K°°,
Fe Ktxt, and F ¢ KXY,

Thus: p(G,H,E) p(UF',VF',W%') =

tr FU'Z(VF'FV' & w%'iw')szFv =

tr U'Z(VV' 8 WW')Z'U = p(U,V,W)

-~ A A

. Let (G,H,E) € T be the point at whlch p attains 1ts maximum:
p(G,H,E) = (U v,w) mex p(U, V w) = max tr U'P(V w)U

fl

max Z Ai with the maximum taken
Ao 1= over all possible ways

to combine s of the

total of 1 eigenvalues

< of P(;[:;”.

= Z A, where Ai (i=1,...,s) are

* the s largest eigenvalues
of P(G,%).

-~

Thus U must be the eigenvector matrix associated with these
largest eigenvalues. Analoguously ; and % are the eigenvector
matrices associated with the largest eigenvalues of Q(Q,G)

and R(G,G).

The value of the maximum is:

E b=
s = H. = V.
=1 = 9 k= K

PN

He-1t0

- where {i and ¥ are analoguously defined as A.

-~ oA oA

. Conversely, let U,V,W be the eigenvector matrlces assoc1ated

with the _largest s, t, and u elgenvalues of P(V W) W U),

and R(U V) = UF', H = VF', and E = WF' with F, F, and F as above.
-~ a A s “ t ~ u -~
Then p(U,V,W) = § Ay =) o= v, = max p(U,V,W)
i=1 =1 3 K=1 (U,V,W)
As p(G, ) = p(U,V,W), max p(U,V,W) = max p(G,H,E), thus
(U,v,w) (G,H,E) :
if (U,V,W) maximizes P, then any orthonormal rotations of
ﬁ, V, i do so as well.



exact_solution

Be g defined as:
g(G,H,E) = tr (Z ~ GG'Z(HH' 8 EE'))'(Z - GG'Z(HH' 8 EE'))

with 2 ¢ Rlxmn.

PPN

Let (G,H,E) be an exact solution of g, i.e. g(G,H,E) = O.
Then:

G is the eigenvector matrix (or an orthonormal rotation thereof)
associated with the s non-zero eigenvalues of ZZ' with
Z € R1an;

H is the eigenvector matrix (or an orthonormael rotation thereof)
associated with the t non-zero eigenvalues of ZZ' with
7 e Ranl;

E is the eigenvector matrix (or an orthonormel rotation thereof)

associated with the u non-zero eigenvalues of 22' with
7 € Rnxlm

PPN

From g(G,H,E) = 0, and the definition of g , it follows that

7 = GG'Z(HH' & EE'). (2.6)
Theorem 1b states that G, H, and E are the eigenvector matrices
associated with the s, t, and u largest eigenvalues of P, Q, and R
respectively.

If we define A ¢ K°®

to De the eigenvalue matrix of P associated
with G we have:

GAG' = P = 7(HH' ® EE')Z' with 2 ¢ ROO

(2.7)
Pre- and postmultiplying (2.7) with GG', and subsequently sub-
stituting this in (2.6) shows that

GAG' = 77! with 2 ¢ RO

In other words G is the eigenvector matrix of ZZ', and A the
associated eigenvalue matrix. Furthermore the rank of G (= s) is
equal to that of ZZ', and thus the A (i=1,...,s) are the s non-

zero eigenvalues of 272°'.

The analoguous result holds for H and E.
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3. The TUCKALS3 ulgorithm

BeZ a 1xmxn three-mode matrix,und let s,t, and u be the desired number of

components for the three component matrices. Furthermore let 81’5”""’85’

h1,h2,...,ht

,and €15 €ureeere be systems of orthonormal iteration vectors

Ixs mx t,

which are combined into the orthonormal matrices Ge R ~, He R , 8nd

E e RPU respectively.

If we write the matrices G, H, and E as they are after i iteration steps as

Gi’ Hi' and Ei’ then one main iteration step of the TUCKALS3 algorithm can

be described by (3.1) through (3.6):

G_substep
P, = Z(HH}OE,E!)z" (z ¢ RM™) (3.1)
. 2 ,%
= = '
G, f1(Gi) PiGi(GiPiGi) (3.2)
H_substep
Q = Z(E; E'861+1 1+1)Z' (z € Ranl) (3.3)
Hy o= £,(H) = QH, (qulﬂl) (3.4)
E_substep -
- . . nxlm
R, = u(c, 11GL B, HE 2 (Z ¢ R ) (3.5)
1
_ N — N g V2
E. ., = f3(hi) = Rihi(hiﬁihi) (3.6)

Because we want to discuss the properties of the T
sequel it is useful to introduce some notation.

-- F: S+ 8 is a function on S, F define

main iteration, and S is defined

~~ F = F3°F2'FI with Fi: S+ S i=1,2,3 s.t.

F (G, sH; LE;)

1
PV(G],'P]’H ’El) = (Gl+1 'fQ(Hi)
F.(G.
3Gl 0 B) = (G

t 2y =
hus F(Bi) = F(Gi,Hi,Li) = (

(f](Gi),Hi oE; ) = (
:Ei ) = (G
»T3(E;))

OieroHi 1sE

UCKALS3 algorithm in the

s a complete step of the

as in (2.5 )

GioroHy HE; )

ie1olipeBy )

(G E...)

i+1’Hi+l’ 1+1

in1) = 854




4, F is monotone

From the previous section it can easily be seen that if each Fi (or fi)

is monotone, then F is monotone.

Let f be of the form:

1
£(X) = AX(X'AZX)_2 with X'A2X positive definite, (L.1)
and let p be defined as:

- X x .
p(X,Y) = tr XAY' with X,Y € K b, and A ¢ R¥® and symmetric.
If Y = £(X), then (4.2)

p(Y,Y) > p(X,X), (4.3)
with equality if and only if Y = X.

As X'A2X is positive definite (see also section 6 of Part I),
its inverse exists, and thus f is uniquely defined.

a. We first show' that for every X ¢ g

p(Y,X) = max p(Z,X) (4.14)
Z € Knxm
To do this we incorporate the constraints on Z into the maximization
$(Z,X) = p(Z2,X) - tr M(2'2 - Ib) (h.k)

with M a symmetric matrix of Lagrange multipliers.
Differentiating with respect to Z and M, and setting all the par-
tial derivatives equal to zero, we obtain the following set of

equations which have to be solved simultaneously:

¥

AX = 27ZM (L.5)
YAVAES I (4.6)

Say some (Z,M) is the solution of the system. Then by premulti-
plying (4.5) with its transpose, reminding ourselves of the sym-
metry of A and M, and substituting (4.6) into (4.5) we get:

2

X'A°X = UM, and

-~ 1
7 = AX(X'AEX)—E = £(X) = Y according to (L.1).
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X
Thus for any X ¢ K b Y maximizes p, or in other words:

X
p(Y,X) = max_, p(2,X) < p(X,X) for all X ¢ g P

Z e K
b. Next we show that
1 1
p(Y,X) < p(Y,¥)? p(X,X)%.

As A is symmetric it may be decomposed into A = B'B, where B is a

upper triangular matrix. Thus
p(Y,X) = tr Y'AX = tr (RY)'(RX)
The Cauchy-Schwarz inequality can now be applied:

tr Y'AX = tr (RY)'(RX) < (tr (RY)'(RY)}i{tr (RX)'(RK)}? =

t A

1 1
(tr Y'AY)2(tr X'AX)?

or

Rt

p(Y,X) = o(Y,1)? B(X,X)

c. Now we can prove inequality (L.3):

I=
POl

p(X,X) < p(Y,X) < p(¥,Y)

and as p is always non-negative:

p(X,x)%,

1 1
p(Xx,X)? < p(Y,Y)° ,and thus p(X,X) < p(Y,Y).

d. In the Cauchy-Schwarz inequality the equality sign holds if and
only if X and Y are proportional, and inspection shows that the

only possible proportionality constant is 1.

The extension of the monotonicity to F is straightforward. The
equality condition can be seen to hold if one applies Theorem 3
succesively in each substep of the algorithm. Arriving finally at

the conclusion that the equality sign holds if and only if F(s) = s.
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5. F is continuous

From the definitions of F, Fi’ and fi it follows that if all fi are con-
tinuous, all Fi and F will be as well.

Tt is thus sufficient to show that f as defined in (4.1) is continuous
for all X ¢ KnXm, as all fi are of the form (4.1).

Theorem L

Be A given and symmetric, and be X'A2X positive definite (see also

section 6 of Part I).

Let f be such that £: K00 5 Ko™ 4ith  defined as in (4.1) for
X

all X ¢ Knxm, then f 1s continuous on K,

As X'A2X is positive definite, its inverse exists, and f is uniquely
defined.

Let ¥ be an arbitrary point in K", and let X s X5 X be a

PYRED
sequence in Knxm’ which converges to X, such that Xi # X (i=0,1,2,..)

Define Yl = f(Xl) 1=0,1,2,...

For each 1 part a of Theorem 3 shows that

tr YIAX) > tr Y'AX, for all Ye S

Because the sequence Y , Y ,Y,_ ,... is defined on a compact set,
. X m . °© 1 2 . . . m
viz. Kn , there exists at least one limit point, say Y, and Y ¢ . .

In addition, there exists a subsequence Yl R Yl , Yl ,-.. which
o ¢} 1 2
converges to Y. For each Yl (j=0,1,2,...) of this subsequence it
J
is true that:
tr Y'AX = 1lim tr Y] OAX) > lim tr YUAX, = tr Y'AX (5.1)

Jreo J J Jro A ~d -~ wem
In Theorem 3 part a it was shown that if Y = f(X) for each X ¢ K,
tr Y'AX = max___tr Y'AX
Ye mn

Thus from (5.1) we get that:
1 -
Y = Ai(i'Aei)_z = Y , because of the defirnition of Y.

Thus we have now that every convergent subsequence of Yo, Y Y

12 Ypae-s
has as its limit ¥, and therefore ¥ is the limit point of

Y , Y1, Y itself. Thus we may conclude that:
o

LT
for each X ¢ Knxm, and each Xo’ X1, X?,... converging

to X, the sequence Yo, Y1, Y ,... converges to the limit
(e

point Y, which means that f(XO), f(X1), f(XQ),... converges




to f(X).

Recalling the definition of the continuity of a function,

. . = Xm
f is continuous for each X ¢ Kn

we see that f
. . Xm
» and therefore f is contiuous on K- .
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6. Limit points of the algorithm are stationary points of p

Let 7, G, H, E, P, Q, R, and p be defined as in the previous sections.
If s = (G,H,E) is a limit point of the algorithm, then s is a statio-
nary point of p.

Let s = (G,H,E) be a limit point of the algorithm, then
1

PG(G'PG) "2

[®}
1t

1
Qu(H'Q%H) ™2

—
=
1

1
B = RE(E'R°E)™?  (cf. Lemma 3 of lart T)
First consider G.

1
Define L = (G'P2G)2 , then (G,L) is a solution of :

PG = OL (6.1)

G'G =1
s

As L is symmetric, there exists a F ¢ KSXS, such that L = FAF'

. sXs s ..
with A e D> °. Substituting this in (6.1) we get

PG = GPAP'

which leads to
P(GF) = (GF)A or PG = GA with G = GF

Thus G is a matrix with eigenvectors of P and G is an orthonormal
rotation of G.
The analoguous result holds for H and E.

Theorem 1, part a, tells us that (G,H,E) is a stationary point of p.




