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ABSTRACT 
 
Twin studies are a major research direction in imaging genetics, 
a new field, which combines algorithms from quantitative 
genetics and neuroimaging to assess genetic effects on the brain. 
In twin imaging studies, it is common to estimate the intraclass 
correlation (ICC), which measures the resemblance between 
twin pairs for a given phenotype. In this paper, we extend the 
commonly used Pearson correlation to a more appropriate 
definition, which uses restricted maximum likelihood methods 
(REML). We computed proportion of phenotypic variance due 
to additive (A) genetic factors, common  (C) and unique (E) 
environmental factors using a new definition of the variance 
components in the diffusion tensor-valued signals. We applied 
our analysis to a dataset of Diffusion Tensor Images (DTI) from 
25 identical and 25 fraternal twin pairs. Differences between the 
REML and Pearson estimators were plotted for different sample 
sizes, showing that the REML approach avoids severe biases 
when samples are smaller. Measures of genetic effects were 
computed for scalar and multivariate diffusion tensor derived 
measures including the geodesic anisotropy (tGA) and the full 
diffusion tensors (DT), revealing voxel-wise genetic 
contributions to brain fiber microstructure.  
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1. INTRODUCTION 

 
In recent years, twin studies have become increasingly popular in 
cognitive neuroscience and medical imaging as a means to 
determine genetic influences on brain structure and function, the 
ultimate goal being the discovery of specific genes that influence 
brain development and disease.  
 
To estimate the genetic and environmental contributions to a 
phenotype, several models have been established that compare 
correlations in monozygotic twins (MZs, who share 100 % of their 
genes) to those found between dizygotic twins (DZs, who share 50 
% of their genes on average). One common measure is the 
ANOVA-based (Pearson) intraclass correlation (ICC), which 
quantifies the resemblance within twin pairs. From these ICC 
measures for MZ and DZ pairs, a simple heritability estimate 
(Falconer’s estimate) can be computed [16]. Another more recent 
model is the A/C/E model, which uses information from both twin 

types to distinguish sources of variance that are attributable to 
additive genetic factors (A), common environment (C) and 
environmental factors unique to each individual (E) [16].  
 
Many prior studies examined genetic influences on aspects of brain 
anatomy such as regional gray and white matter volumes [4], fiber 
structure [5], [13], and cortical thickness [23]. Some subcortical 
structures, such as the thalamus and the basal ganglia, were found 
to be jointly influenced by a single genetic factor in a large-scale 
pediatric twin study [21]. Even so, multidimensional signals, such 
as diffusion tensors, have not been thoroughly studied. 
 
Diffusion tensor imaging  (DTI) offers a means to understand the 
genetics of brain fiber architecture.  DTI measures the 
multidirectional profile of water diffusion in tissue. This method 
provides vital information on brain architecture and composition; 
the resulting estimates of fiber integrity are correlated with 
intellectual performance [5]. Higher-dimensional models of the 
diffusion signal have been proposed, although most DTI studies 
compute and analyze a diffusion tensor (DT) at each voxel whose 
eigenvectors represent the three orthogonal principal directions of 
the diffusion, and its eigenvalues represent the magnitude of 
diffusion along these axes. Several tractography methods estimate 
white matter connectivity from the principal eigenvector field, or 
orientation distribution function (ODF)-based analogs [14].  
 
To better understand fiber characteristics, several scalar and 
multivariate measures may be derived from the DTs. Fractional 
anisotropy (FA), mean diffusivity (MD), and the tensor’s 
eigenvalues are among the most common measures. More recently, 
several more sophisticated quantities have been used; the geodesic 
anisotropy (GA) [3], [14] measures the geodesic distance between 
tensors on the positive-definite symmetric tensor manifold. In a 
DTI study of blind subjects [12], we also found that a multivariate 
statistical analysis of the full diffusion tensor outperformed derived 
scalar signals in detecting group differences.   
 
In prior work [13], we published a new multivariate formulation of 
the ICC to assess correlation between twin pairs using a distance on 
the tensor manifold, and computed A/C/E models using this 
distance on diffusion tensors. Although our previous methods to 
compute ICC were correct for large sample sizes, they were biased 
for small sample sizes, and the level of bias was unknown. Here, 
we present an unbiased negative log-likelihood based multivariate 
variance component model to estimate resemblances between the 
MZ and DZ twin pairs. From these multivariate variance 
components, we compute unbiased estimates of genetic (A) and 



environmental (C, E) influences on multidimensional signals, in 
this case DTI.  
 
The first step in identifying specific genes influencing brain 
structure is to search for heritable measures in images [7]. We 
therefore computed 3D maps of genetic and environmental effects 
from imaging data from 100 healthy young adult twins. We 
performed all statistical computations in the Log-Euclidean 
framework [2] because the full DT does not form a vector subspace 
of the vector space of 3x3 matrices, as the matrices must always be 
positive-definite and symmetric. The Log-Euclidean framework 
allows for simple computations on the DT manifold.  

 
2. METHODS 

 
2.1.  Intraclass correlation for univariate measures  
 
The standard approach to measure the resemblance between 
twin pairs is to use the intraclass correlation (ICC): 
 

, 
(1) 

where MSbetween  and MSwithin are the mean square differences 
between pairs and within pairs. When a small sample size is 
used, ICC values, computed from eq (1), may be negative due to 
the variability in the sample. Adding more twin pairs to the 
study will not affect the within-pair variance, however, it will 
affect the distribution of the means if there are differences 
between twin pairs. With increased numbers of twin pairs, the 
estimated ICC becomes positive if the trait is heritable. 
     For this study, we use the restricted maximum likelihood 
(REML) method, which gives an unbiased ICC estimate. We 
define  and  as scalar values of measures in twin 1 and 
twin 2.  is the total number of pairs. This labeling is 
interchangeable as there is no “first” and no “second” member 
of the pair. We also give a set of transformed variables: 

 , and  where 

 is a vector and  are vectors of length one, 
orthogonal to each other and orthogonal to .  The variance of 

 and are  and  is .  Thus for REML, 

while 

. The non-negative 

REML formula to estimate ICC from univariate measures is 
  

 

 
(2) 

 
2.2. Intraclass correlation for multivariate measures 
Eq. (1) and (2) are univariate formulations, and their extension 
to multivariate data is not straightforward. In [12,13], we applied 
a multivariate version of equation (1) to the genetic analysis of a 
dataset of 92 twins. Here we set out to generalize Eq. (2) to use 
REML.  

 
We first start by briefly describing the multivariate 
generalization of Eq. (1). We define  and  as 6-dimensional 
random vectors, which represent each subject’s deviation from 
the mean of the overall sample [8]. In the example presented in 
this work,  and  are both 6-dimensional vectors defined at 
each voxel, containing the deviation of the DTs of twin 1 and 
twin 2, respectively from the mean diffusion tensor of the 
sample (after nonlinear image registration [13]). The 
multivariate intraclass correlation matrix [18] is defined as 
follows:  
 

, (3) 
where ,  are the expected values of  and 

 respectively.. Here,  is the sample mean of all 
of the  and  vectors. This implies that , which 
basically estimates the within pair correlation, is positive semi-
definite. The maximum eigenvalue of this ICC matrix  is 
considered to be the multivariate ICC value.  
 
We define two new random vectors  and 

. If we have N independent realizations  of 

, then the deviance (twice the negative log-likelihood, 
except for irrelevant constants) is [19, 22]: 
 

, 

 
(4) 

where , the within-pair variance, and 

, the between-pair variance.  Thus, the 

maximum likelihood estimate of  is , 

where is mean of  derived from the full sample, i.e., the mean 
of all 2N vectors.  
 

When defining  and , the 

concentrated negative log-likelihood of eq. (4) is : 
 

, 

 
(5) 

 
Maximum likelihood estimates of the variance components can 
be computed as  

 
 

(6) 

 



Since  and , we 

can compute unbiased estimates using: 

 

 
(7) 

These unbiased estimates are also the REML estimates. 
 
2.3. Data and Preprocessing  
 
2.3.1. Participant description and image acquisition 
 
We acquired 3D structural brain MRI scans and DT-MRI scans 
from 100 subjects: 25 pairs of MZ twins (25.1±1.5SD years old) 
and 25 pairs of DZ twins (23.1±2.1 years) on a 4T Bruker 
Medspec MRI scanner with an optimized diffusion tensor 
sequence [6]. Imaging parameters were: 21 axial slices (5 mm 
thick), FOV = 23 cm, TR/TE 6090/91.7 ms, 0.5 mm gap, with a 
128×100 acquisition matrix. 30 gradients were applied: 
three scans with no diffusion sensitization and 27 diffusion-
weighted images for which gradient directions were evenly 
distributed on the hemisphere [10]. The reconstruction matrix 
was 128×128, yielding a 1.8x1.8 mm2 in-plane resolution. Total 
scan time was 3.05 minutes. 
 
2.3.2 Image Preprocessing and Registration 
 
sMRI images were automatically skull-stripped using the Brain 
Surface Extraction software (BSE) [20] followed by manual 
editing. Each masked image was registered via 9-parameter 
linear transformation to a high-resolution single-participant 
brain template image, the Colin27 template, using the FLIRT 
software [9]. Linearly registered sMRI images were then 
registered to a Mean Deformation Template (MDT; created from 
the dataset) using a 3D fluid registration [11,15]. From the 
resulting deformation fields, Jacobian matrices were obtained. 
 
From the DICOM DT-MR images, diffusion tensors (3x3 
positive symmetric matrices) were computed and smoothed 
using Log-Euclidean tensor denoising to eliminate singular, 
negative definite, or rank-deficient tensors, using MedINRIA 
(http://www.sop.inria.fr/asclepios/software/MedINRIA).  
 
Extracerebral tissues were manually deleted from one of the 
diagonal component images (Dxx), yielding a binary brain 
extraction mask (cerebellum included). Masked tensor images 
were registered by 9-parameter transformation to the 
corresponding sMRI images in the standard template space 
using FLIRT software [9].  
 
The tensors at each voxel were rotationally reoriented using 
transformation parameters from linear and nonlinear 
registrations [1] to ensure that the multidimensional tensor 
orientations remained consistent with the anatomy after image 
transformation [1, 24]. Two separate algorithms are used to 
compute the tensor rotations: the Finite Strain (FS) and the 
preservation of principal direction (PPD) algorithms ([1, 24]). 
 
 
2.4. Scalar Statistics in the Log-Euclidean space 

 
As a scalar statistic to compare to our multivariate measures, we 
used the GA [13] - the manifold equivalent of the FA computed 
in the Log-Euclidean framework [2,11]. We renormalized GA 
by applying the hyperbolic tangent transformation to the GA 
values (tGA) as in [3], to create maps with a comparable range 
to the FA.  
 
2.5. Statistical analysis for twins 
 
We computed GA and tGA values as well as the matrix 
logarithms of the full diffusion tensors for each participant.  
Two sets of voxel-wise intraclass correlation matrices for the 
MZ pairs and DZ pairs were computed for all the univariate and 
multivariate measures detailed above.   
 
The A/C/E model for MZ and DZ twins decomposes variation 
into genetic (A) and non-genetic (C/E) components.  In the 
simplest case, we have, for the different types of twins  

 (8) 
 (9) 

 (10) 
 
The resulting unbiased estimates are: 

 (11) 

 

(12) 

€ 

ˆ θ E = ΣMZ −ΩMZ = 2GMZ  (13) 
 

3. RESULTS 
 
The maximum eigenvalue of the REML multivariate intraclass 
correlation matrix measures the resemblance between twin pairs. 
Voxel-wise maps of these resemblances are shown in Figure 1 
(Figure 1a for MZ twins and 1b for DZ twins). As expected, 
overall maps for the MZ twins display higher maximum 
eigenvalues than those for DZ twin pairs. Figure 1c and 1d 
show the comparison between REML-based ICC and ICC with 
Pearson’s correlation (i.e., REML ICC minus Pearson’s ICC) for 
6 MZ pairs (1c: small sample size) and 25 pairs of twins (1d: 
larger sample size). In smaller samples (Figure 1c) REML 
avoids a serious bias in the Pearson formula, although the 
difference between the estimators eventually tends to zero when 
samples are large.  
 
Unbiased genetic (A) and shared environmental (C) 
contributions to brain morphological phenotypes are shown in 
Figure 2 for the multivariate full DT. Limbic areas, the corpus 
callosum and some posterior white matter regions are shown to 
be under strong genetic control. 
 

4. CONCLUSION 
 
Here we demonstrated how to estimate the intraclass correlation 
using REML methods for multidimensional signals, and we 
applied the method to analyze DT images in a dataset of 100 
twins. We first transformed the diffusion tensors to the log-
Euclidean domain via matrix logarithm transformation. In the 
resulting space, the multivariate REML variance components 



were computed on the diffusion tensor components of the 
individuals shifted by the mean of the whole sample. The A, C 
and E variance components in the A/C/E model were then 
computed using the derived multivariate variance components 
algorithm. 
 
While we restricted ourselves to the DT in this study, our 
multivariate REML variance component model can be extended 
to any multivariate measure defined on a dataset from unordered 
pairs. In the future, this might include a parameterization of the 
ODF based on high angular and/or radial resolution q-space 
diffusion imaging. The algorithm to determine the A, C and E 
components can also be applied to other multidimensional 
measures in twin data, such as vectors of multiple traits. For 
example, the Jacobian determinants in tensor-based 
morphometry are only a scalar summary of the full deformation 
tensor, and as in [13], one could analyze the morphometric data 
in twins using a log-Euclidean distance on the associated strain 
tensors. Multivariate strategies may help to identify heritable 
measures in high-dimensional brain images, such as HARDI [5] 
or diffusion spectrum images. 
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Figure 1. Maps show the intraclass correlation for MZ twins 
and DZ twins for the full diffusion tensor. (c) and (d) show the 
difference between REML-based ICC and ICC based on 
Pearson’s correlation using 6 MZ twin pairs (c) and 25 MZ twin 
pairs (d) for the tGA measure. REML avoids bias when samples 
are smaller. Pearson’s ICC underestimates the true REML ICC 
in small samples (c).  
 

 
Figure 2. Maps show unbiased estimates of additive genetic 
(a2), shared environmental (c2) and unique environmental (e2) 
proportions of variance for	
   the	
   full	
   diffusion	
   tensor	
   (summing	
   to	
  
1).	
   


