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Abstract: We discuss the one-dimensional special case of multidimensional scaling, and
the various algorithms that have been proposed to solve the corresponding compu-
tational problem. We concentrate on least squares unidimensional scaling and on the
combinatorial nature of finding the best scaling.

Unidimensional scaling techniques are a popular tool in psychometrics within the context of nonpara-
metric and parametric item response theory (see Nonparametric Item Response Theory Models; Item
Response Theory (IRT) Models for Dichotomous Data; Item Response Theory Models for Polyto-
mous Response Data; Item Response Theory Models for Rating Scale Data). In this article, we focus
on unidimensional scaling as a special one-dimensional case of multidimensional scaling (MDS). It is often
discussed separately because the unidimensional case is quite different from the general multidimensional
case. It has been shown that the minimization of the stress target function with equal weights leads to
a combinatorial problem when the number of dimensions of the target space is one[1]. Unidimensional
scaling techniques are very different from multidimensional scaling techniques because they use very dif-
ferent algorithms to minimize their loss functions. If we perform a one-dimensional metric MDS with
standard MDS algorithms, we have to be concerned about the fact that we end up in a local minimum
after a few iterations. If we allow for transformations of the proximities, the local minimum problem may
be less severe[2].

Unidimensional scaling is applied in situations where we have a strong reason to believe that there is
only one interesting underlying dimension, such as time, ability, or preference. We do not have to choose
between different metrics, such as the Euclidean metric, the City Block metric, or the Dominance metric.
The classical form of unidimensional scaling starts with a symmetric and nonnegative matrix Δ = {𝛿𝑖𝑗} of
dissimilarities and another symmetric and nonnegative matrix W = {w𝑖𝑗} of weights. Both W and Δ have
a zero diagonal. Unidimensional scaling finds coordinates xi for n points on the line such that the stress

𝜎(x) =
∑
i<j

w𝑖𝑗(𝛿𝑖𝑗 − d𝑖𝑗(x))2

is minimized. The n coordinates in x define the scale we are looking for. Note that d𝑖𝑗(x) = |xi − xj| and can
be rewritten as d𝑖𝑗(x) = (xi − xj)s𝑖𝑗(xi − xj) with s𝑖𝑗(xi − xj) = sign(xi − xj). This term becomes 1 is xi > xj, 0
if xi = xj, and −1 if xi < xj. Therefore, only the rank order of x determines s𝑖𝑗(xi − xj). The above-mentioned
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stress can be expressed as

𝜎(x) =
∑
i<j

w𝑖𝑗𝛿
2
𝑖𝑗 +

∑
i<j

w𝑖𝑗(xi − xj)2 − 2
∑
i<j

w𝑖𝑗𝛿𝑖𝑗d𝑖𝑗(x)

We see that the last term consists of one part that is linear in x and another part that depends on the rank
order of the elements in x. Let us denote the rank order of x by 𝜓 such that x𝜓1

≤ x𝜓2
· · · ≤ x𝜓n

.
Let V be the matrix with off-diagonal elements v𝑖𝑗 = −w𝑖𝑗 and diagonal elements v𝑖𝑖 =

∑n
j=1 w𝑖𝑗 . In

addition, let R be the permutation matrix such that Rx represents the vector with the elements ordered
monotonically. Furthermore, we define the vector l with li =

∑
j<iw𝜓i𝜓j

𝛿𝜓i𝜓j
and the vector u with

ui =
∑

j>iw𝜓i𝜓j
𝛿𝜓i𝜓j

. Using this notation, we can rewrite the stress as

𝜎(x) =
∑
i<j

w𝑖𝑗𝛿
2
𝑖𝑗 + x′𝑉 𝑥 − 2x′R′(l − u)

For a given𝜓 , we see that the stress value has its minimum when x = V+R′(l − u). We see that this Guttman
transform uses the rank-order information of the previous permutation only and, consequently, the stress
can be rewritten as (see Ref. 2 for details)

𝜎(x) =
∑
i<j

w𝑖𝑗𝛿
2
𝑖𝑗+ ∥ x − V+R′(l − u) ∥2

V − ∥ l − u ∥2
RV+R′

The crucial term is the last one that we denote by f (𝜓). It is a function of the permutations only. Over
the years, various combinatorial optimization strategies have been proposed to maximize f (𝜓) over 𝜓 . An
overview is given in Ref. 3; more recent developments can be found in Refs 4 and 5.

Now, we present two examples. The first example is quite simple. The data set we use is taken from Ref. 6
and contains statistical information about Plato’s seven works. Within a unidimensional scaling context, it
has been analyzed in Ref. 7. The underlying problem to this data set is the fact that the chronological order
of Plato’s works in unknown. Scholars only know that Republic was his first work and Laws his last work.
For each work, Ref. 6 extracted the last five syllables of each sentence. Each syllable is classified as long or
short, which gives 25 = 32 types. Consequently, we obtain a percentage distribution across the 32 scenar-
ios for each of the seven works. We compute a 7 × 7 dissimilarity matrix that gives the Euclidean distances
between each pair of works based on the percentage vector. This matrix acts as input matrix for unidimen-
sional scaling with the underlying dimension being time. We investigate all 7! = 5040 permutations and
use the one with the lowest stress value. The result is shown in Figure 1.

The axis represents the timeline and the works are scaled accordingly. We obtain the chronological order
Critias < Republic < Timaeus < Sophist < Politicus < Philebus < Laws. We see that Republic is not scaled
as Plato’s first work. Laws, however, is scaled where it should be: as his last work.

The second example is quite different. It has weights and incomplete information. We take it from an
early paper by Fisher[8] in which he studies crossover percentages of eight genes on the sex chromosome
of Drosophila willistoni. He takes the crossover percentage as a measure of distance, and supposes that
the number n𝑖𝑗 of crossovers in N𝑖𝑗 observations is binomial. Although there are 8 genes, and thus 28
possible dissimilarities, there are only 15 pairs that are actually observed. Thus, 13 of the off-diagonal
weights are zero, and the other weights are set to the inverses of the standard errors of the proportions.

Unidimensional scaling plato
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Figure 1. Unidimensional scaling solution of Plato’s works.
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Unidimensional scaling genes
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Figure 2. Unidimensional scaling solution of gene dataset.

We investigate all 8! = 40320 permutations, and we find 78 local minima. The solution given by Fisher,
computed by solving linearized likelihood equations, has Reduced < Scute < Peach < Beaded < Rough <
Triple < Deformed < Rimmed. This order corresponds with a local minimum of 𝜎(x) equal to 40.16. The
global minimum is obtained for the permutation that interchanges Reduced and Scute, with value 35.88.
In Figure 2, we see the result of our unidimensional scaling solution.

In this article, we have discussed least squares metric unidimensional scaling. The first obvious gener-
alization is to replace the least squares loss function, for example, by a L1 loss function as given in Ref. 4.
The second generalization is to look at nonmetric unidimensional scaling (see Ref. 3). The combinatorial
nature of the problem remains intact.
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