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Abstract 

In this paper we extend the technique of homogeneity analysis and nonlinear principal components 
analysis to a multilevel sampling design framework. We also propose a model that differentially weights 
the groups of objects, and thus allows us to make within- and between-groups comparisons. A data 
set from the National Educational Longitudinal Study (NELS:88) is used to illustrate the techniques 
introduced in the paper. @ 2000 Published by Elsevier Science B.V. All rights reserved. 

1. I n t r o d u c t i o n  

One of the basic techniques for the analysis of categorical data is homogeneity 
analysis, also known as multiple correspondence analysis. The technique originated 
in the work of Guttman (1941) as a method of scale construction using reciprocal 
averaging. Burt (1950) described homogeneity analysis as a principal components 
analysis of qualitative data. Hayashi (1952) stressed homogeneity analysis as one 
possible way of quantifying categories. In Michailidis and de Leeuw (1998) the 
technique is introduced using ideas from graph theory. It should be noted that earlier 
work by Hirschfeld (1935) and Fisher (1940) concentrated on the bivariate case 
(analysis of contingency tables). Extensive reviews on the history of homogeneity 
analysis can be found in de Leeuw (1984a), Nishisato (1980), Benz6cri (1993), 
Tenenhaus and Young (1985), Greenacre (1984) and Girl (1990). 

The focus of the various derivations and presentations of homogeneity analysis 
is on a single group of  observations (individuals, objects, etc.). However, in many 
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applications the same variables are administered to multiple groups of objects. Typ- 
ical examples include multiple choice tests given to students in different schools, 
personality inventories administered to depressed and 'normal' individuals, market- 
ing survey questionnaires distributed to different socioeconomic groups and so on. 
In this paper, we extend homogeneity analysis (as developed in the Girl system) 
to multilevel data structures, and introduce a model that allows to examine how 
variables are related across groups and how groups vary. 

The new techniques are illustrated on a data set from the National Educational 
Longitudinal Study of 1988 (NELS:88). A description of the variables along with 
their coding is given in the appendix. Our interest in this particular set of  variables 
is explained next. Recently, there has been a lot of  interest among researchers and 
policy makers on the importance of the school learning environment and the influence 
of individual and peer behaviors on student performance. For example goal six of The 
National Education Goals Panel (1992) states that by the year 2000 "every school in 
America will be free of drugs and violence and will offer a disciplined environment 
conducive to learning". Because in many situations learning is constrained in an 
atmosphere of fear and disorderliness, student behavior influences school atmosphere 
and the climate for learning (whether it takes the form of  violence and risk taking 
activities such as bringing weapons to school or using alcohol and drugs) or a 
low commitment to academic effort (such as poor attendance, lack of discipline or 
study habits) (Carnegie Foundation of the Advancement of Teaching, 1988). These 
student behaviors also play a key role in determining student success in school and 
beyond (see Kaufman and Bradby, 1992 and references therein), as well as the 
way students, teachers and administrators act, relate to one another and form their 
expectations and to a certain extent beliefs and values [Anderson, 1980; Oakes 1989]. 
Moreover, it has been observed that such behaviors are more of a problem in public 
compared to private schools (Findings from the Condition of  Education, 1997). Thus, 
the particular set of  variables we examine from NELS:88 addresses issues directly 
related to the school culture and climate, as seen from the students' point of  view. 

The organization of  the paper is as follows. In Section 2 we give a brief intro- 
duction to homogeneity analysis, while in Section 3 we extend the technique to a 
many groups setting. In Section 4 we discuss a model based on differential weight- 
ing of the groups and examine its extensions in Section 5. Finally, some concluding 
remarks are drawn in Section 6. 

Remark 1.1 (Notation). We denote by upper-case letters matrices (e.g. A) and by 
lower-case letters vectors (e.g. a). The (s,t)th element of  a matrix is denoted 
by A(s,t), the sth row by A(s,.) and the tth column by A(.,t). Analogously, the 
sth element of a vector is denoted by a(s). Finally, let u denote the unit vector 
(vector comprised of only ones). 

2. Homogeneity analysis in the Girl system 

Suppose we have collected data for N objects (individuals, products, countries, 
etc.) on J categorical variables, with #j, j E J = {1 . . . . .  J}  categories per variable. 
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Variables map the objects into a finite set of  categories (profiles). The categories 
of  each variable have a certain measurement level. The measurement level of the 
variables can be nunwrical (variables measured at non-overlapping intervals), ordinal 
(the order of  the categories matters), or nominal (only the classes formed by the 
objects play a role). We are interested in mapping both objects and variables into a 
joint p-dimensional space (p  < J )  in such a way that (i) objects with similar profiles 
are close together and (ii) categories with similar contents are close together. Such 
a joint graphical representation of  objects and variables allows us to uncover and 
visualize the dominant and most salient relationships and patterns in a multivariate 
data structure. 

We proceed to give a precise mathematical formulation to the above verbal de- 
scription of  homogeneity analysis. Indicator matrices are used to code the J variables 
(see de Leeuw, 1984b). Let G t, j C J ,  denote the N x •j indicator matrix correspond- 
ing to variable j .  It is a binary matrix with entries G(i, t ) =  1, i =  1 . . . . .  N, t =  1 . . . . .  {1, 
if object i belongs to category t, and G(i, t) = 0 if it belongs to some other category. 
According to the homogeneity principles, we would like to quantify (transform) the 
variables to achieve maximum homogeneity. Let ~ denote the #i x p matrix con- 
taining the optimal multiple category quantifications of variable j E J ,  and let X be 
a N × p matrix containing the resulting p optimal scales. The elements of  the X 
matrix are also known as the object scores (Girl, 1990). The dimensionality p is 
determined by the data analyst according to whether she wants the objects to be on 
a scale (p  = 1 ) or in a plane (p  = 2), etc. The concept of  optimally' quantifying 
variables and objects is also at the heart of  Guttman's (1941) principal components 
of  scale. One of  the main ideas of  factor analysis is that different variables may mea- 
sure the 'same thing' and can thus be represented by a unique scale. In the presence 
of  nominal variables Guttman suggested to assign a numerical value to each category 
of  every variable, so that the object scores be as homogeneous (similar) as possible 
for the J variables and as different as possible between objects. However, it is hard, 
in general, to find a perfect solution, that is, determine the Y/'s and X exhibiting 
pepfect consistency, i.e. X = GiYt . . . . .  GjYj. Hence, we would like to minimize 
departures from perfect consistency by employing the following loss function: 

J 

~(X; Y~ . . . .  ' YJ) = J - ]  Z SSQ(X - GtY~), (2.1) 
t--I 

where S S Q ( H ) =  t r (H 'H)  denotes the sum of squares of  the elements of  the matrix 
H.  In order to avoid the trivial solution corresponding to X = 0, and Yj = 0 for every 
j E J ,  we require in addition 

Y ' X  =Nip, (2.2) 

u'X = 0. (2.3) 

The goal of  homogeneity analysis in the Girl system is to choose X and Yi's so 
that the loss in (2.1) is minimized. The solution to this minimization problem can 
be found by using the following Alternating Least-Squares (ALS) algorithm: 

Step 0: Initialize X, so that u'X = 0 and X ' X  = Nip. 
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Step 1: Estimate the multiple category quantifications by I~j = Df~Gr/X, j E J, 
where Di = G~Gj and contains the univariate marginals. Thus, the optimal quantifi- 
cation of  a category is the centroid of the scores of the objects belonging to that 
category. 

Step 2: Estimate the object scores by )? = J  1 ~ J - i  GJYi- Thus, the optimal score 
of  an object is the centroid of the quantifications of  the categories the object is in. 

Step 3: Column center and orthonormalize the matrix of the object scores, so that 
the normalization restrictions are satisfied. 

Step 4: Check the convergence criterion and either stop or go back to Step 1. 

Steps 1-4 are repeated until the algorithm converges to the global minimum (see 
Girl, 1990, Chapter 3, Remark 2.2). Hence, the ALS algorithm finds the desired 
solution to the problem given in (2.1), in the presence of  nominal data. This so- 
lution is known in the literature (Girl, 1990; de Leeuw, 1984b; de Leeuw and van 
Rijckevorsel, 1980) as the Homals solution (homogeneity analysis by means of  alter- 
nating least squares). The rules in Steps 1 and 2 are known as the centroidprinciples 
(principes barvcentriques, Benzacri, 1973), and the ALS algorithm based on them 
is called reciprocal averaging. 

Remark 2.1 (Rotational invariance). It is worth mentioning the rotational invari- 
ance property of the Homals solution. To see this, suppose we select a different 
basis for the column space of the matrix X, that is, let X ~ = X × R, where R is a 
rotation matrix satisfying RrR = RR'= I. We then get from Step 2 of  the algorithm 
that ~.~ =D/  1G~X~= }';R. Thus, any rotation of the object scores and of the category 
quantifications corresponds to a solution to the problem given in (2.1). 

^! 
Once the ALS algorithm has converged, by using the fact that I~ID/17 i = Y~Dj 

( D ;  l G j ~ )  ^'  , ^  = YiGiX , we can write the Girl loss function as 

.1 

J-~ ~ t r ( ) ( -  G/I~/)'(2 - G/ f j )  
j= l  

J 
^! I ^ ^1 I ^ = J - 1  ~ tr(X')( + Y/G/G/Y/ -  2YjG}X) 

j= l  

J J 

=-J 1 Z t r ( ) ( ' ) ( -  YIDjYj )=J- '  Z t r ( N I  p -- Y~DjYj) 
j=l ./=[ 

J 

= N p -  J- l  ~-~ tr(;'iDiYi). (2.4) 
j=l  

The sum of  the diagonal elements of  the matrices I~D/I?/ is called the fit of the 
solution. Furthermore, the discrimination measures are given by 

q~,, -- Y/(.,s)D~Y/(.,s)/N, j E J, s =  1 . . . . .  p. (2.5) 
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Geometrically, the discrimination measures give the average squared distance 
(weighted by the marginal frequencies) of  the category quantifications to the ori- 
gin of the p-dimensional space. It can be shown that (assuming there are no missing 
data) the discrimination measures are equal to the squared correlation between an 
optimally quantified variable G t Y/(., s) and the corresponding column of object scores 
X ( . , s )  (see Girl, 1990, Chapter 3). Hence, the loss function can also be expressed 
a s  

( '£fi ) - q ~  . ( 2 . 6 )  
N p ff  i=1 ,=I 

The quantities 7~ = J 1 ~J - i  t/~, s = 1 . . . . .  p, are e igenvalues  (see Remark 2.2) and 
correspond to the average of the discrimination measures. 

We summarize next some basic properties of the Homals solution (for a more 
detailed presentation see Michailidis and de Leeuw, 1998). 

• Category quantifications and object scores are represented as points in a joint 
space. 

• A category point is the centroid of  objects belonging to that category. 
• Objects with the same response pattern (identical profiles) receive identical ob- 

ject scores. In general, the distance between two object points is related to the 
'similarity' between their profiles. 

• A variable discriminates better to the extent that its category points are further 
apart. 

• If a category applies uniquely to only on object, then the object point and that 
category point will coincide. 

• Category points with low marginal frequencies will be located further away from 
the origin of the joint space, whereas categories with high marginal frequencies 
will be located closer to the origin. 

• Objects with a 'unique' profile will be located further away from the origin of the 
joint space, whereas objects with a profile similar to the 'average' one, will be 
located closer to the origin (direct consequence of the previous property). 

• The category quantifications of each variable j E J have a weighted sum over 
categories equal to zero. This follows from the normalization of the object scores, 
since u'Dj~.  = u ' D j D f  ' G'iX = u ' @ X  = u ' X  = O. 

Remark 2.2 ( H o m o g e n e i t y  ana lys i s  as  an e igenvalue  p r o b l e m ) .  Some algebra shows 
that the object scores X correspond to the first p eigenvectors of the matrix 5°P,57,  
where 2# = I - uu ' /u 'u  is a centering operator that leaves LfX in deviations from its 
column means, and P ,  = J i EJ_l P/ is the average of the J orthogonal projectors 

Pj = G~D]-IG~ on the subspace spanned by the columns of  the indicator matrix G t. 
The minimum loss can then be written as follows: 

a ( - k ; - k ) = N  p -  7.,. , 
s= |  

(2.7) 
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where 73, s = 1 . . . . .  p are the first p eigenvalues of P , .  Therefore, the minimum loss 
of  homogeneity analysis is a function of the p largest eigenvalues of the average 
projector P , .  Note that the complete eigenvalue solution has q = ~/-1  {J -  J dimen- 
sions. The advantage of employing the ALS algorithm is that it only computes the 
first p<<q dimensions of  the solution, thus increasing the computational efficiency 
and decreasing the computer memory requirements. 

Remark 2.3 (Missing data). The Girl loss function makes the treatment of missing 
data a fairly easy exercise. Missing data can occur for a variety of reasons: blank 
responses, coding errors, etc. Let Mj, j E J denote the N x N binary diagonal matrix 
with entries Mj(i, i) = 1 if observation i is present for variable j and 0 otherwise. 
Define M, - -~ /_~ M:. Notice that since Gj is an incomplete indicator matrix (has 
rows with just zeros), we have that M/Gi=G/, j c J. The loss function then becomes 

J 

or(X; Y, . . . . .  Yj) = J - ~  ~ tr(X - GiYi)'M:(X - GjY/) (2.8) 
j i 

subject to the normalization restrictions X ' M , X  = JNIp and u'M,X = 0, and we can 
then proceed as before (for more details see Michailidis and de Leeuw, 1998). 

Remark 2.4 (Rank-one restrictions). This model treats the data as nominal. How- 
ever, in case we deal with ordinal (e.g. Likert scales) or numerical data (e.g. age, 
income), we also have to take into consideration the restrictions imposed by the 
measurement level of  the variables. In the Girl system it is required that the quan- 
tifications satisfy a rank-one restriction (see Chapter 4 in Girl, 1990, Michailidis and 
de Leeuw, 1998). Such restrictions can be directly incorporated in our framework, 
by requiring 

Yj = q/fl}, j E J, (2.9) 

where, qi is a {/-column vector containing the single categoo, quantifications and fi: 
a p-column vector of component loadings. In this case the quantifications in p di- 
mensions become proportional to each other. The introduction of rank-one restrictions 
extends the technique of homogeneity analysis to nonlinear principal components; for 
an application see Section 3 in Michailidis and de Leeuw (1998). 

We turn our attention to applying homogeneity analysis to the data of one school 
from NELS:88. The solution exhibits a satisfactory fit with eigenvalues of  0.64 and 
0.35 for the first two dimensions, respectively. In Fig. t we study the arrangement 
of  only the category points (quantifications) on the two-dimensional map. It can be 
seen that they form three distinct groups. On the right part of  the graph we find the 
'not a problem' categories of all the 10 variables. Thus, students located in this area 
of  the map (see Fig. 2) are associated with these categories, which means that this 
set of eighth graders believe that their school does not have any problem areas, or in 
other words the overall school climate can be characterized as positive. On the other 
hand, in the lower left quadrant of  Fig. 1 we find the 'serious problem' categories of  
all the variables indicating that the students in that part of  the graph view the school 
climate as negative. Finally, in the upper left quadrant we find the 'moderate' and 
'minor' category points. It is interesting to note that the 'clustering' of  the students 
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Fig. 2. Category quantifications and object scores (* category points, x= object (student) points). 

is done according to the same category levels, which implies that there are groups 
of  students responding primarily with 4's (not a problem) to all the questions, other 
groups mixing 2's and 3's and other students using only l ' s  (serious problems) for 
all of  their answers. However, the solution suggests that there are very few students 
mixing l ' s  and 4's. The fact that the majority of  the students are located in the 
left part of  Fig. 2 indicates that most of  the students think that violence (physical 
conflicts, theft and robbery, abuse of  teachers), absenteeism, use of  alcohol and 
drugs are to some degree a problem in their school. Moreover, due to the fact that 
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category points El, G1, HI, I1, K1, A4, B4, C4 and F4 are further away from the 
origin implies that few students chose those categories in their responses. To a large 
extent the analysis cleanly separates the small group of students that thinks their 
school is problem free, from the majority of students that believes that the overall 
climate in their school is not positive. The discrimination measures, shown in Fig. 3, 
indicate that variables B,C,D,E,F separate the category points particularly well along 
the first dimension, while variables G, H and I along the second dimension. Thus, 
the 'scale' expressed by the first dimension summarizes information about tardiness, 
absenteeism, cutting class, physical conflict between students, robbery and theft, and 
the 'scale' expressed by the second dimension information about illegal use of drugs, 
alcohol and possession of weapons. 

3. Multilevel homogeneity analysis 

In many practical situations individual objects can be naturally grouped (clustered) 
into groups (clusters). For example, in educational research students are grouped by 
class or school, in sociological research individuals are grouped by socioeconomic 
status, in marketing research consumers are clustered in geographical regions, while 
in longitudinal studies we have repeated measurements on individuals. In the first 
example clusters correspond to classes or schools, in the second to various a priori 
defined levels of socioeconomic status, in the third to regions (such as counties, 
states or even the northeast, the southwest, etc.), and in the fourth example to time 
periods. Formally, we collect data on N objects grouped naturally in K clusters, 
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K K with nk objects per cluster, k c K = {1 . . . .  , }(~,=1 nk = N). Once again, we want 
to examine J categorical variables, with {j, j E J,  categories each. In this section we 
extend homogeneity analysis to the multilevel sampling framework. 

Very little work has been done on applying homogeneity analysis techniques to 
multilevel data. de Leeuw et al. (1985) and Van der Heijden and de Leeuw (1990) 
have used these techniques to examine panel and event history data. In their case, data 
are collected on nk = n objects for K time periods. The authors introduce three-way 
indicator matrices with objects in the rows, categories of variables in the columns, 
and time points in the layers to code the data, use interactive coding to reduce them 
to two-way (ordinary) indicator matrices, and apply homogeneity analysis to the 
collection of such matrices. More recently, Carlier and Kroonenberg (1996) apply 
the PARAFAC model (see Remark 4.2) to the three-way matrices. Both approaches 
are not applicable to other types of  multilevel data that come from nonbalanced 
designs (such as students clustered within schools). We propose next an alternative 
approach. Let Gjk, j C J, k E K denote the nk x (/ indicator matrix of  variable j for 
cluster k. Let Xk, k E K, be the nk × p matrix of  object scores of  cluster k, and 
let X = [X 1' . . . . .  X~]'. Similarly, let Yjk be the {j × p matrix of multiple category 
quantifications of the j th variable for the kth cluster, and let Yj = [Yj!I,-.-, Yj~r]'. We 
collect the K indicator matrices of  variable j in the superindicator matrix 

['Gj, O O 0  ) 

1.o.. ?...o.. 
\ 0  0 0 GjK 

which is called the design matrix. The Girl loss function becomes 

J J K 

a(X;Y1 .... .  y j ) = j - l ~  S S Q ( X - G j Y j ) = ~ - ~  SSQ(Xk-Gj~Yj~). (3.1) 
j = l  j = l  k - l  

In order to avoid the trivial solution we impose the following normalization re- 
striction: 

X~Xk = nklp, u'Xk = 0 for every k 6 K. (3.2) 

The other possibility u'X = 0 and X'X = Nip is briefly discussed later on in Remark 
3.3. 

The problem in (3.1) is identical to the one presented in (2.1); thus, its solution 
is given by 

Y j = - D ~ I G ~ X ,  j C J ,  (3.3) 

where Di=G~Gj=G~_I(Gj~Gjk)=~K=I Dj~ is the K{j ×K{j diagonal matrix containing 

the univariate marginals of  variable j for all K clusters. This implies that l~ik = 
Djk I Gj,Xk, j C J,  k E K. We also have that 

1 J 
X = j  ~ GjYj, (3.4) 

j= t  
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which gives that X~ _ j - i  ~/J-i GjkY/k, for every k c K. We can therefore see that 
the two centroid principles - -  category quantifications are located at the centroid of  
the objects in that category, objects are located at the centroid of  the J categories 
they are in - -  continue to hold in the multilevel setting. 

We define next the cluster discrimination measures 

q2 _ Yj~(.,s)DjkYjk(.,s)/nk, j C J ,  k E K ,  s -  1, . . . ,p .  (3.5) 

Since the category quantifications have a weighted sum equal to zero, they are in- 
terpreted the usual way; the larger the r/2~, the better the categories of  that variable 
discriminate objects in that group. The cluster discrimination measures allow the data 
analyst to examine variations in the discriminatory power of  the variables across the 
clusters. It is also useful to define the total discrimination measures for each variable 
a s  

tl~ -- ~.'(. ,s)DjYj(. ,s)/N, j E J, s = 1 . . . . .  p. (3.6) 

These quantities represent an overall measure of  the discriminatory power of  each 
variable. We examine next the relationship between the total and the cluster discrim- 
ination measures. We have that 

1 t 1 K 
q iz~ - ~Yj ( . , s )DjYj ( . , s )= ~ ~ Y/k(.,s)DjkYjk(.,S), (3.7) 

k-1 

so it is easy to see that 

q y s = ~  ~nkqjk.,., j E J ,  s = l , . . . , p .  (3.8) 
k-1  

Thus, the total discrimination measures of  variable j can be expressed as a weighted 
average of  the discrimination measures of  the clusters for variable j ,  with the weights 
given by nk/N and representing the contribution of  cluster k to the total. It can be 
seen that larger clusters are weighted more in the total. 

We can then define cluster measures of  fit given by y~. z J  -1 ZJ-1 rl}-ks, and total 
: The cluster and the total measures of  fit measures of  fit given by 7~,. = j - 1  ~jJ-l qjs. 

are related by 7~ N-1 ~ _ 1  2 = nk~ ,  similarly to the discrimination measures. 

Remark 3.1 (Model equivalences). It is worth noting that under normalization (3.2) 
this model is equivalent to applying the ordinary Homals algorithm (see Section 2) 
to each of  the K clusters separately. 

Remark 3.2 (Comparinq ch~sters). As we have seen in Section 2 the Homals so- 
lution is rotationally invariant (see Remark 2.1 ). The latter combined with the fact 
that the multilevel Homals solution amounts to calculating K separate solutions (see 
Remark 3.1 ), introduces the problem of making meaningful comparisons between 
clusters, since different clusters may have different orientations of  their axes. We 
would like to make the clusters as similar as possible by rotating their axes to a 
target solution. Any of the K solutions can be used as the target one. This amounts 
to solving a Procrustes orthoyonal rotation problem (Golub and van Loan, 1989). 
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Remark 3.3 (On another possible normalization). Instead of  normalizing the object 
scores locally (within every cluster k E K),  we might require a global scaling given 
by u ' X =  ~ =  1 u'Xk = 0  and X'X=~=~ X~!Xk =Nip. Some algebra shows that under 
this normalization the multilevel Homals model is equivalent to a single cluster 
Homals model with interactive coding, that is, we introduce K × (/ categories for 
each variable, so that each cluster has its own set of categorieg. In this case, the 
clusters are pulled together through the global scaling of  the object scores. However, 
this option allows the Homals algorithm to focus on the cluster differences, thus 
producing trivial solutions. 

Remark 3.4 (On the design matrices). In the single cluster case the indicator ma- 
trix Gj, j E J ,  is considered to be a basis of the transformation space. It corresponds 
to the Kronecker basis, since the basis isomorphism is given by the identity. Thus, 
the objects are classified according to the elements of  this basis (in other words the 
categories). In the multilevel framework, we want the objects to be classified by 
both the categories of  variable j and the fact that they belong to cluster k. This 
requirement automatically translates to a product transformation space. However, the 

K form of the transformation space we adopt, namely Gj = O~=~ Gjk, implies that the 
subspaces Gjk, k E K, are independent and span "Gj, and that the dimensionality of  
the transformation space is equal to ~ff=l dim Gjk = K{j. This fact allows us to look 
at different transformations for each cluster separately. 

3.1. NELS:88 example 

A two-dimensional Homals analysis was performed on the school data set. The fit 
of  the third dimension was a rather poor one (total measure of  fit 0.18). The fit of  
the solution for each school separately and for the sample as a whole is given in 
Table 1. The overall fit can be characterized as satisfactory. Some schools exhibit a 
very good fit in both dimensions (e.g. schools 2,7, 10), while some others a rather 
poor one in both dimensions (e.g. schools 8, 12). Some schools have a good fit in the 
first dimension and a satisfactory one in the second (e.g. schools 1, 6, 11 ). Overall the 
schools present enough variation in terms of  fit. This can also be seen by examining 
the school and total discrimination measures for each variable that are shown in Fig. 
4. It is worth noting that the discrimination measures of  the schools exhibiting a 
good fit (2,7, 10) are in general larger than the total measures for all the variables, 
while those with a poor fit (8, 12) have discrimination measures smaller than the 
total ones for all the variables. This is consistent with the definition of  the measures 
of  fit (both cluster and total) and the fact that there are no large differences between 
the clusters in terms of  sample sizes. The remaining schools have discrimination 
measures larger than the total ones for some of the variables, and smaller than the 
total measures for the rest of the variables. Finally, some schools (e.g. 8,9, and 
to a certain extent 11 ) have smaller discrimination measures than the total for the 
majority of  the variables, however, for a couple of  variables the cluster measures 
were much larger than the total ones, thus indicating the possible presence of  outliers. 
Fig. 5 displays the total discrimination measures of  the ten variables. All variables 
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Table 1 
School measures of fit 

School no. Dimension 1 Dimension 2 

1 0.642 0.352 
2 O.724 O.429 
3 0.643 0.422 
4 0.668 0.438 
5 0.559 • 0.335 
6 0.620 0.320 
7 0.711 0.506 
8 0.479 0.381 
9 0.618 0.410 
10 0.636 0.505 
11 0.575 0.373 
12 0.442 0.337 

Total 0.608 0.403 

discriminate (the category points are further apart) equally well in both dimensions. 
Hence, it is difficult to associate a particular dimension with a certain subset of  
the variables. However, variables C (students cutting class), E (robbery or theft), F 
(vandalism of school property), G and H (student use of  alcohol and illegal drugs) 
discriminate best among students in both dimensions. 

Fig. 6 displays the category quantifications of  the variables for each of  the 12 
schools included in our analysis. The points in the graph represent the centers of  
gravity of  the object points associated with each category. Several different patterns 
can be observed between the variable categories. For example for some schools 
(1,4, 6, 10, 11 and 12) the following pattern emerges. In the lower left quadrant of  
the graph we find the 'serious problem' categories for cutting class, physical con- 
flicts, robbery and vandalism, use of  alcohol and drugs, possession of  weapons and 
physical and verbal abuse of teachers. However, the 'serious problem' category for 
student tardiness and absenteeism (variables A and B) was located at different places 
in different schools. Thus, students in this area of  the map are associated with these 
categories, which implies that they consider their school to be seriously affected 
by these problems. In the upper half of  the graph, we find the 'minor/moderate 
problem' categories for almost all the variables. Students associated with these cate- 
gories believe that these problem areas are present only to a certain degree in their 
schools. Finally, in the lower right quadrant of  the graph we find the 'not a problem' 
categories for all the variables; hence, students in that area of  the graph think that 
there are no problem areas in their schools. It is interesting to observe that the 
'clustering' of  the students is done according to the same category levels. Thus, 
students consider all the areas representing either a serious, or a minor/moderate or 
not a problem in their school. In principle, in this set of  schools we do not have 
students that indicate some areas as being a serious problem and some other areas 
as not a problem. Hence, to a large extent the analysis cleanly separates the students 
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that think there exist serious problems in their schools, from the ones that think 
their schools are problem free (as far as the areas identified in the data set are 
concerned). Moreover, the analysis reveals distinctly nonlinear student response pat- 
terns; that is, variable categories are not linear with the dimensions of  the space. 
For some other schools (7,9)  the solution separates students that indicated that all 
the areas examined represent a 'serious' problem in their schools, from the rest o f  
the students that indicate 'moderate/minor' to 'not' a problem. It is worth noting 
that the presence of  outliers in school 9 distorts the picture and might affect the 
interpretation. For some schools (2, 3, 5, 8) the students that said 'not' a problem are 
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separated from the rest of  the students. In this set of  schools, unlike the first two, 
we observe mixed response patterns. There are students that consider some of the 
areas being a 'serious' problem in their schools, while some other only a 'moderate' 
and in a few cases a 'minor' problem. Some other interesting points arising from 
examining the category quantifications plots are (i) the fact that use of alcohol is a 
'serious' problem in the rural schools 8 and 9 (but not in 7) (see the position of 
G1 in the respective graphs), and (ii) the fact that student tardiness and to a certain 
degree absenteeism are 'serious' problems in the private schools (position of  A1 and 
B1, especially in school 12). In general, these 12 schools exhibit a wide range of 
student response patterns. By closely examining the optimal category quantification 
plots we have identified three 'main' groups of schools: those where the majority 
of  the students believe there are problems, those where most of  the students believe 
there are no problems, and those where the students are equally distributed among 
'serious', 'moderate/minor' and 'not a problem' subgroups. However, even within 
these three groups there exists variation in the response patterns. 

This can be more clearly seen from the plots of  object (student) scores shown in 
Fig. 7 (all graphs have the same scale). The distance between two student points is 
related to the homogeneity of their profiles, or more generally, their response patterns 
(see Section 2). These plots reveal the presence of outliers in the group of  rural 
schools (7,8 and 9). They also show differences between schools within the same 
group of response patterns identified after examination of the category quantifications. 
For example, although schools 1,4, 10, and 12 have similar quantification profiles, 
their object scores exhibit differences; those of schools 1 and 12 are evenly distributed 
in the space, while those of schools 4 and 10 tend to cluster into two groups: the 
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'serious problem' and the rest. Similar variations can be observed within the other 
two groups of  schools. Overall, examining each school separately has provided a 
better understanding of  the variety of  response patterns existing in this NELS:88 
data set and has allowed us to detect and study differences in the school climate 
between the different types (public-private, urban-suburban-rural) of  schools. 
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The techniques presented so far aim at the uncovering and representation of  the 
structure o f  categorical multivariate data. However, there has been no reference to 
any probabilistic mechanism that generated the data under consideration. As Kendall 
points out "many of  the practical situations which confront us are not probabilistic 
in the ordinary sense... It is a mistake to try and force the treatment o f  such data 
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into a classical statistical mould, even though some subjective judgement in treat- 
ment and interpretation may be involved in the analysis" (see [Kendall, 1980, p. 4]). 
Nevertheless, the question of  stability of  the chosen representation remains crucial. 
We use the bootstrap to examine the stability of  our solution. We use the concept 
of  stability in the following sense: data analytic results are stable when small and/or 
unimportant changes in the input lead to small and unimportant changes in the re- 
suits (output), where as input we consider the data at hand (object and variables), 
the coding of  the variables, the type of  technique employed (e.g. multilevel homo- 
geneity analysis), the chosen dimensionality of  the solution, and as output category 
quantifications, object scores, total and cluster discrimination measures, eigenvalues, 
etc. In the present setting, we generated bootstrap samples by sampling nk objects 
(i.e. students) with replacement from each school, and then apply multilevel homo- 
geneity analysis to these new samples. In Fig. 8 we present the boxplots of  measures 
of  fit (cluster eigenvaules) for the 12 schools in our sample, over 1000 bootstrap 
replications. Lack of  space prevents us from presenting analogous results for other 
important quantities such as category quantifications, and discrimination measures. It 
can be seen that the observed cluster (school) measures of  fit lie very close to the 
medians of  the bootstrap distributions, which implies that the uncovered patterns by 
our technique are real. 
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4. A model with differential weighting of the groups 

The NELS example shows that in the presence of many grouping units (e.g. 
schools) unconstrained multilevel homogeneity analysis leads to estimating a large 
number of  model parameters (e.g. category quantifications, etc.) which in turn in- 
troduces instabilities in the solution. Moreover, the hierarchical nature of  the data 
(students within schools) is ignored. In the NELS example it would be interesting 
to incorporate school information in the results. In this section we introduce a model 
that allows us to do just that. It restricts the group category quantifications to be the 
same across groups, but weighs them by different factors for each group. The model 
formally is given by 

Yjk=u'~jk+QjBk, j E J ,  k c K ,  (4.1) 

where Qj, j E g are the restricted (overall) category quantifications and Bk, k E K, 
the slope matrices, and ejk, j E J ,  k C K, are parameters that ensure that the category 
quantifications have a weighted sum over categories equal to zero. In this model the 
slope matrices Bk, k E K, are required to be diagonal. This model implies that the 
Yjk's are no longer centroids. There is only one set of  category quantifications (namely 
Qj) for each variable which are differentially stretched/shrunk in the various groups. 
Due to the similarity of  (4.1) to a multivariate regression framework, we call this 
model alternatively the regression model. 

To minimize the usual Girl loss function subject to the model constraint given 
by (4.1), we start by computing Yj's as in (3.3). We then partition the Girl loss 
function as follows: 

J K 

J - 1 Z  ~-~ tr(Xk -- Gjk~';k)'(Xk -- G;kY;k) 
j = l  k = l  

J K 

+ J - ' Z  Z t r ( Y J  k -  I2Jk)'DJk(YJ k -  ~'jk) (4.2) 
j - 1  k = l  

and after imposing the restriction on the Yfs  we have to minimize 
K J 

J - 1 Z  Z t r ( Q j B k -  ~)k)'Djk(QjBk- Yjk) (4.3) 
k=l  j = l  

with respect to Qj and Bk. Since the Bk's are diagonal, (4.3) can also be written as 
K J p 

J-I Z Z Z (q}fl~ - Y~k)'D'k(q~ flsk -- Y~k), (4.4) 
k--I j = l  s=l  

where q~ = Qj(.,s) is an fj  row vector and fl], = Bk(s,s), s = 1 . . . . .  p, a scalar. In 
what follows, we will use both forms of  the loss function. We minimize (4.4) using 
an ALS algorithm, by alternating over q~ and fl~ in an inner iteration loop. For fixed 
q~ the optimal fl],'s are given by 

(Jj~(YJ )/(~-~(q))Djq) I *̂ ^" 'D s s ,  s (4.5) ilk= k) 7kqj k , k E K ,  s =  l . . . . .  p. 
\J=~ / 
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This completes the first step of  the inner iteration loop of the ALS algorithm. So, it 
remains to minimize (4.4) with respect to q~ for fixed/~],. We then get the following 
set of  normal equations: 

K K 

~-~,(/~] 2 .,. s ^s , (4.6) ) D j k q j = Z  flkDjky,k ' J E J '  s =  1 . . . .  p. 
k - 1  k = l  

From (4.6) we get that 

^ ,= s D x--', " 'D ^" (4.7) qj (ilk) sl~ 2..~Pk 'J~Yjk' j C J ,  s =  1 . . . . .  p. 
k = l  k = l  

In the absence of any further restrictions on the category quantification we set Qj = 
Qj, j E J.  So, we get I)ik = Qj/~k and the inner iteration loop is complete. Then, 
we proceed to minimize the Girl loss function with respect to X,  which is done as 
shown in Section 3. 

Once the algorithm has converged, we want to center the cluster category quan- 
tifications in order to facilitate the interpretation of the joint plot of  object scores 
and category quantifications. For this purpose we use the intercept parameters. We 
set Yjk = uo~jk + QjB~, where 

^ /  / ~ ^ 
o~jk=--(uDjkQjB~)/nk, j E J ,  k E K .  (4.8) 

Thus we get u'DjkYjk = 0 as required. 
The complete ALS algorithm for the regression model has the following steps: 

Step 0: Initialize X, so that u'X~ = 0 and X/Xk = nklp, k E K. 
Step l: Estimate the unrestricted multiple category quantifications by ~/=Dj1G~X, 

j E J .  
! 

Step 2: Estimate the slope coefficients /~ = ( ~ J  l ~kDjkq~)/(~/=, qj"DjkqjS), 
k E K ,  s =  1 . . . . .  p. 

^ S  K s Step 3: Estimate the overall category quantifications by qj = (~=l(flk)2Djk) 1 

E / _ ,  jk ), j c s ,  = 1 . . . . .  p. 

Step 4: Update the unrestricted multiple category quantifications by l~jk - 0 j B k ,  
k c K ,  j E J .  

Step 5: Estimate the object scores by )(  = j - 1  Z / J  G/yj" 
Step 6: Column center and orthonormalize the matrices Xk, k E K of object scores. 
Step 7: Check the convergence criterion. 
Step 8: Once the algorithm has converged, center the group category quantifica- 

tions Yjk, j E J, k E K. 

In principle, to obtain the minimum over Qi and Bk, steps 2-4  that constitute the 
inner iteration loop should be repeated until (4.3) is minimized. However, since the 
value of the loss function will be smaller after a single iteration of the inner ALS 
loop, inner iteration upon convergence is not necessary in practice. 
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Remark 4.1 (Absence of rotational invariance). The solutions of  the regression 
model are no longer rotationally invariant (contrary to the multilevel Homals so- 
lution). To see this, let R be a rotation matrix, and let X # = X × R. We then 
get that Yj~ = Dj~'GjkX#= ~ R .  Write (4 .7 ) in  compact form as ~=~DjkQjBkB' k = 
E L ,  Djk YjkRBk. However, the matrices B~ and R do not in general commute (i.e. 
RBk ~ BkR), so that the matrix Qj of  category quantifications is not rotational 
invariant. Under the regression model the axes become identified, and as a conse- 
quence of  this we are able to look at more dimensions. 

Remark 4.2 The relationship of the regression model to the INDSCAL - P A R A -  
FAC model. Suppose we collect the category quantification matrices Yj~ into a 
three-way array Z, where the categories represent the first dimension of  the array, 
the dimensionality of  the solution the second and the clusters the third dimension. 
In the psychometric literature, where these models originated, the dimensions of the 
array are called modes. For data structures of  this form the following model has been 
suggested in the literature (Arabie et al., 1987; Carroll and Chang, 1970; Harshman, 
1970): 

Z( .... k )= ~bAk~', kEK,  (4.9) 

where Z(., .,k) represents one of  the k slices of  the three-way array Z, q~ is an (~ × s 
matrix of  factor (components) loadings for the first mode, 7/ is an s × p matrix of  
factor loadings for the second mode and A~ is an s × s diagonal matrix of  weights 
for each k E K. The elements of  the Ak matrix step up or down the sizes of  the 
columns of  ~b (or, equivalently, the rows of  ~u,). Therefore, they represent the effect 
of  the changes in the relative importance or influence of  the s factors on cluster k. 
In case the k slices are symmetric matrices, then the model is written as 

Z(.,.,k)=AAkA', kEK.  (4.10) 

Models (4.9) and (4.10) are known as parallel factors model (PARAFAC) and in- 
dividual differences scaling model (INDSCAL), respectively. It can be seen that the 
regression model can be casted in this framework. In particular, we have 

Yjk=-Z( .... k)=QjBklp, k c K .  (4.11) 

Therefore, the regression model can be considered as a constrained form of the 
PARAFAC model. 

Remark 4.3 (On the ALS algorithm). Unlike the unconstrained problem of  Section 3, 
the constrained problem by (4.3) does not admit a close-form solution. The loss 
function that needs to be minimized over the constrained category quantifications Qj 
is nonconvex (for a more detailed discussion and some special cases see Michailidis 
and de Leeuw, 1997). What we accomplish in the inner iteration loop of  our ALS 
algorithm is successive improvements of  the value of  the loss function by holding 
in each step a subset of  the parameters fixed (the quantifications and the weights) 
and alternating between them. The value of  the function will never be higher than 
before, because the optimal values for the parameters that we compute in each step 
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cannot be worse than their previous values. Since (4.3) is bounded below by zero, 
the algorithm will end up at a stationary point which may be a local minimum 
(Ostrowski, 1966). However, convergence to the global minimum is not guaranteed. 
There may be cases where the algorithm might get caught in a local minimum. 
Experience with an ALS type algorithm for the PARAFAC model (Arabie et al., 
1987) suggests that good initial values for the inner iteration loop are essential. So 
our strategy in practice is to skip steps 2 -4  for the first few iterations, so that we 
start with more stable I?jk's the inner iteration loop. 

Remark 4.4 (Other types of slope matrices). One can consider other types of slope 
matrices (i.e. nondiagonal). An interesting case arises if the slope matrices are upper 
triangular. Consider the situation where the columns of Qj are the monomials (linear, 
quadratic, etc.). Then QjBk with Bk upper triangular will make the columns of Yj~ 
polynomials of increasing degree, but with different coefficients. For general slope 
matrices the model becomes strange and of no particular practical interest. 

4.1. Loss and fit 

In the regression model the loss function is partitioned into two parts, 

J K 

J - '  ~-~ ~ tr(Xk - GjklTjk)t(-,Yk -- Gj~ITjk) ' 
j = l  k = l  

J K 

+ J - '  Z Z tr(~)j/}k - l?o/k )'Djk(OjBk - Yjk ). 
j = l  k = l  

(4.12) 

^ /  

Using the fact I~j'kDjk I)jk - '  ' ~' ' = Y~kDjk(Dj~ Gj'kXk ) = YjkGj!kXk we can rewrite the first part 
of  (4.12) as 

J K J 

J - '  ~ ~ tr(X~Xk - IcjtkDjk Ysk ) = J - '  Z tr()(')( - I?~Dj l~j), 
j = l  k = l  j = l  

(4.13) 

^!  ^ 

which is called multiple loss. The diagonal elements of the matrices YjDjYJN are 
called multiple fit. 

By examining (4.1) it can be seen that there is a built-in indeterminacy in the 
model. Thus, in order for the Qj's to be identified, we require ~jJ1 ' '  o Djoj = 

JNIp, k E K, w h e r e / ) j = ~ K  Djk is the fjx/~j diagonal matrix containing the univari- 
ate marginals of variable j for all K clusters combined. Note that this normalization 
constraint can also be written as ~jJ_l ' "  J K = = QiDjQj Zj=l QjDj~Qj K 

t J ' D  JNlp, where Wk = ~ . J ,  Q~DjkQj, k EK. Using the fact that ~j=,(Q~ j~Qj)B~= 
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Fig. 9. Total fit by school. 

•f-- 1 ! ^ Q}DjkYj~ the second part of  (4.12) can be rewritten as 
J K 

j - - 1  k - - 1  

^ t  ^ ^ 2  

= J ]  tr(YjDjYj)- tr( WkB~ ) , (4.14) 

where B~ = BkB' k since B~ is diagonal. Let Wk = Wk/JN, k c K after imposin9 the 
normalization constraint, so that ~ x  Wk=JN ~ _ ,  Wk. We can then write (4.14) as 

J K p 

J- '~-~tr(I) jD' l~/)  J- '  Z Z Wa(s,s)B~(s,s). (4.15) 
j - - I  k 1 s - - I  

The quantity ~sP] ~ - l  Wk(s,s)B~(s,s) is called regression fit, while the expression 
given in (4.15) is called regression loss. 

4.2. NELS:88 example (continued) 

We continue with the example introduced in the previous section. A two-dimen- 
sional solution incurred a total loss of  589.4, with the multiple loss component con- 
tributing 507.4 (86.1%) and the regression loss component contributing 82.0 (13.9%). 
Fig. 9 summarizes the contribution of every school to the total fit (multiple and re- 
gression fit). The public urban schools (1,2,3) exhibit the poorest fit as a group, 
while the public rural (7,8,9) the best one. The public suburban schools (4,5,6) have 
very similar fits, while the private schools (10,11,12) exhibit a large variation in 
terms of fit. The plot of  the overall category quantifications (Qj's) is given in the 
left panel of  Fig. 10. The two more striking features are the quadratic pattern of 
the category quantifications, and the clustering according to the prior classification. 
Hence, the category quantification of  the category 'not a problem' form a separate 
cloud of  points, and the same holds true for the remaining categories. Therefore, four 
separate groups of response profiles are formed. The regression solution recovers the 
quadratic profile that is present when examining all students in the data set (23,248) 
as a single group, in the right panel of  Fig. 10 the values of the slope (weight) 
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Fig. 10. Left panel: constrained category quantification (Q, jG), right panel: weight matrices (Bk, k6K). 

matrices Bk, k E K are given. As expected, all the variables are weighted more 
heavily in the first dimension, than in the second one. This implies that the so- 
lution exhibits a better fit in the first dimension, compared to the second dimension. 
Regarding the schools, it can be seen that private school 12 receives very low weights 
in both dimensions, followed by public suburban school 5. The public urban schools 
( 1,2,3) receive very similar weights, as well as the public rural ones (7,8,9). On 
the other hand, the public suburban and especially the private schools exhibit larger 
differences in the patterns of their weight matrices. Fig. 10 suggests the following 
grouping of the 12 schools in this example: schools 1-4, 8,10 and 11 form one 
group, schools 5,6 and 12 a second one and schools 7 and 9 a third one. In general, 
there is a great deal of consistency in terms of weighting in the two dimensions, 
that is, schools with a high weight in the first dimension usually have a high one in 
the second one and vice versa. 

Finally, the cluster category quantifications (after centering) and the object scores 
are given in Figs. 11 and 12, respectively. Fig. 11 summarizes the information pre- 
sented in Fig. 10. Hence, the public urban and the public rural schools are fairly 
homogeneous, while the public suburban and to a greater degree the private schools 
exhibit larger differences between them. Moreover, it is interesting to observe the 
very similar patterns that all schools exhibit for the category quantifications. The 
clustering according to the prior classification that we saw in Fig. 10 is present here 
as well, although the ‘minor’ and ‘moderate’ categories appear to be mixed. On the 
other hand, the object scores have greater variability in their patterns. For exam- 
ple, we have an almost perfect quadratic pattern in school 4, and an almost filled 
‘horseshoe’ in school 11, with the remaining schools somewhere in between. These 
two graphs suggest that in school 4 none of the students gave responses mixing cat- 
egories 1 and 4, or even 2 and 4. However, this seems to be the case with students 
in schools 5, 11 and possibly the public urban schools. The object score plot also 



434 G. Michailidis, J. de Leeuwl Computational Statistics & Data Analysis 32 (2000) 411~142 

GEORGE MICHAILIDIS AND JAN DE LEEUW 

:! 

.~ - i ~  . i  +as o os + i s  

il I . . . . . . . .  

FAT 

i-' :! " "+. + + " 

,oi  a : l ~ l  i r~  

I" 'I 

i, 

-In - I  . m s o  as 

sagas 

a.lS 

..%+ ,0 

tea i ,  

, aP  + 

% ,  

+1+s[~.. 

+;+ 

,Itl '~LFI 
¢.u a l l  

, m  

d n  

15 1 ~+6 0 
Cl¢~n~n 1 

+i. 
+,fl 

,o,~ 
,%+, d~l 

,,*:s 

I ,4". 
'~+ti+,,c~ 

.m 
.11 

+I' ,m 

m r~+ 

+It+ I 

~ a  s m ~  

. ~ - l a  

.1~ _1 ~+s o o5 ~ 13 
Dmr,+~ 1 

I ,am 
.~  +,+ 

,to ,m+~ 

. L 4 ,., - +,,. m': %. ,., ~ 
-~I Mot 
]~1, 'din , Mt~ 

,~+ ,411 ,61 , M i l l  

- t 
22 - i s  -~ ~ s  o ~ i 1.s 

CanOSl~l 

" l b  

~ t  

.FI . * l , m  d='~dR 

,61 
.11 ll+it+l 

++ 

~s~ 

I, 
"2 . , , +  . ,  + .  , ~ , ,+.,+ + _, '+ _~ + + 0  ,++ , , ,  _,' , ,  , + +  o , .  , i s 

Fig. 11. Optimal category quantifications for the 12 schools (differential weighting model solution); 
public urban: 1,2,3, public suburban: 4,5,6, public rural: 7,8,9, private: 10, 11, 12. 

reveals the presence of outliers in schools 7 and 9, something known from the uncon- 
strained multilevel Homals solution presented in Section 3. The solution shows that 
the public rural schools are the most problem free, followed by the private schools, 
while the public urban schools seem to be rather 'rough'. A similar conclusion was 
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public suburban: 4,5,6, public rural: 7,8,9, private: 10, 11, 12. 

I 
i / 

! 

J 

1,2,3, 

reached by imposing a different type of  restriction on the category quantifications 
(see Michailidis and de Leeuw, 1996). The solution from the regression model filters 
most Of the noise present in the data. It borrows strength from all the clusters, and 
therefore tends to reduce the variability between clusters and produce a more uniform 
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pattern. This was confirmed by bootstrapping the constrained solution and looking 
at the variability of the constrained category quantifications Qi" However, it should 
be noted that when examining a relative small number of clusters our model with 
differential weighting might filter the data a bit too much, thus eliminating some 
possibly interesting features. In such cases, different weights for different subsets of  
variables (see Section 5.1) might offer the most interesting alternative. 

5. E x t e n s i o n s  o f  the m o d e l  

In this section we examine various possible extensions and generalizations of the 
model with differential weighting presented in the previous section. 

5.1. Sets o f  variables 

The basic restriction on the group category quantification matrices Yj~ : QjBk 
implies that all the variables in the same cluster receive the same weighting provided 
by the elements of the slope matrix Bk. This weighting is, naturally, a function of 
all J variables, with the weights given by the corresponding marginals. However, 
in many data analytic situations when examining the interdependence of  a set of  
variables one might want to have a different weighting scheme for different subsets 
of  variables. This may be due to prior knowledge regarding the nature of  the variables 
under consideration. For example, in case one examines the relationship of grades 
received by a student in various subjects, with the amount of time the student spent 
studying these subjects, it is reasonable to give a different weighting to the set of  
grade variables and a different one to the set of  study variables. Analogous situations 
occur in many other fields in the physical, social and life sciences. In order to 
accommodate the above described situation in our regression framework, we partition 
the set of  variables J into H subsets, J(h), h = 1 , . . . ,H,  so that ~h~l [J(h)l = J ,  
where IA[ denotes the cardinality of set A. We then require 

Yjk:QjB~, j E J ( h ) ,  J ( h ) C J ,  k E K .  (5.1) 

The estimation of the category quantifications Qj, j E J ,  and the slope matrices 
B~, k E K, h : 1 . . . . .  H, is done by a small modification in the inner ALS loop. 
More precisely, the slope matrices are estimated by 

^h  ! ^ 
B k = iag y ~  Q~Djk iag Q}DjkYj , 

jEJ(h) /I \ ) 

and the category quantifications by 

K --1 

, t : l  . . . . .  {j, 

k E K ,  h : l , . . . , H  

(5.2) 

j E J ( h ) ,  h = l  . . . .  ,H, 

(5.3) 
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where V~(' = ~kRhR1'~x and S/h= E L ,  Djk I?skB['. Therefore, the weighting of  the cluster 
category quantifications becomes a function only of the variables that belong to the 
set J(h), as expected. It is worth noting that in the extreme case where each set 
J(h) contains exactly one variable, then there are no further restrictions imposed. 

5.2. Restrictions on the slope tnatrices 

The slope matrices Bk, k E K, determine the weighting the quantifications of  all 
the variables receive for cluster k. Since, these matrices are largely influenced by the 
marginal frequencies (see (4.5)), we can say that they express in a certain sense the 
importance of each cluster. In other words, large clusters are weighted more heavily 
than small ones. However, in many cases there are other important variables that 
describe the significance or the peculiarities of  the clusters and which we would like 
to incorporate in the analysis. 

Note that the situation we just described presents many similarities to what goes 
on in the hierarchical linear models (HLM) literature (see for example Bryk and 
Raudenbush, 1992; Longford, 1993). The basic idea in the HLM literature is that in- 
dividuals in the same group (e.g. classroom, school, socioeconomic status) are closer 
or more similar than individuals in different groups. Thus, for example, students in 
the same class share values on many of the variables used in a particular regression 
model. One way to formalize this idea is to fit a separate regression model (with 
its own intercept and slope) for each group, the so-called first level model. We 
can then build another regression model (second level) for the slopes, thus making 
them depend on class variables such as class size, teacher's philosophy, etc. There 
are linear models on both levels, and if there are more levels (e.g. students within 
classes, classes within schools, schools within school districts and so on) there are 
more nested linear models. Therefore, a new class of  regression models can be built 
that takes into account the hierarchical structure of  the data and makes it possible to 
incorporate variables from all levels. The basic assumptions for regression models 
are linearity, normality, homoskedasticity and independence. In the HLM framework 
the first two are maintained, but the last two are adapted to more complex situ- 
ations, e.g. independence of  individuals across groups, but dependence within the 
group. Such adaptations have yielded an extensive body of  theoretical results for 
estimation procedures, prediction, regression diagnostics (see Bryk and Raudenbush, 
1992; Hilden-Minton, 1995). 

In our case we have the regression model Yjk = QsBk, that corresponds to the first 
level model in the HLM literature, that restricts the structural parameters Yj~ across 
groups. At this point we are also interested in modeling the slope matrices Bk (which 
would correspond to the second level model). However, the focus of  this study is 
on the representation of  the data and no specific stochastic assumptions are made. 
Thus, error terms will be absent from the subsequent discussion (a big contrast to 
the HLM literature) In order to introduce the second level part of  the model, we 
define the K-row vectors ~,., s = 1 . . . . .  p, where each element ~ , (k )=  Bk(s,s); thus, 
we gather all the K elements of  the slope matrices in the sth dimension in a single 
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vector. Then, we require 

~, = ¢b~,, s = 1 . . . .  , p, (5.4) 

where ~b is a K x v fixed matrix containing information for the groups (e.g. class 
size, student/teacher ratio, parents socioeconomic status, etc.) and 6, a v × 1 vector 
of  regression coefficients, where v is the number of  second level variables. The com- 
ponent of  the Girl loss function given by (4.3) can be decomposed after estimating 
the slope matrices by (4.6) as follows: 

K J K 

J - '  Z Z tr(Qj/~k - Yjx )'Djx-(QjB~ - YI~) + j - l ~ - ~  tr(Bk - /?k  )' W~ (B~. -/~k),  
k-1  ] -1  k= l  

(5.5) 

where Wk = ~ /_ ,  Q}DIxQj, k c K.  Thus, we must minimize the second component of  
(5.5) after imposing the restriction (5.4). Let S, be a K × K diagonal 
matrix containing the (s,s) elements of  the Wk, k E K  matrices; that is, S, = 
diag[Wl(s,s), W2(s,s) , . . . ,  Wx(s,s)]. It is easy to see that we can write 

K p 

- = - ~,)X,.(456, - ~).  (5.6) 
k = l  s - 1  

Hence, we need to minimize (5.6) with respect to 6,, s = 1 . . . . .  p. The minimum is 
given by the generalized least-squares estimate 

(~, i - 1  ~- = ( ~  Z~q~) ~Z,~,,  s =  1 , . . . , p .  (5.7) 

The complete ALS algorithm for the regression model with linear restrictions on the 
slope matrices contains the same steps as before. However, between steps 2 and 3, 
an additional step must be inserted that estimates the parameters c5+. and then updates 
the slope matrices by computing ~,. = 7J5~, s = 1 . . . . .  p. The restriction (5.4) allows 
to bridge ideas from the Girl system (e.g. optimal scaling of  categorical variables) 
and from the HLM literature (e.g. linear restrictions on first level model parameters). 

5.3. Rank-one restrictions 

In case we are dealing with ordinal or numerical data we can incorporate rank-one 
restrictions (see Remark 2.4) to the model with differential weighting by requiring 

Yi~.=uaA +qjflk,  j E J ,  k E K ,  (5.8) 

where q; is an f j x  1 vector of  category quantifications and flk a p x 1 vector of  
regression weights. This extends the model to multilevel nonlinear principal compo- 
nents analysis (further details are provided in Michailidis and de Leeuw, 1997). 

6. Concluding remarks 

In this paper homogeneity analysis is extended to hierarchical data structures. 
Moreover, a model that used a common set of  quantifications but weighs them 
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differently across groups is introduced. Similarities to the INDSCAL-PARAFAC 
model are pointed out and some ideas borrowed from the hierarchical linear model 
literature are also discussed. The connections to the latter literature present many 
fruitful direction for future research, because they allow variables that describe group 
(cluster) characteristics to be introduced to the analysis. 
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Appendix 

A data set from the base year survey of  the student population of  the National 
Educational Longitudinal Study has been selected to illustrate our techniques. The 
variables in this data set deal with student responses on problem areas in their 
schools (the BYS58 set of  variables in the NELS:88 codebook). A description of  
the variables is given next. 

A: Student tardiness a problem at school. 
B: Student absenteeism a problem at school. 
C: Students cutting class a problem at school. 
D: Physical conflicts among students a problem at school. 
E: Robbery or theft a problem at school. 
F: Vandalism of  school property a problem at school. 
G: Student use of  alcohol a problem at school. 
H: Student use of  illegal drugs a problem at school. 
I: Student possession of  weapons a problem at school. 
J: Physical abuse of  teachers a problem at school. 
K: Verbal abuse of  teachers a problem at school. 

The four possible response categories are: (1) serious, (2) moderate, (3) minor and 
(4) not a problem. 

The students in the data set are clustered in 12 schools with 35 or more students 
in each one, resulting in a total sample size of  498 students and an average school 
size of  41.5 students. The reason for selecting these particular schools was, that due 
to their relatively large size, it was expected that each category of  every variable 
would contain some responses. However, we were forced to drop variable J from any 
subsequent analysis because categories 3 and 4 were empty in the majority ofthese 
schools. Some background characteristics of the schools are presented in Table 2. 

Clearly, this sample of  12 schools is not a representative sample of  the school 
population, since a large number of  rural schools is present and no schools from 
the northeast are included in the sample. The latter fact indicates that the sample 
at hand is not suitable for drawing inferences for the country's school and students 
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Table 2 
Background characteristics of the 12 schools 

School no. No. of students Type Region 

1 37 Public urban West 
2 44 Public urban West 
3 36 Public urban West 
4 40 Public suburban West 
5 38 Public suburban West 
6 35 Public suburban West 
7 36 Public rural West 
8 38 Public rural North Central 
9 38 Public rural North Central 
10 56 Private urban North Central 
11 54 Private suburban South 
12 46 Private urban South 

Table 3 
Student response patterns (in %, N = 498) 

Variable 1 2 3 4 

A 14.1 30.9 32.1 22.9 
B 10.0 28.5 33.1 28.3 
C 17.7 18.5 25.5 38.4 
D 14.5 24.5 32.5 28.5 
E 15.5 17.5 31.3 35.7 
F 21.9 21.7 25.9 30.5 
G 19.7 19.7 24.5 36.1 
H 15.3 11.0 23.1 50.6 
I 13.5 9.6 22.7 54.2 
K 15.3 14.7 26.5 43.6 

populations. However, this sample is suitable for addressing the following question. 
Suppose that a student (teacher) is interested in attending (working) in one of these 
12 schools. Knowledge regarding the basic structure of these variables and an overall 
idea of the school climate is essential to the student (teacher) for those 12 schools. 
Information about other schools is marginally interesting to them. The techniques 
previously developed are used for descriptive and not for inferential purposes (de 
Leeuw, 1988; Molenaar, 1988) example. 

Table 3 summarizes the student response patterns for the 10 variables included in 
the analysis. 
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