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1 Introduction

The NELS:88 data set is a good example of a very large data set with a plethora of variables
used as indicators for similar constructs (such as school climate, or parental support). We
would like to use multivariate analysis techniques to study the possibility of scale construction
in several subsets of NELS:88 variables. However, some of the variables are measured on
interval level (numerical variables), some on ordinal level and some on nominal level. For
ordinal data only the order of the categories (per variable) is taken into account, and for
nominal data only the classes of objects formed by each variable. This mixing of measurement
levels may present problems at analysis time. Standard multivariate analysis techniques tend
to treat all variables as numerical (based on the multivariate normal distribution model) or
as nominal.

In this paper we review some nonlinear multivariate techniques that allow for mixed
measurement levels. The data reduction obtained from these techniques can reveal interest-
ing relationships between some of the components of NELS:88. The constructed composite
variables may then be used in regression or multilevel analysis. We illustrate these techniques
on three sets of variables that describe time spent on homework (BYS79), student behavior
(BYSC49), and parental involvement (BYP58), taken from the student, administrator and
parent base-year surveys respectively. A description of the variables in each set along with
their coding is included in the Appendix. Moreover, the introduction of background vari-
ables such as gender, race etc partitions the students into various subgroups (e.g. males and



females for the gender variable). We can then examine whether the results of the original
nonlinear multivariate analysis exhibit differences among these subgroups. The frequencies
of these background variables are also given in the Appendix.

The paper is organized as follows. In Section 2 we present the theory underlying the
nonlinear multivariate analysis techniques. The empirical findings are given in Section 3,
while some concluding remarks are drawn in Section 4.

2 Some Technical Background

Consider a n x m data matrix, with rows corresponding to objects (e.g. students) and
columns to variables. Suppose that variable j = 1,...,m takes k; € Z, different values (its
categories). Let (; denote the n x k; indicator matrix corresponding to this variable. It
is a binary matrix with entries gy = 1 (1 = 1,...,n, [ = 1,....k;), if object ¢ belongs to
category [, and g; = 0 if it belongs to another category. The concept of homogeneity plays
a fundamental role in what follows. In the present context homogeneity is used in a data
theoretic sense and is closely related to the concept of data reduction. Homogeneity refers
to the extent that different variables measure the same characteristic or characteristics [4].
Hence, homogeneity specifies a type of similarity. Let y; be a k; x 1 vector, containing
the category quantifications of the j* variable. Then, G;y; gives a single quantification
(transformation) of the n objects, induced by variable j. Without imposing any further
conditions on the vector y; the quantification is solely determined by the ties in the data,
i.e. the objects that belong to the same category receive the same quantification. If we
decide to work with p simultaneous quantifications for each variable, we can collect them
in a k; x p matrix Y;, which is called the multiple nominal quantification of variable j.
Hence, the matrices GG;Y; induce m multiple quantifications of the objects. We have perfect
homogeneity in case all multiple quantifications of the objects are the same (see [3]). What
we would like to achieve is to minimize the loss of homogeneity, with loss defined in terms
of squared deviations, over normalized object quantifications

(X Vi Vi) = '3 SSQUY — GY). )

subject to X'X =nl, and X'u=0

where S5Q) denotes the sum of squares, u is the unit vector and I, the identity matrix. The
n x p matrix X contains the new representation of the n objects in the lower dimensional
space (object scores), while the k; x p matrix Y; the new category quantifications, where
p is the dimensionality of the new space. The condition X’'u = 0 implies that X is in
deviations from the column means, while X’ X = n/, makes the columns of X uncorrelated,



with variance equal to 1 (in the absence of missing data). The following alternating least
squares algorithm (Homals) minimizes the loss function in (1). It starts with an arbitrarily
normalized X and then computes the optimal Y; by

Yy = (GiG;) T EX (2)

and then uses the optimal Y; to compute the new optimal X by

X=mY Gy (3)

i=1

The optimal X is then orthonormalized by the Gram-Schmidt procedure and the algorithm
goes back to (2) until convergence. In words, the optimal coordinates for a variable cate-
gory is the centroid of the (optimal) coordinates of the objects that fall in that category.
Similarly, the optimal coordinate of an object is the centroid of the (optimal) coordinates
of the categories containing that object. The Homals algorithm also allows us to calcu-
late the discrimination measures, one for each variable and each dimension, defined by
Nis = n_l[yfj)s(G;Gj)y(j)s], J=1,..,m, s = 1,..,p (where y(), is the quantification for

variable j in the s dimension of the solution).

In homogeneity analysis when p > 2 we work with multiple quantifications. Fach
dimension adds another quantification of the categories of each variable, and the different
quantifications of the same variable have usually no simple relation to each other. Adding
rank-one restrictions allows us to have multidimensional solutions for object scores with only
a single quantification for the various categories of each variable. The rank-one restriction
is given by

Y; = Zja;# (4)

with the additional requirements that «'(GG%)y; = 0 and y!(GiG;)y; = 1, where z; is
the k; x 1 vector of single category quantifications, and a; the p x 1 vector of weights.
Hence, the Y, quantification matrix is restricted to have rank-one, i.e. its columns are
proportional to each other. In the absence of missing data, the elements of a; can also
be interpreted as ordinary component loadings. If no further conditions are imposed on
the single quantifications z;, we then deal with single nominal quantifications. If we deal
with ordinal data we can require that the elements of z; be in the appropriate order. This
defines the single ordinal treatment of a variable. Finally, in case we deal with numerical
variables, we can impose linear restrictions on the elements of z;, which in turn defines the
single numerical treatment of a variable. The Princals algorithm adds one more step to
the Homals algorithm, corresponding to relation (4). In the presence of ordinal variables the
algorithm uses a monotone regression (see [5]), while in the presence of numerical variables it
uses the ordinary linear regression.The combination of homogeneity analysis with the rank-
one restrictions defines a form of nonlinear principal components. In this presentation the
techniques are interpreted from a geometric point of view. A different starting point for the
development of these techniques is given in [1] and [2].



In most empirical applications there are missing data. This leads to incomplete indi-
cator matrices (7}, since for some objects the corresponding row of G; will have only zero
values. In both the Homals and Princals algorithms such missing data are treated as pas-
sive. This means that when category quantifications are computed as averages of object
scores, these averages are taken only over objects with non-missing data. Moreover, in the
alternating step where object scores are calculated as means of category quantifications, the
averages are taken only over the non-missing categories. Some alternative ways for treating
missing data are given in [4] (pages 73-76).

3 Empirical Findings

In this section we report the results of our analysis using the Homals and Princals algorithms
on the three sets of variables considered in the present study.

3.1 BYS79 - Student Homework

We analyzed this set of variables using the Homals algorithm (thus treating the variables
as multiple nominal). A two dimensional solution is considered, that produces a quite good
fit (eigenvalues .44 and .31 respectively). These eigenvalues in the absence of missing data
are interpreted as squared canonical correlation coefficients between the optimally quantified
variables and the object scores.

A variable discriminates better to the extent that its category quantifications are
further apart. Figure 1 displays the discrimination measures (whose average equals the
eigenvalue in the p'" dimension) of the five variables. Geometrically, the discrimination
measures give the averaged squared distance of category points weighted by their marginal
frequencies to the origin. It can be seen that all variables discriminate equally well in both
dimensions. However, variables C (english homework), D (social studies homework) and to
a certain extent B (science homework) discriminate slightly better than the other ones. The
variable category quantification plot is given in Figure 2. The points in the graph represent
the centers of gravity of the object points associated with each category.

Clear regions of student homework patterns are revealed in this plot. In the lower
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Figure 1: Discrimination measures of homework variables
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Figure 2: Optimal category quantifications of homework variables
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Figure 3: Object scores of homework variables (*=Asian, o=Hispanic, +=Black, .=White)

right quadrant are the variable categories associated with the highest levels of time spent on
homework for all subjects. Thus, students in this area of the plot are associated with these
categories. To a large extent, the analysis separates the extremely studious from the rest of
the students. In the lower left quadrant we identify the students that are associated with
the two lower levels of time spent on homework. Finally, in the upper right quadrant we
find the variable categories associated with levels 3 and 4 of time spent on homework. It is
interesting to observe that in the optimal Homals solution the “clustering” of the students
is done according to the same category levels. Thus, students spend approximately equal
amounts of time studying the various subjects, or putting it differently, studious students
spend a lot of time on each subject’s homework, while students that study little do that
consistently for each subject. The analysis clearly identifies 3 distinct regions relating to
the amount of time students spend on doing homework. Moreover, it also reveals distinctly
nonlinear patterns; that is, variable categories are not linear with the dimensions of the
space.

Figure 3 contains the plot of student scores obtained from the two dimensional solu-
tion. The distance between two student scores is related to the homogeneity of their response
patterns (profiles). Hence, students with identical patterns are plotted as identical points.
In Figure 3 we used race as a passive variable (did not participate in the initial analysis) to
separate the student scores. The plot does not reveal any differences between the various
races. This implies that students from different ethnic groups exhibit similar patterns re-
garding their studying habits. Analogous results are obtained by examining the object score
plots with gender and type of school (i.e. public-private or rural-suburban-urban) used as
passive variables.



BYSC49 — Component Loadings
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Figure 4: Component loadings of student behavior variables

3.2 BYSC49 - Student behavior

We analyzed this set of variables using the Princals algorithm. One reason is that we wanted
to treat the variables as single ordinal and the other to avoid the familiar horseshoe pattern
in the object scores plot (see [4] pages 147-148) that the Homals solution produced. The fit
of a two dimensional solution was satisfactory given the large number of variables involved
(eigenvalues .44 and .16 respectively). In Figure 4 the component loadings are displayed.
The component loadings are the correlations of the optimally quantified variables with the
object scores in the absence of missing data (hence, discrimination measures can also be
interpreted as squared component loadings). In case the arrows (vectors) in the plot are
(almost) of unit length (in the usual Euclidean norm) the angle between any two of them
reflects the value of the correlation coefficient between the two corresponding quantified
variables. The component loadings plot shows that variables G and H (use of alcohol and
illegal drugs) discriminate very well along the second dimension and satisfactorily along the
first dimension, while the remaining variables discriminate well only along the first dimension.
Hence, we can say that the second dimension reflects students’ perceptions on whether the
use of alcohol and drugs presents a problem at their school, while the first dimension mainly
summarizes their perception regarding issues such as absenteeism, tardiness, vandalism,
physical and verbal abuse of teachers etc. Moreover, variables G and H are highly correlated
(since their component loading vectors have approximately unit length) and lowly correlated
with the remaining variables. The variable category quantification plot is given in Figure
5. The first thing to notice is that quantifications of each variable are ordered and lie on
a line that goes through the origin; a property of the Princals solution for single ordinal
variables. On the right side of the graph are “clustered” students that think that none of
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Figure 5: Optimal category quantifications of student behavior variables

the issues addressed by variables A through K is a problem at their school, while on the left
students who consider them as presenting a moderate to a serious problem. Finally, in the
center of the graph (around the origin) are the students that think these issues represent a
minor problem at their school (middle categories). The Princals solution manages to identify
several patterns regarding the type of issues students perceive to present a problem at their
school.

At this point it is interesting to examine the object scores stratified by some back-
ground variables (treated as passive ones). Similarly, to the BYST9 set of variables we do
not observe any differences for gender and race. However, as Figures 6 and 7 indicate there
are significant differences regarding perceptions of students in public and private schools,
and also among schools in rural, suburban and urban areas. We observe that the majority
of the students attending private schools thinks that the issues addressed by the BYSC49
set of variables represent at most a minor problem at their schools, contrary to the beliefs
of the students in public schools. Similar findings hold for the majority of students attend-
ing schools in suburban and rural areas. On the other hand, students attending schools in
urban areas think that especially issues such as physical and verbal abuse of their teachers,
as well as student possession of weapons, physical conflicts among students, robbery and
theft are serious problems at their schools. These findings suggest that separate analyses for
private and public schools (or for urban, suburban and rural schools) might provide a better
insight, or that techniques that accommodate several sets of variables such as Overals (see
[4], chapter 5) might prove useful.
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Figure 6: Object scores of student behavior variables (.=Public School,*=Private School)
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Figure 8: Component loadings for parental involvement variables

3.3 BYP58 - Parental Involvement

A two dimensional Princals analysis was performed, and a satisfactory fit was obtained
(eigenvalues .39 and .23 respectively). In Figure 8 the component loadings of the parental
involvement variables are presented. It can be seen that the first dimension summarizes
variables associated with student’s performance and behavior at school, while the second
dimension with variables associated with parental involvement in general school activities.
Moreover, variables A, B and C are highly correlated among themselves and so are variables
D and F, while these two groups of variables are not highly correlated. In Figure 9 the
optimal category quantifications are given. On the right side of the graph are “clustered”
parents that showed no interest in their child’s academic performance and school behavior
and that were not involved in general school activities. On the other hand, on the lower
left quadrant are parents who contact the school often about their children performance,
while on the upper left quadrant parents that are actively involved only in general school
activities. Finally, it should be noted that the object scores stratified by gender, race and
type of school variables did not reveal significant differences among the various categories.
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Figure 9: Optimal category quantifications for parental involvement variables

3.4 Stability Analysis

There has been a lot of work on stability analysis of the Homals and Princals algorithms
(see chapter 12 in [4]). The first procedure to assess the stability of our solution relies
on permutation methods. The basic idea is to destroy the existing structure in the data by
permuting the objects within the columns of the data matrix, and then study the permutation
distribution of the eigenvalues. We then examine the position of the eigenvalues computed
from the original data matrix on the permutation distribution. If they are located far out in
the tails, we can conclude that the solution was stable. This is one way of formalizing the
notion of “no structure”. The results of the permutation method are given in the following

Table.

Table 1
Permutation Averages and Standard Errors of Eigenvalues
based on 100 replications

Dimension 1 Dimension 2
Variable || Princals Average Standard | Princals Average Standard
Value Value Frror Value Value Frror
BYST79 440 037 .0063 310 .001 .0029
BYSC49 437 110 .0019 155 .099 .0016
BYP58 .390 .030 .0030 228 .002 .0023

11



It is easy to see that the solutions we obtained were due to some “structure” in the
data and could not be attributed to chance.

Another procedure to assess the stability of the solution is based on the bootstrap
method. Here the idea is to sample with replacement objects and then compute the boot-
straped statistic of interest (category quantifications and component loadings for the Homals
and Princals algorithms respectively). We then examine the position of the statistic com-
puted from the original data matrix on the bootstrap distribution and proceed as before.
The results of the bootstrap method for the three sets of variables are given in Tables 8, 9,
and Figure 10 in the Appendix and indicate that our results were very stable.

4 Concluding Remarks

In the present study we have reviewed some nonlinear multivariate techniques and applied
them to subsets of the NELS:88 data set. Our examples attempted to illustrate the most
important geometrical features of these techniques. Our findings indicate the presence of
strong nonlinear patterns among the variables and justify the use of these techniques.

It is worth noting that the data set was treated as a simple random sample from the
student population. However, the sample was stratified by school and we did not attempt to
take into account this fact. There are several ways to introduce this additional information
in the analysis, but none of them seems easy to implement. One way is to incorporate the
school variable in the analysis and treat it as multiple nominal. However, the results were
not very satisfactory. Hence, this issue remains open for future research.

12



5 Appendix

5.1 BYS79

"Time spent on homework each week”

A Mathematics homework
B Science homework
C English homework
D Social studies homework

E Homework for all other subjects

Table 1 (%) (N=24,599)
Variable Categories
1 2 3 4 5 | Missing

7.9 394 21.7 10.0 16.2 4.8
16.0 42.6 19.4 88 8.1 5.2
10.1 43.6 21.1 9.7 10.1 5.4
12.8 39.1 21.6 104 10.7 5.5
13.4 38.0 194 11.3 12.6 5.2

HoOQwe=

Coding: 1 = Less than an hour, 2 = 1 hour, 3 = 2 hours, 3 = 3 hours, 5 = 4 or more hours,

9 = Missing

13



5.2 BYSC49

"Indicate the degree to which each of the following matters is a problem in your school”

A Student tardiness

B Student absenteeism

C Student class cutting

D Physical conflicts among students
E Robbery or theft

F Vandalism of school property
G Student use of alcohol

H Student use of illegal drugs

I Student possession of weapons
J Physical abuse of teachers

K Verbal abuse of teachers

Table 2 (%) (N=24,599)
Variable Categories
1 2 3 | Missing
32.2 514 14.8 1.6
28.8 46.2 23.3 1.7
8.6 34.7 55.2 1.4
157 56.4 264 1.5
8.4 55.1 35.1 1.4
7.6 50.4 40.6 1.4
9.2 39.3 50.1 1.4
7.1 42,7 4838 1.4
18.5 80.0 1.5
7.3 91.1 1.6
5.2 421 51.1 1.6

== N NellwileNeoiis

Coding: 1 = Moderate - serious, 2 = Minor, 3 = Not a Problem, 9 = Missing
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5.3 BYP58

”Since your eighth grader’s school opened last fall, how many times HAVE YOU OR YOUR
SPOUSE/PARTNER CONTACTED the school about each of the following?”

A Your eighth grader’s academic performance

B Your eighth grader’s academic program for this year

C Your eighth grader’s behavior in school

D Participating in school fund raising activities

E Providing information for school records (address, work telephone number)

F Doing volunteer work (supervising lunch, chaperoning a field trip)

Table 3 (%) (N=24,599)
Variable Categories
1 2 3 | Missing

A 41.0 309 14.6 13.4
B 55.6 253 5.2 13.8
C 61.5 179 13.6

D 67.0 19.2 13.8
E 52.0 343 13.6
F 63.2 18.1 13.7

Coding: 1 = None, 2 = Once or twice, 3 = Three or more, 9 = Missing

15



5.4 Background Variables

Table 4
School Location
(%) (N=24,599)
Urban 31.0
Suburban | 41.7
Rural 27.4

Table 5
School Type
(%) (N=24,599)
Public | 78.8
Private | 21.2

Table 6
Gender
(%) (N=24,599)
Male 49.8
Female | 50.2

Table 7
Race

(%) (N=24,599)

Asian or Pacific Islander
Hispanic, regardless of race
Black, not of Hispanic origin
White, not of Hispanic origin
Other, missing

6.2
12.9
12.2
66.3

2.3
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5.5 Stability Analysis

Table 8
Bootstrap Averages and Standard Errors of Component Loadings
based on 100 replications for the BYSC49 set of variables

Dimension 1 Dimension 2
Variables Princals Bias Corrected Standard | Princals Bias Corrected Standard
Value Value Error Value Value Error
A 647 .650 0142 .169 173 0119
B .696 701 .0150 154 151 .0126
C 742 734 .0236 071 075 .0298
D 668 676 0185 .230 226 0221
E .655 .651 0153 -.097 -.093 0164
F .695 702 .0209 136 141 0442
G 534 538 0159 -T2 =775 .0145
H 635 641 0154 -.680 -.685 0273
I 595 598 .0136 144 148 0157
J 538 D42 0112 218 213 0176
K 679 .684 .0169 275 .269 .0195
Table 9
Bootstrap Averages and Standard Errors of Component Loadings
based on 100 replications for the BYP58 set of variables
Dimension 1 Dimension 2
Variables Princals Bias Corrected Standard | Princals Bias Corrected Standard

Value Value Error Value Value Error
A -.764 -.766 0121 =377 -.376 0211
B -.744 -.744 .0143 -.262 -.261 0141
C -.582 -.583 0112 -.504 -.503 0151
D -.550 -.548 .0135 635 636 .0168
E -.521 -.519 0228 167 168 0147
F -.532 -.529 .0194 637 642 0267

17
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