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CATEGORY QUANTIFICATIONS
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ABSTRACT. We consider a multilevel sampling design framework, where we collect observations
on N individual cases grouped (clustered) within K units (clusters). We extend the techniques of ho-
mogeneity analysis and principal components analysis with rank-one restrictions to this multilevel
framework. We also propose some models that take advantage of the multilevel nature of the sam-
pling design, and allow us to make within-groups and between-groups comparisons. Furthermore,
it is shown that several models proposed in the literature for panel and event history data, can be
casted naturally into our framework. The National Educational Longitudinal Study (NELS:88) data
set is used to illustrate some of the techniques presented in the paper.
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1. Introduction to Homogeneity Analysis

Given a data set comprised of IV observations (individuals, objects) on J variables, the con-
cept of homogeneity addresses the question to what extent different variables measure the same
property or properties in the data. In order to answer this question, a measure for the difference or
resemblance of the variables is needed. Moreover, the measurement level of the data may allow us
to transform the variables before comparing them, since different transformations are suitable for
different types of data. The problem then becomes to find admissible transformations that maxi-
mize the homogeneity of the variables. In case where the variables measure more than one property
we may want to identify another orthogonal solution. This is in accordance with the principle of
data reduction which advocates that a small number of dimensions should be used to explain a
maximum amount of information present in the data.

The technique studied in this paper is known under many different names. For example, we
have principal components of scale analysis [1, 21, factorial analysis of qualitative data [3], second
method of quantification [7], multiple correspondence analysis [15, 6], and homogeneity analysis
[8, 11]. The technique has been derived from various data analytic points of view, starting with
ideas from principal component analysis, from multidimensional scaling and from scale analysis.
It combines the aspect of maximal correlation between variables with that of optimal scaling.
Pearson in 1907 discovered some of the basic facts connected with the technique, while studying
variation of the correlation coefficient of two variables under different choices of quantification of
the variable, and Fisher [5] was the first one to use it in data analysis. On the other hand, the first
optimal scaling techniques were introduced by Shepard and Kruskal (e.g. [9]) in the early sixties.
Kruskal, Roskam and Lingoes wrote families of computer programs that combined different linear
and nonlinear models with the idea of optimal scaling. de Leeuw, Young and Takane continued
along a similar path in the seventies (for a review see [10]). More recently Breiman and Friedman
[4] developed similar methods using conditional expectations and exploring the structure of the L,
space.

In the Gifi system [8] the relationship between multiple correspondence analysis and optimal
scaling is explored systematically, with the former being the starting point. The basic idea is to
scale the objects (map them into a low dimensional Euclidean space) in such a way that objects
(individuals etc) with similar profiles are relatively close together, while objects with different
profiles are relatively far apart. The emphasis, as in the French literature, is on the geometry of the
problem. Moreover, other multivariate analytic techniques such as principal component analysis,
canonical correlation analysis, discriminant analysis, path analysis can be derived from multiple
correspondence analysis by imposing appropriate restrictions. These restrictions also have a clear
geometric interpretation in the space where the objects are scaled. This is in contrast with the
approach taken in Young [10] or Breiman and Friedman [4], who take optimal scaling as their
starting point, and emphasize algebraic and analytic properties of the solution.
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To formally introduce our framework, suppose that initially we allow only linear transforma-
tions of the variables. The difference between variables is expressed in terms of a loss function.
As a convenient measure for differences between variables we will consider the mean squared Eu-
clidean distance between the (possibly) transformed variables and a common hypothetical variable.
The homogeneity of the transformed variables and the hypothetical variable will be maximized if
the loss is minimized. This hypothetical variable serves as a new scale for the individuals or ob-
jects. The loss function is given by

J
1
(1.1 a(x;al,...,aj) = jZSSQ (X — ajsj),
j=1

where = denotes the common variable, a; the weight of variable s; and SSQ (H) = tr(H'H)
denotes the Frobenius norm of matrix H (i.e. the sum of squares of the elements of the matrix H).
The values of variable z are called object scores. In order to avoid the trivial solution corresponding
tox =0,and o; = 0 forevery j € J = {1,..., J}, we require in addition 2’z = 1. The solution
to the minimization problem given in (1.1) corresponds to performing linear principal component
analysis on the correlation matrix of the data set S (see [8, 11, 12]). The common variable z is the
first principal component.

A natural question that arises at this point is what happens if we allow nonlinear transfor-
mations of the form ¢;(s;), j € J, where ¢; may be any nonlinear function of the variable s;.
By admitting all nonlinear transformations the problem is rendered trivial, since the space of ad-
missible transformations is enlarge to a N-dimensional space, and thus any quantification of the
variables will suffice in order to obtain a perfect fit. Since our main interest is on categorical vari-
ables, we will consider the indicator matrix G as a basis of the transformation space. It is a binary
matrix with entries G;(i,t) =1, i = 1,...,N, t = 1,...,¢; (where ¢; represents the number of
categories for variable j), if object 7 belongs to category ¢, and G;(7,t) = 0 if it belongs to some
other category. Incorporating our choice of basis G; implies that we may write ¢;(s;) = G;y;, for
some vector of coefficients y;. In case of multiple solutions we get ¢;(s;) = G,Y;, where Y; is
the £; x p matrix of multiple category quantifications, where p denotes the dimensionality of the
solution.

The loss function then becomes

J
(1.2) o(X;Yh,...,Y7) =T ) SSQ (X - G,Y;).

=1

Once again in order to avoid the trivial solution corresponding to X = 0, and Y; = 0 for every
7 € J, we require in addition

(1.3) X'X = NI,
(1.4) WX =0,

where u is the unit vector of appropriate dimensions.
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The setup of the problem we posit in (1.2), (1.3) and (1.4) implies the following:

e A scale consisting of numerical variables is homogeneous if all variables in the scale are
linearly related.

e A scale consisting of nominal, ordinal, and numerical variables is homogenizable if all vari-
ables in the scale can be transformed or quantified in such a way that the resulting scale is
homogeneous.

e Homogeneity of a set of (centered) variables is measured by computing the sum of squares
within objects and the sum of squares between objects. Perfect homogeneity corresponds to
zero within objects variation. A measure of homogeneity is the ratio of the between objects
sum of squares to the total sum of squares.

e Homogeneity analysis transforms numerical variables (i.e. assigns numerical values to each
of the categories of the variable) or quantifies ordinal or nominal variables (i.e. assigns nu-
merical values to each of the categories of the variable) in such a way that homogeneity is
maximized.

In this paper, we extend the framework to handle data of a multilevel nature and propose some
models that take into consideration the hierarchical structure of such data. However, we do not
deal with topics such as sets of variables, additivity restrictions on the variables etc (see chapter 5
in [8]). For making this presentation complete, a brief review of the solution to the problem posed
above is also included.

2. The ALS Algorithm

The solution to the minimization problem given in (1.2), (1.3) and (1.4) is found by employing
the Alternating Least Squares (ALS) algorithm. In the first step, (1.2) is minimized with respect to
Y; for fixed X. The set of normal equations is given by

(2.1) D;Y;=GiX, j €,

where D; = GG} is the ¢; x £; diagonal matrix containing the univariate marginals of variable j.
Hence, we get that

(2.2) Y;=Dj'GiX, jed.
In the second step of the algorithm, (1.2) is minimized with respect to X for fixed Y}'s. The normal

equation is given by

J
(2.3) JX =) GV,
j=1
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so that

J
(2.4) X =736

i=1

In the third step of the algorithm the X matrix is column centered and then orthonormalized, so that
the normalization restrictions (1.3) and (1.4) are satisfied. These three steps are repeated until the
algorithm converges to the global minimum (see chapter 3 in [8]). Hence, the ALS algorithm finds
the desired solution to the problem given in (1.2), in the presence of nominal data. This solution
is also known in the literature ([81, [11], [12]) as the Homals solution (homogeneity analysis by
means of alternating least squares).

Remark 2.1. Rotational Invariance. It is worth mentioning the rotational invariance property of
the Homals solution. To see this, suppose we select a different basis for the column space of the
matrix X; that is, let X* = X x R, where R is a rotation matrix satisfying R’ R = RR' = . We
then get from (2.2) that Y;-u =Dy 1G’;-X b= I?}R. Thus, any rotation of the object scores and of the
category quantifications corresponds to a solution to the problem given in (1.2).

Remark 2.2. Normalization Issues. The matrix of the object scores X is column centered by
subtracting from each element x(is) the mean of the corresponding column (i.e. set W = X —
u(uw'X/N)). Then, W is orthonormalized by the modified Gram-Schmidt [17]. Finally, set X =
V'NW, and it is easy to see that X'X = NI,

Once the ALS algorithm has converged, by using the fact that Y/D;Y; = Yy D;(D; 1G;X ) =
Y/G% X, we can write the Gifi loss function as

J J
@5 JY (X - GY,) (X - GY;) = J1 Y u(X'X +Y/GiG,Y; - 2V/G X) =

j=1 j=1

J J J
Iy u(X'X ~ Y/ DyY;) = J! > (NI, ~Y!D;Y;) = Np— J-! > u(Y/D;y;).
Jj=1 j=1 =1

The sum of the diagonal elements of the matrices Y] D;Yj is called the fit of the solution. Further-
more, the discrimination measures are given by

(2.6) 77]23 =Y/(.,s)D;Y;(,,s)/N, j €3, s = 1,...,p,

where Yj(., s) denotes the s** column of the matrix Y; and represents the quantification for variable
J in the s** dimension of the solution. Geometrically the discrimination measures give the average
squared distance (weighted by the marginal frequencies) of category quantifications to the origin
of the p dimensional space. It can be shown that (assuming there are no missing data) the dis-
crimination measures are equal to the squared correlation between an optimally quantified variable
G,Y;(., s) and the corresponding column of object scores X (., s) (see chapter 3 in [8]). Hence, the
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loss function can also be expressed as

1 AL
@7 N(p=5>2 1)
j=1 s=1

The quantities v, = J~! 23.1:1 M, s = 1,...,p are called the eigenvalues and correspond to the
average of the discrimination measures.

Remark 2.3. Homogeneity Analysis as a Singular Value Decomposition Problem. It can also
be shown [11] that the object scores X are the left singular vectors of the matrix J~/2(I —
uu' /N)GD~/2, which is the 'super-indicator'’ matrix (G = [G4]...|G,]) in deviation from col-
umn means and corrected for marginal frequencies. Moreover, the eigenvalues v,, s = 1,...,p
correspond to the first p singular values of the above matrix. The complete singular value decom-
position (SVD) solution has ¢ = Z}’:1 ¢; — J dimensions. Once the object scores are calculated,
the category quantifications can be computed using (2.1) [8]. The advantage of employing the ALS
algorithm is that it only computes the first p << ¢ dimensions of the SVD solution, thus increasing

the computational efficiency and decreasing computer memory requirements.

We summarize next some basic properties of the Homals solution.

o Category quantifications and object scores are represented as points in a joint space.

o A category point is the centroid of objects belonging to that category. This is a direct conse-
quence of (2.2).

¢ Objects with the same response pattern (identical profiles) receive identical object scores
(follows from (2.4)). In general, the distance between two object points is related to the
'similarity' between their profiles.

o A variable discriminates better to the extent that its category points are further apart (follows
from (2.6)).

o If a category applies uniquely to only one object, then the object point and that category point
will coincide.

¢ Category points with low marginal frequencies will be located further away from the origin
of the joint space, whereas categories with high marginal frequencies will be located closer
to the origin (follows from (2.2)).

¢ Objects with a 'unique’ profile will be located further away from the origin of the joint space,
whereas objects with a profile similar to the ' average' one, will be located closer to the origin
(direct consequence of the previous property).

¢ The category quantifications of each variable j € J have a weighted sum over categories
equal to zero. This follows from the normalization of the object scores, since uv'D;Y; =
u’D]-Dj'lG;-X =G X=uX=0.

Remark 2.4. Missing Data. The present loss function makes the treatment of missing data a fairly
easy exercise. Missing data can occur for a variety of reasons: blank responses, coding errors etc.
Let M;, j € J denote the N x N binary diagonal matrix with entries M;(4i) = 1 if observation
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i 1s present for variable j and 0 otherwise. Define M, = ijl M;. Notice that since G ; 1s an
incomplete indicator matrix (has rows with just zeros), we have that M;G i =Gj, 7 €J. The loss
function then becomes

J
(2.8) o(X;Y,....Y5) =T ) (X — G,Y;) My(X - GY5),

J=1

subject to the normalization restrictions X'M,X = JN I, and ' M, X = 0. The }A/j’s are given
by (2.2), while the object scores by X = M ijl G;Y;. In the presence of missing data, it is
no longer the case that u'D;Y; = 0 (the category quantifications are not centered), because in the
weighted summation with respect to the row scores of X, some of the scores are skipped. This
option is known in the literature [8] as missing data passive or missing data deleted, because it
leaves the indicator matrix G; incomplete. There are two other possibilities: (i) missing data sin-
gle category, where the indicator matrix is completed with a single additional column for each
variable with missing data, and (ii) missing data multiple categories, where each missing observa-
tion is treated as a new category. The missing data passive option essentially ignores the missing
observations, while the other two options make specific strong assumptions regarding the pattern
of the missing data.

3. Rank-One Restrictions

The Homals solution leaves the category quantifications Y} free. It only places restrictions on
the object scores for identification purposes. However, in case we deal with ordinal or numerical
data, we also have to take into consideration the restrictions imposed by the measurement level of
the variables. This is impossible in the multiple quantification framework outlined in the previous
sections. First, consider a multiple treatment of numerical variables. In this case, the quantifica-
tion of the categories must be the same as the standardized a priori quantification. This implies
that multiple numerical quantification contains incompatible requirements. Second, consider a
multiple treatment of ordinal variables. This requirement is not contradictory in itself; however,
the different quantifications must have the same order as the prior quantifications, thus resulting in
being highly intercorrelated. It follows that such an option does not have much to offer. In order to
overcome these difficulties, it is also required that the quantifications satisfy a rank-one restriction
(see chapter 4 in [8]); that is,

(3.1) Y; =48, je,

where, g; is a £;-column vector containing the single category quantifications and B; a p-column
vector of component loadings. In this case the quantifications in p dimensions become proportional
to each other. To minimize (1.2) under the restriction (3.1), we start by computing the Y;'s as in
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(2.2). We then partition the Gifi loss function as follows:

J
B2 Y u(X - GilY;+ (¥ - ) (X - Gl + (V; - ¥))l) =
j=1

J J
S (X - GY;) (X - GYy) + D u(Y; D;(V; - Y5).
j=1 7j=1
We impose the rank-one restrictions on the Y;'s and it remains to minimize
J
(3.3) > " tr(g;8; - Y;) ' Ds(g;8; — Y5),
J=1

with respect to g; and ;. We do this by going to another ALS loop (alternate over g; and j3)).
Minimizing (3.2) for §; given fixed g;, we get the following set of normal equations.

(3.4) &B; =Y/Dyqg;, j €3,
where §; = ¢;D;gq; is a scalar. Hence, we get
(3.5) By = (VDsas) /65, 5 € 3.

Write now (3.2) as

J
3.6) > tw(q;(B;+ (8 — B)) = Y5) Ds(a;(B; + (8; = B))) = V) =

j=1
J
> " te(g;8 - V) Di (i85 — Y5) + Y (8 — B7) Dy (85 - 57).
=1

Since there are no further restrictions regarding the 3;'s, we simply set 3; = Bj, 7 € J and the
first step of the inner iteration loop is complete. So, it remains to minimize (3.2) with respect to
g; for fixed 3; (the other half of the inner iteration loop). We then get the following set of normal
equations

(3.7 ¥;D;q; = D;Y;B;, j € 3,
where 1; = 3;3; is a scalar. Thus, we get that
3-8) 4 = Y;B;/ 5, j €3.

Write now (3.2) as follows

J
(3.9) Ztr((@j + (g5 — 4))8; = ¥;)' D;((g5 + (g5 — 4;))8; = Y;) =

J J
> (48— V3)'Di (48 — V;)' D + > te(g; — 4) D (g5 — 45) -
i=1
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Finding the ¢;'s means projecting the vector ¢; on the cone C; that represents the feasible region for
the y; vector in the parameter space defined by Y; of dimensionality £;. This becomes a monotone
regression problem in the ordinal case, a linear regression problem in the numerical case, and
simply setting q; = §; in the nominal case. We then set Y] = éjﬁ; and proceed to compute the
object scores. This solution that takes into consideration the measurement level of the variables is
referred in the literature ([8], [12]) as the Princals solution (principal component analysis by means
of alternating least squares). The Princals model allows the data analyst to treat each variable
differently; some may be treated as multiple nominal and some others as single nominal, ordinal
or numerical. In that sense, Princals generalizes the Homals model.

Remark 3.1. On the single options. The most common options in treating variables in Princals
are single ordinal and single numerical. The single nominal treatment of a variable makes little
sense. A nominal treatment of a variable implies that the data analyst has no a priori idea of how
categories should be quantified. If that is the case, then there is no reason in requiring the same
quantification on p dimensions. If the data analyst has some prior knowledge, she will be better off
by employing one of the other two single options.

We proceed to define the notions of multiple and single loss. The Gifi loss function can be
partitioned into two parts, as follows:

J J
(3.10) Y w(x-G6Y) (x )+ (g D; (3
j=1 j=1

Using (2.7), the first term in (3.10) can be also written as N ( Z 1 2 s 77]5) which is called
the multiple loss. The discrimination measures are called the mulrzple fit of variable j in dimension

s. Imposing the normalization restriction q; *D;q; = N, and using the fact that Y/ i Djq; ﬁ’ N, ﬂj’
(from (3.6)), the second part of (3.10) can be written as

J
@3.11) Ztr Y/D,Y; — NB,B, Zzp: (s — B5s)
P

j=1 1 s=1

Y

\

- Y3).

.

which is called the single loss. The quantities ﬁj ., 8§ = 1,..., pare called single fit, and correspond
to squared component loadings (see chapter 4 in [8]).

Remark 3.2. Missing Data. In the presence of missing data (3.2) becomes

J
(3.12) > (X - GY)) ' M(X - GyY;) =

j=1

D owr(X = Gi(Y; + (Y = V7)) My (X = Gi(¥; + (Y; - 1)) =

i=1



10 GEORGE MICHAILIDIS AND JAN DE LEEUW

This shows that missing data do not affect the inner ALS iteration loop where the single category
quantifications and the component loadings are estimated.

4. Multilevel Modeling

In many situations individual objects (level-1 units) can be naturally grouped (clustered) into
groups (clusters, level-2 units). For example, in educational research students are grouped by class
or school, in sociological research individuals are grouped by socioeconomic status, in marketing
research consumers are clustered in geographical regions, while in longitudinal studies we have re-
peated measurements on individuals. In the first example clusters correspond to classes or schools,
in the second to various a priori defined levels of socioeconomic status, in the third to regions (such
as counties, states or even the northeast, the southwest etc), and in the fourth example to time pe-
riods. Formally, we collect data on N objects grouped naturally in K clusters, with n; objects per
cluster, k € K = {1,..., K}(Z,i{:l nx = N). Once again, we want to examine .J categorical
variables, with £;, j € J categories each. The purpose of this study is,twofold. Our first goal is {0
extend homogeneity analysis to the multilevel sampling framework/l/ln many cases however,@
approach is either not very meaningful, or not feasible. For example in the National Educatt
Longitudinal Study of 1988 (NELS:88) data set there are approximately 24,500 students grouped
in over 1,000 schools. It is easy to see that examining the category quantifications for each cluster
separately is not a particularly informative or useful task. This leads us to our second goal which
is to build models that take advantage of the clustering of the objects. More specifically, we shall
desire models which can simultaneously express how one variable is connected to another variable
across all clusters, and also how one cluster varies (differs) from another.

Very little has be done on applying homogeneity analysis techniques to multilevel data. &
Leeuw, Van der Heijden and Kreft [13] and Vén der Heijden and Je Leecuw [14] have used these
techniques to examine panel and event history data. In that case, data are collected on n = n
objects for K time periods. The authors introduce three way indicator matrices with objects in the
rows, categories of variables in the columns, and time points in the layers to code the data, and
apply homogeneity analysis to the collection of such matrices. Their approach is not applicable to
other types of multilevel data (such as students clustered within schools). We propose an alternative
approach. Let G, j € J, k € K denote the ny x £; indicator matrix of variable j for cluster k.
Let Xy, k € K be the n; x p matrix of object scores of cluster k, and let X = [X7,..., Xk]|".
Similarly, let Y} be the £; X p matrix of multiple category quantifications of the j th variable for
the £ cluster, and let Y; = [Y}},...,Y/x]'. We collect the K indicator matrices of variable j in

the superindicator matrix G; = @, Gk, which is called the design matrix. In the remainder of
this study we hold the design matrix fixed, since its versatile and general form proves extremely
convenient. However, by imposing restrictions on the category quantifications, we are able to
generate interesting and useful models and incorporate prior knowledge. It is also shown that the
approach taken in [13] and [14] can be derived from our framework. In our case the Gifi loss
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function becomes
J J K
(4.1) o(X;Yy,...,Y7) =T ) SSQ (X - G,Y;) = > SSQ (Xx — GixYix).
j=1 j=1 k=1
In order to avoid the trivial solution we impose the following normalization restriction:
4.2) X3 Xr = nil,, v' Xy, =0, forevery k € K.
The other possibility 'X = 0 and X' X = NI, is briefly discussed later on in Remark 4.2.

The problem in (4.1) is identical to the one presented in (1.2); thus, its solution is given by
(4.3) Y; =D;'GiX, j €3,

where D; = GG; = B GuGix) = @, Dy is the K¢; x K{; diagonal matrix containing

the univariate marglnals of variable 7 for all K clusters. This implies that YJ = Dj 5 G J Xk, J €
J, k € K. For fixed Y}'s, we get

4.4)

K‘ |

which gives that X, = J ! Z;’Zl G;xY;k, for every k € K. We then center and orthonormalize
the X} matrices and repeat these two steps until the algorithm converges.

We define next the cluster discrimination measures
4.5) 7732'1” =Y (., 8)DiYir(.,8)/me, €T, k € K,. s=1,...,p,

where Yji(., s) contains the elements of the s column of the category quantification matrix Yie.
Since, the category quantifications have a weighted sum equal to zero, they are interpreted the
usual way; the larger the nfks, the better the categories of that variable in that cluster discriminate
between level-1 units. The cluster discrimination measures allow the data analyst to examine
variations in the discriminatory power of the variables across the clusters. It is also useful to define
the total discrimination measures for each variable as

(46) 77]25 = Y;'I(', S)DjY}(.,S)/N, .7 € J7 5= 1’ Ry 4

where Y;(., s) contains the elements of the s*" column of Y;. These quantities represent an overall
measure of the discriminatory power of each variable. We examine next the relationship between
the total and the cluster discrimination measures. We have that

1
(4.7) s = Y7 (. 8)D;Y5(, Z )DjiYje(., ).

S0, it easy to see that

(48) 77].9 annjks’ .7 € J s = ]- P
k 1
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Thus, the total discrimination measures of variable j can be expressed as a weighted average of
the discrimination measures of the clusters for variable j, with the weights given by n;/N and
representing the contribution of cluster k to the total. Thus, larger clusters are weighted more in
the total.

We can then define cluster eigenvalues given by vz, = J7! ijl 17]2-,“, and total eigenval-
ues given by v, = J! Z}I:l 1% The cluster and the total eigenvalues are related by 72 =

N1 Zle nkYZ,, similarly to the discrimination measures. It can be seen that we have a pro-
portional to size representation of the clusters to the overall fit of the solution.

Remark 4.1. Model Equivalences. It is worth noting that under normalization (4.2) this model
is equivalent to applying the ordinary Homals algorithm (see Section 2) to each of the K clusters
separately.

Remark 4.2. On another possible normalization. Instead of normalizing the object scores locally
(within every cluster £ € K), we might require a global scaling given by v'X = Zle w X =0
and X'X = Zle XX, = NI,. Some algebra shows that under this normalization the multilevel
Homals model is equivalent to a single cluster Homals model with interactive coding; that is, we
introduce K x {; categories for each variable, so that each cluster has its own set of categories. In
this case, the clusters are pulled together through the global scaling of the object scores. However,
this option allows the Homals algorithm to focus on the cluster differences, thus producing trivial
solutions.

4.1. Princals. We briefly present the extension of the basic Princals model to the multilevel
framework. We require y;zs(t) = Bjrsq;x(t), which implies that if we plot y;xs(¢) against g;x(¢)

for different values of s € {1,...,p} we see parallel straight lines. In matrix form we have,
Yip = ‘Ijkﬂ;'k, J € J, k € K. The rank-one restrictions can be written in compact form as follows:
(4.9) Y;=Q;B;, j €1,

where Q; = @,5:1 g;x is the K¢; x K matrix of single quantifications and B; = [fi, ..., §,] the
p X K matrix of weights.

Our starting point is to compute the ?}’s as in (4.3). We then partition the Gifi loss function
similarly to (3.2). Hence, after imposing the rank-one restrictions we have to minimize

(4.10) r(Q;B; — V;)'D;(Q;B; - Y;),

1

J
1=

with respect to Q; and B;. We do this by using a second ALS loop (alternate over Q; and B;).
Solving (4.10) for B; given fixed Q,, we get

@.11) Bj = (Y/D;Q;)(D;Q;) ", j €7,
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which implies ﬁyk (Y]ijquk)/ﬁjk, ke K, jeJ, where {, = q]kDquJk is a scalar. This is a
direct extension of the single cluster case. Minimizing (4.10) with respect to Q; for fixed B; (the
other half of the inner iteration) we get

(4.12) Q; = (diag Y;B8;) (diag B,B,) ™, j € J,

which gives that g;; = Jkﬂ]k [js, Where 1 = ﬁ] kﬂjk is a scalar. After taking into account the

measurement level restrictions of the variables we set YJ k= Qjk ,8] x> and proceed to calculate the
object scores.

It is easy to see that the multilevel Princals model corresponds to applying the ordinary Prin-
cals model (see Section 3) to each of the K clusters separately (as was the case with the ordinary
multilevel Homals).

Imposing the normalizations constraints q;-ijkqjk = ng, J € J, k € K, the single loss
component is given by

J
(4.13) SN (VDY — niBinBii)

j=1 k=1
The quantities given by ﬂ]?ks, s = 1,...,p are called cluster single fit, while the ones given by
N-ISE B3, are called variable single fit.

4.2. NELS:88 Example. A data set from the National Education Longitudinal Study of 1988
(NELS:88) will be used throughout this study to demonstrate the techniques. The sampling design
of the NELS:88 data set is as follows. The base year (BY) sample of 8¢* grade students in 1988 was
constructed by a two-stage process. The first stage involved stratified sampling of approximately
1,050 public and private schools from a population of 40,000 schools containing 8" graders. The
second stage included random samples of students from each school. Some 24,500 students and
their parents, their teachers and their school principals were surveyed. Three followup surveys of
the student cohort were conducted in 1990 (first followup (FF)), in 1992 (second followup (SF))
and in 1994 (third followup (TF)). Student, parent, teacher, school administrator as well as dropout
questionnaires were administered to the students still attending school and to the dropouts. The
BY, FF, SF and TF data sets contain some 6,500 variables in total.

In this example we focus on a set of variables from the BY that deals with student responses
on problem areas in their schools (the BYS58 set of variables in the NELS:88 codebook). A
description of the variables is given next.

A: Student tardiness a problem at school.
B: Student absenteeism a problem at school.
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C: Students cutting class a problem at school.

D: Physical conflicts among students a problem at school.
E: Robbery or theft a problem at school.

F: Vandalism of school property a problem at school.

G: Student use of alcohol a problem at school.

H: Student use of illegal drugs a problem at school.

I: Student possession of weapons a problem at school.

J: Physical abuse of teachers a problem at school.

K: Verbal abuse of teachers a problem at school.

The four possible response categories are: (1) Serious, (2) Moderate, (3) Minor and (4) Not a
problem.

This set of variables addresses some issues directly related to the school culture and climate,
as seen from the students point of view. These variables touch upon day-to-day school experiences
that influence the way students, teachers and administrators act, relate to one another and form
their expectations and to a certain extent beliefs and values [21, 22].

For this example we selected 12 schools with 35 or more students in each one, resulting in
a total sample size of 498 students and an average school size of 41.5 students. The reason for
selecting these particular schools was, that due to their relatively large size, it was expected that
each category of every variable would contain some responses. However, we were forced to drop
variable J from any subsequent analysis because categories 3 and 4 were empty in the majority
of these schools. Some background characteristics of the schools are presented in the following
Table.

School # | # of Students | Type | Region
1 37 Public Urban West
2 44 Public Urban West
3 36 Public Urban West
4 40 Public Suburban | West
5 38 Public Suburban | West
6 35 Public Suburban | West
7 36 Public Rural West
8 38 Public Rural North Central
9 38 Public Rural North Central
10 56 Private Urban North Central
11 54 Private Suburban | South
12 46 Private Urban South

TABLE 4.1. Background Characteristics of the 12 Schools
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Clearly, this sample of 12 schools is not a representative sample of the school population,
since a large number of rural schools is present and no schools from the Northeast are included in
the sample. The latter fact indicates that the sample at hand is not suitable for drawing inferences
for the country's school and student populations. However, this sample is suitable for addressing
the following question. Suppose that a student (teacher) is interested in attending (working) in one
of these 12 schools. Knowledge regarding the basic structure of these variables and an overall idea
of the school climate is essential to the student (teacher) for those 12 schools. Information about
other schools is marginally interesting to them. The techniques previously developed are used for

descriptive and not for inferential purposes [18, 23] in this example.

The following Table summarizes the student response patterns for the 10 variables included in

the analysis.

Variable | 1| 2| 3] 4
A 14.1130.9 | 32.1|22.9
B 10.0 | 28.5|33.1 | 28.3
C 17.7 | 18.5 255|384
D 145(24.5132.5|28.5
E 155(17.5(31.3|35.7
F. 219121.71259]30.5
G 19.7 1 19.7 | 24.5 | 36.1
H 153 ]11.0]23.1|50.6
I 13.5] 9.6 (22.7|54.2
K 15.3]114.7 | 26.5 | 43.6

TABLE 4.2. Student Response Patterns (in %, N=498)

School # | Dimension 1 | Dimension 2

1 .642 352
2 724 429
3 .643 422
4 .668 438
5 559 335
6 .620 .320
7 J11 .506
8 479 381
9 618 410
10 .636 505
11 575 373
12 442 337
Overall .608 403

TABLE 4.3. School Eigenvalues



16 GEORGE MICHAILIDIS AND JAN DE LEEUW

A two-dimensional Homals analysis was performed on the school data set. The fit of the
third dimension was a rather poor one (total eigenvalue .18). The fit of the solution (eigenvalues)
for each school separately and for the overall sample is given in Table 4.3. The overall fit can
be characterized as satisfactory. Some schools exhibit a very good fit in both dimensions (e.g.
schools 2, 7, 10), while some others a rather poor one in both dimensions (e.g. schools 8, 12).
Some schools have a good fit in the first dimension and a satisfactory one in the second (e.g.
schools 1, 6, 11). Overall the schools present enough variation in terms of fit. This can also be
seen by examining the school and total discrimination measures for each variable that are shown
in Figure 4.1. It is worth noting that the discrimination measures of the schools exhibiting a good
fit (2, 7, 10) are in general larger than the total measures for all the variables, while those with
a poor fit (8, 12) have discrimination measures smaller than the total ones for all the variables.
This is consistent with the definition of the eigenvalues (both cluster and total) and the fact that
there are no large differences between the clusters in terms of sample sizes. The remaining schools
had discrimination measures larger than the total ones for some of the variables, and smaller than
the total measures for the rest of the variables. Finally, some schools (e.g. 8, 9, and to a certain
extent 11) had smaller discrimination measures than the total for the majority of the variables;
however, for a couple of variables the cluster measures were much larger than the total ones, thus
indicating the possible presence of outliers. Figure 4.2 displays the total discrimination measures
of the ten variables. All variables discriminate (the category points are further apart) equally well
in both dimensions. Hence, it is difficult to associate a particular dimension with a certain subset
of the variables. However, variables C (students cutting class), E (robbery or theft), F (vandalism
of school property), G and H (student use of alcohol and illegal drugs) discriminate best among
students in both dimensions. The optimal category transformations for the variables are given
in Figure 4.3. The optimal transformations of all variables in the first dimension are monotone
decreasing functions of the original categories, while they are quadratic functions of the original
categories in the second dimension. The almost linearity of the optimal transformations in the
first dimension suggests that the variables are originally measured on an interval scale (i.e. Likert
scale); hence, the Homals solution can be interpreted as a test of that assumption. The second
dimension contrasts the two mid-categories ("minor” and “moderate™) with the two extreme ones
("not a problem” and “serious”). Going from the lower left corner upwards to the middle, and from
there to the right lower corner, one finds categories ordered from “not a problem” towards “serious
problem.” It is interesting to observe that the two mid-categories receive the same quantifications
for a number of variables (E, F, G and H).

Figure 4.4 displays the category quantifications of the variables for each school. The points
in the graph represent the centers of gravity of the object points (students) associated with each
category. Several different patterns can be observed between the variable categories. For example
for some schools (1, 4, 6, 10, 11 and 12) the following pattern emerges. In the lower left quadrant
of the graph we find the 'serious problem’ categories for cutting class, physical conflicts, robbery
and vandalism, use of alcohol and drugs, possession of weapons and physical and verbal abuse of
teachers. However, the 'serious problem' category for student tardiness and absenteeism (variables
A and B) was located at different places in different schools. Thus, students in this area of the map
are associated with these categories, which implies that they consider their school to be seriously
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solid line represents the variable's overall discrimination measure (Left: dimension
1, Right: dimension 2).
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affected by these problems. In the upper half of the graph, we find the ' minor/moderate problem'’
categories for almost all the variables. Students associated with these categories believe that these
problem areas are present only to a certain degree in their schools. Finally, in the lower right
quadrant of the graph we find the 'not a problem' categories for all the variables; hence, students
in that area of the graph think that there are no problem areas in their schools. It is interesting to
observe that the 'clustering' of the students is done according to the same category levels. Thus,
students consider all the areas representing either a serious, or a minor/moderate or not a problem
in their school. In principle, in this set of schools we do not have students that indicate some areas
as being a serious problem and some other areas as not a problem. Hence, to a large extent the
analysis cleanly separates the students that think there exist serious problems in their schools, from
the ones that think their schools are problem free (as far as the areas identified in the data set are
concerned). Moreover, the analysis reveals distinctly nonlinear student response patterns; that is,
variable categories are not linear with the dimensions of the space. For some other schools (7,
9) the solution separates students that indicated that all the areas examined represent a 'serious’
problem in their schools, from the rest of the students that indicate 'moderate/minor' to 'not' a
problem. It is worth noting that the presence of outliers in school 9 distorts the picture and might
affect the interpretation. For some schools (2, 3, 5, 8) the students that said 'not' a problem are
separated from the rest of the students. In this set of schools, unlike the first two, we observe mixed
response patterns. There are students that consider some of the areas being a 'serious’ problem
in their schools, while some other only a 'moderate’ and in a few cases a 'minor’ problem. In
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FIGURE 4.3. Optimal Transformations of the Variables (Left: dimension 1, Right:
dimension 2)
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general, these 12 schools exhibit a wide range of student response patterns. By closely examining
the optimal category quantification plots we have identified three 'main’ groups of schools: those
where the majority of the students believe there are problems, those where most of the students
believe there are no problems, and those where the students are equally distributed among 'serious’,
'moderate/minor' and 'not a problem' subgroups. However, even within these three groups there
exists variation in the response patterns. This can be more clearly seen from the plots of object
scores shown in Figure 4.5 (all graphs have the same scale). The distance between two student
points is related to the homogeneity of their profiles, or more generally, their response patterns
(see also Section 1). These plots reveal the presence of outliers in the group of rural schools (7, 8
and 9). They also show differences between schools within the same group of response patterns
identified after examination of the category quantifications. For example, although schools 1, 4,
10, and 12 have similar quantification profiles, their object scores exhibit differences; those of
schools 1 and 12 are evenly distributed in the space, while those of schools 1 and 10 tend to cluster
into two groups: the 'serious problem’' and the rest. Similar variations can be observed within the
other two groups of schools.
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5. Equality Restrictions on the Category Quantifications

The multilevel modeling framework introduced in Section 2, allowed us to examine the student
response patterns in 12 schools, to identify common features among the schools and to see their
differences. However, the above analysis suffers from the following shortcomings: (i) the number
of parameters to be estimated is large (e.g 40 = 4 x 10 category quantifications per school) (ii)
for some clusters (e.g. schools 8, 9) the solution is unstable (a direct consequence of (i)), and
(iii) the analysis ignores the multilevel structure in the data. Moreover, in case we were interested
in examining a large number of schools, say over 50, the previous exercise becomes prohibitive,
since looking at the category quantifications and object scores for each school separately is not a
particularly informative or useful task.

In this Section we examine imposing equality restrictions on the category quantifications be-
tween clusters. Such restrictions reduce the number of parameters that need to be estimated, thus
improving the stability of the solution. Moreover, they allow the data analyst to incorporate prior
knowledge into the analysis. This model is midway between the totally restricted model of Section
1 (single cluster case) and the totally unrestricted one of Section 4.

Let I denote a partition of the clusters k¥ € K for variable j; that is, i, = {K C
K: UekK = K, KNK' =0, VK,K' C K}. We then require )7jk = udjy, + Zjx, j €
J, k € K, K € T, where ZJ’~C is the ¢; x p matrix of restricted category quantifications for
cluster k¥ € K, and «y a p column vector of intercepts. The parameters ;i (s), s = 1,...,p are
used to ensure that the category quantifications ij(t, s) have a weighted sum over ¢ equal to zero
for all combinations of (4, k, s). This is a useful restriction in cases where we examine the same
set of variables in different contexts or at different time points [12].

We begin by introducing the constraint matrix C;, j € J that maps K — F{<. It has entries
Cijk,ry=1,k=1,...,K, r=1,..., R; (R; denoting the cardinality of the set F{<) if cluster
k € K belongs to the collection of clusters K € I'} and 0 otherwise. Some examples of constraint
matrices are given next:

1 10 1 00
1 10 100
Cf_1Cj_01Cf'010
1 0 1 0 0 1

In the first example the four clusters are collapsed to a single 'supercluster', which implies that the
category quantifications of variable j should be equal for all four clusters. In the second example
the first two clusters would correspond to the first supercluster and the last two to the second one;
hence, we require equality of the category quantifications of variable ;7 for the first two clusters
and also for the last two ones. Finally, in the last example equality of the category quantifications
is imposed only on the first two clusters, while the last two are left unrestricted. It is worth noting
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the similarity between the C; matrices and the G; matrices. Let H; = C; @ I;;, j € J. We can
then write the Gifi loss function as

J
(5.1) o o(XY,. LY =TT SSQ (X - G4H,Z),
=1
where Z; = [Z},, ..., Z}g,]'. We employ the ALS algorithm to minimize (5.1) with respect to Z;

and X . Fixing first X we get
(5.2) Z; = (H;D;H;)"H;G}X, j € J.

Some algebra shows that Zjx = (3_ycx Dik) ™' D kex G Xk, K € Fi{- Minimizing (5.1) with
respect to X we get

J
(5.3) X=J"1> G;H;Z;

j=1
Note than in case Dj_ ! exists, we can also write (5.2) as
(5.4) Zj = (HJ'.DJ-HJ-)_IH]’.D]-D].*G;X = (HJ'-DjHj)_lH]’-Dij, jed.
Therefore, the restricted category quantifications can be expressed as a weighted combination of
the unrestricted category quantifications, with the weights given by (H;D,H. ) H ;Dj; or to put
it differently, the element Y;,(t, s), k € K participates with a weight D;x(t,1)/(3_,cic Die(t,1))
in the calculation of element Zjx(t, s). Finally, we also have that Y = H,Z;, where Y3}, = ZF
for every k € K, thus making (5.3) equivalent to (4.4). In the presence of equality constraints
on the category quantifications the ALS algorithm becomes: (i) estimate the restricted category
quantifications using (5.2), (ii) calculate Yj* = H;Z;, (iii) estimate the object scores using (5.3),
and (iv) orthonormalize the X, k¥ € K matrices.

Notice that the restricted category quantifications have a weighted sum over categories equal to
zero for the collection of clusters K and not for the individual clusters k; thatis, v’ (3, . Djx) Zjx =
0. However, we want the category quantifications centered for every cluster £ € K, in order to
ease the presentation and interpretation of the category quantification plot. Using the intercept
parameters, we set Yj; = udjy, + Y, where

(5.5 & = —(w' DY) /e, j €T, k€ K.

Obviously, for the variables that we do not impose restrictions, we have é&;;, = 0 for all k € K.
Thus, once the ALS algorithm has converged, we center the category quantifications and calculate
the object scores using X = .J “13 1 3ok GikYik, so that the category quantification points are
the centroid of objects belonging to that category.

At this point, it is rather hard for us to think of practical situations where one might want
to impose a different set of equality restrictions between clusters for each variable. However,
the apparatus is present and it does not introduce major computational difficulties, thanks to the
sparseness of the constraint matrices.
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We examine next what happens to the fit of the solution when we impose equality restrictions
on the category quantification between clusters. We will assume for ease of presentation that D7 !
exists, and thus use the relationship given in (5.4). Some algebra shows that the total discrimination
measures of the unrestricted solution can also be written as

K ¥4
1 . : :
(5.6) 77]2-3=NZZDjk(z,z)in(z,s), JEJ, s=1,... p,

k=1 i=1
while the cluster discrimination measures as

e.
1 O . . :
(5.7) Miks = EZDjk(z,z)}/;i(z, s)hjeEN, k€K, s=1,... p.
i=1
The total discrimination measure of a restricted solution for variable j € J is given by
1oy 1T & 1o -
C8 1 = (VDY) = 5 3 e(TDadin) = 5 3 (¥ Dye(udty, + v3)) =
1 - - 1 &
N > (V) Djsudl, + YiDixY},) = N > (VaDuyy + Qe DY) =
k=1 k=1
1 & 1 1 &
N Z tl'(Y;);CD]k}/ﬁc — nkdjkd;-k) = Ntr(yj* Dij*) — N Z nktr(djkd;k).
k=1 k=1

But we also have that (using (5.4))

1 1 1 )
(59 u(¥Yy D;Y}) = Ste(Z3H;D;H,2;) = ~u(Y/D;H; (H;D;H;) "' H;D;Y;) =

K ¢ K

1 . Dje(i,i) . 2
N ;; Dji (i, 2)(; K Dol (i, 8))".
An application of Jensen's inequality gives that
S Duli,i) 2o~ Dali)
IR L 2 i B s e
Combining relations (5.8), (5.9) and (5.10) and after some algebra we get that
1 K&
(5.11) i, < 5 > )" Dad, DYi(i,8) =12,
k=1 i=1

Therefore, we also get

J J
I A
(5.12) Vo= 3 ) i < v > 1%, = 7.
j=1 j=1

Therefore, restrictions have a negative effect both on the overall fit of the solution and on the vari-
ables' discrimination measures. The magnitude of this effect depends primarily on the distribution
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of the objects over the categories (see (5.10)). However, nothing can be said on the effect of the
restrictions on the cluster discrimination measures and fit.

Remark 5.1. Analysis of Panel Data. van der Heijden and de Leeuw [14] used correspondence
analysis techniques to examine panel data. If in our approach we take ny = n for every k € K,
[ = {1} for every j € J, then the above analysis corresponds to the analysis of their LONG
indicator matrix. This type of analysis provides only a single set of category quantifications for
the objects, but K different sets of object scores, one for each time point. A possible drawback
of such an analysis as pointed out in [14] is that the restricted category quantifications might
be distinguishing the different time points rather than the different objects. This will happen, if
the distributions of the categories of each variable differ considerably over time points. In our
approach, by allowing to impose equality restrictions only on a subset of the variables, we might
be able to avoid this rather uninteresting solution.

Remark 5.2. Equality Restrictions and Clustering. We briefly examine the relationship between
imposing equality restrictions on all the variables of all the clusters, and treating the data set as a
single cluster. In the first case the category quantifications are given by (5.2), while in the second by
(2.2). Notice that in general we have G;-’CX K # > cex G Xk, which implies that we get different
results. When we impose equality restrictions we attempt to gain strength by pulling information
from all the clusters involved, while preserving the 'local' (within cluster) scaling of the object
scores. On the other hand, combining all the clusters to a single cluster introduces a different type
of 'local' scaling for the object scores.

Remark 5.3. 3-Stage Modeling. The present setup allows us to also look at collections of clusters,
thus introducing a second stage of clustering. For example, we can examine students grouped in
classes, which are naturally grouped in schools. However, in the present approach we are only
interested in incorporating some prior information to the analysis (by using equality restrictions
at a subset of variables, say at the school level or at the school district level), and not modeling
explicitly the second stage of clustering. The latter would require an extension of our sampling
framework and certain modifications to the structure of the design matrices D;, j € J. In the
present framework the focus remains on the clusters (e.g. schools, classes), but by incorporating
some prior information we can improve both on the stability of the solution and the conclusions
derived from the analysis.

5.1. Equality Constraints in the Princals Model. The starting point is to impose rank-one re-
strictions to the constrained category quantification matrices Z;x. We then have

(5.13) Zix = vjxbc, j €I, K €Tk,

where v;x is a £; column vector of single constrained category quantifications and thetax a p
column vector of component loadings. Following analogous steps as in the estimation of the
multilevel Princals model, it is easy to see that we also have to minimize with respect to v;x
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and 0«
J ~
(5.14) >3 (kb — Zix) Dix(vixfix — Zix),
3=1 xer,

where Djxc = > wex Djx- We employ once again another ALS loop (alternate over vjx and 6;x).
Solving (5.14) for fixed v,x we get

(515) éle = (Z;KDjKUjK)/ng’ j € J, K e F%,
where {;x = 'u;-,CDj,Cvj,c is a scalar. Solving (5.14) for fixed 0;x we get
(5.16) i = (Zixbix) /i, § €I, K € Tk,

where ¥ = 8,0,k is a scalar.

The single component of the loss function is given by

(5.17)

M&

E tI' ]ICD]’CZ])C — n,CHJ;CG ,’C)’

= GF‘]

where ng = 3, o M-

It is worth noting that in this case there is no analogous expression to (5.4) linking the single
constrained category quantifications to the unconstrained ones. This happens because the rank-one
restrictions are imposed on the Zjx's, that are second-level parameters.

5.2. NELS:88 Example (continued). We continue with the example discussed in Section 3. The
unrestricted Homals solution revealed some common patterns among the schools; however, the
presence of low frequency student profiles (outliers) compromised the stability of the solution
and resulted in distorting the pictures. In order to overcome these shortcomings, we are going to
impose constraints on the category quantifications of some of the variables. In particular, variables
A, B and C will be constrained across the following four school groups (public urban, public
suburban, public rural and private), while variables H, I and K will be constrained across public
and private schools. The remaining variables were left unrestricted. Thus, the corresponding
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constraint matrices are given by

1000 10
(1000 (10\
1000 10
0100 10
0100 10
0100 10
Co=1o0010[%= |10
0010 10
0010 10
0001 0 1
0001 0 1
\0 0 0 1/ 01]

fora = A,B,C and b = H, I, K respectively. The first set of variables was selected after a
close examination of the variable transformation plot (Figure 4.3) and the category quantification
plot (Figure 4.4). These variables presented enough variation between the schools. Moreover,
it is reasonable to assume that absenteeism, tardiness and cutting class are not school-specific
problems, but are affected by the school environment (location etc), and schools adopt similar
policies to eliminate such problems. On the other hand, variables H and I are mainly responsible
for the presence of outliers (particularly in the rural public schools) and moreover it is assumed
that possession of weapons and verbal and physical abuse of teachers will be regarded differently
in public and in private schools. Thus, by imposing constraints we attempt to enhance the stability
of the Homals solution and at the same time incorporate prior information.

A two-dimensional solution produced a satisfactory fit, with total eigenvalues .573 and .360
respectively (see Table 5.1). There is only some small loss in the fit (as expected from (5.12)). It
is worth noting that the rural schools experienced the largest decreases in the fit, because the unre-
stricted solution placed a lot of weight to the outlying observations. Some schools showed small
improvements in their fit (e.g. school 12). The school discrimination measures of the constrained
variables exhibit smaller variation around the total discrimination measures (see Figure 5.1). As
before, most variables discriminate equally well on both dimensions (Figure 5.2), although vari-
ables A and B can now be primarily associated with the first dimension.

The transformation plots of all the variables are given in Figure 5.3. The solution produces
clear monotonic transformations for the constrained variables in the first dimension. In the second
dimension, a quadratic pattern seems to be emerging (thus distinguishing the two middle categories
from the two extreme ones), although things are not that clear.

The main advantage of the constrained solution can be seen in Figures 5.4 and 5.5 (both
Figures use the same scale). First, observe that all the graphs are nicely centered. Second, by
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FIGURE 5.1. Discrimination Measures of the Variables for the Schools; Public
Urban: 1,2,3, Public Suburban: 4,5,6, Public Rural: 7,8,9, Private: 10,11,12; the
solid line represents the variable's overall discrimination measure (Left: dimension
1, Right: dimension 2).
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School # | Dimension 1 | Dimension 2

1 .607 318
2 .683 365
3 .624 .359
4 .584 410
5 607 342
6 .590 278
7 .634 386
8 496 376
9 489 304
10 588 AT72
11 493 .308
12 .509 352
Overall 573 .360

TABLE 5.1. School Eigenvalues
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/ »

Dimension 2

NN
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04t J /

m [l 1 ] 1 1 | 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7

Dimension 1

FIGURE 5.2. Total Discrimination Measures

examining the object scores, we immediately notice that the outliers in schools 7, 8 an 9 have dis-
appeared. Moreover, several of the other schools have cleaner pictures, with the public suburban
and the private schools exhibiting a quadratic pattern along the second dimension, the public rural
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FIGURE 5.3. Optimal Transformations of the Variables (Left: dimension 1, Right:
dimension 2)

31
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schools being concentrated to the right of the graph (minor and not a problem categories) and the
public urban schools being primarily distributed around the serious and moderate categories. This
observation is supported by the optimal category quantification graphs. More specifically, we see
that in the public urban schools the students that indicated 'no problem' form a separate cluster
(especially in school 1). It is also worth noting the similar patterns exhibited in the public suburban
and private schools. In most of them (with the possible exception of school 5), the 'serious prob-
lem' students are cleanly separated from the rest of the respondents. Finally, despite the pulling of
the public rural schools together through the constraints, there seems to remain enough variation
in their response patterns. The constraints managed to 'filter' most of the 'noise' present in the
unconstrained Homals solution and strengthened the patterns that emerged there. It seems that the
public urban schools in the sample can be characterized as 'rough' ones, while the public rural are,
in principle, problem free. The public suburban and the private schools have a similar distribution
of students across all categories, although most of them are leaning towards being problem free.
The constrained solution reaffirmed (even strengthened) our previous finding that the 'clustering'
of the students is done according to the same category levels for all the variables. The implica-
tion for the student (teacher) who considers attending (working) at one of these 12 schools is, that
it suffices to look at very few of these variables and classify the school. Moreover, the solution
suggests that the main decision the student (teacher) has to undertake is which group of schools
(public urban, etc.) to attend, since the within group school differences appear to be small.
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6. More General Coding Schemes for the Constraint Matrices

The use of the constraint matrices C;; (see Section 4) allowed us to cast the equality restric-
tions on the category quantifications in a very natural and computationally efficient mathematical
framework. However, in many applications a partitioning of the clusters so that each cluster be-
longs to a single collection of clusters only, might not be particularly meaningful or even possible.
For example, if we wanted to group the 12 schools in our example according to parents income, or
socioeconomic status, or race, the “crisp” coding (0, 1) would have presented problems, because
schools are not 100% high income, or 100% white etc.

Fuzzy coding has been extensively used in multiple correspondence analysis [19, 20] to recode
continuous data into ordered categories. We employ some ideas from fuzzy coding to enrich the
framework for our constraint matrices. Instead of a 1 indicating a specific collection of clusters,
with zeros elsewhere, we can assign a set of nonnegative values that add up to 1. These can
even be considered probabilities that the cluster lies in the respective collection of clusters. For
example, suppose we want to group the schools according to parents income, that is broken into
three categories: high, middle, low. A possible constraint matrix might be

702 01
Ci=|3 4 3
0 45 .55

It indicates that in the first school 70% of the parents belong to a high income bracket, 20% to a
middle income bracket and 10% to a low one on average, while in the second school the respective
percentages are 30%, 40% and 30%. Finally, in the third school there are no high income parents.
This coding implies that the category quantifications of the first school for variable j are given by
Yjr = ua;k + (7Zg + 2Zy + 1Z1,), where Zy, Zyr and Zy, are the category quantifications of
the high, middle and low income groups of clusters, respectively. Hence, under the fuzzy coding
scheme of the C}'s the cluster category quantifications are restricted to be linear combinations of
the group category quantifications.

The starting point for this general coding scheme is again the combination matrix Cj, j € J
that maps K — I'j;. Its entries satisfy the restriction
R,
6.1) > Clk,r)=1, k€K,
r=1

where R; denotes the cardinality of the set Fi{- The restriction (6.1) implies that the total mass
of every cluster k¥ € K is distributed among the group of clusters defined by the columns of the
combination matrix. Let H; = C; @ I;;, j € J. Then, the Gifi loss function can be written as

VA
(6.2) o(X;2Zy,...,Z5) =T SSQ (X - G,H,Z)),

j=1
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where Z; = [Z},,...,Z] g;|'- We employ the ALS algorithm to minimize (6.2) with respect to Z;
and X . Minimizing (6.2) for fixed X we get

63) Z; = (H;D;H;) "H[G}X, j €1,

while minimizing (6.2) with respect to X for fixed Z;'s we get

J
(6.4) X =J"1> "GH,;Zz;.

j=1

When the C;'s represented constraints matrices we had H;D;H; = Y, _, D, a diagonal
matrix, and therefore the inverse of the left-hand side always existed. The question is what happens
in this case, where C; is a general matrix and not an indicator matrix. The following Lemma
resolves the issue.

Lemma 6.1. If A is a real positive definite matrix of order n and B an x k real matrix of rank k,
then B'AB is also a real positive definite matrix of order k.
n! v y-bx e y e
| * at yify c Y B'ARBY > o

Proof: We argue by contradiction. Suppose that B'AB is not a positive definite matrix. The latter
implies that for all real k-column vectors z # 0 (i.e. all their elements are not identically zero),
we must have +'B'ABz = (Bz)'A(Bz) < 0. Therefore we get Bz = 0, and since B is of full
column rank, we have that z = 0. [ ]

The above lemma applied to our case implies that (H iDiH. ;)1 always exists (provided Djis
of full rank), as long as K > Rj, that is, there are at least as many clusters as groups we intend
to study. In our example, there were 3 clusters and 3 groups (high, middle, low income), so no
problem existed. Otherwise, the use of a generalized inverse is required.

The form of the H;D;H; is also very interesting. We give the formula in case all entries
Ci(k,r) >0, ke K, r=1,...,R;
Ykt 3k, ) D 3 Gk, 1)C;(k, 2) Dy ... Zlgzl C;(k, 1)C;j(k, R;) Dj
HJ’-DJ'HJ' — Zk:l Cy?(k72)Djk Zk:l Cj(k?z)cj(kaRj)Djk
> k=1 C2(R;R;) Djy
So, H ]’-DjHj is a collection of diagonal matrices, and in case some entry of C; is zero then the
respective block is also zero.

Finally, in case Dj‘1 exists we can express the Z;'s as follows (similarly to (5.4))

A -1 - ]
(6.5) Z; = (H;D;H;)” H;D;D;'GiX = (H;D;H;)H\D;Y;, j € J.
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The latter implies that element Yj(t, s), k € K participates with a weight C(k, K) D;y.(t, s)/(H;D; H;) ™ (t,1)
in the calculation of element Z;x (¢, s). When dealing with combination matrices there is no simple
expression for the inverse of the H;D;H; matrix.

It is worth noting that the current framework allows for mixing of constraint and combination
matrices; an illustration of this possibility is given in the example that follows.

6.1. NELS:88 Example (continued). We continue with the NELS:88 example, by using both
types of restrictions. Specifically, variables H, I and K continue to be constrained across pub-
lic and private schools. For the remaining seven variables we consider constraints based on the
family income variable, which has three categories -low (less than $20,000 yearly income), middle
($20,000-$35,000), and high (more than $35,000). The corresponding combination matrix is given
by ,

(.258 228 514

212 430 .358

360 .334 .306

125 500 .375

454 334 212

o _ | 030 412 558

«= | .640 .300 .060
486 514 0

472306 222

036 607 .357

0 .130 .870

\ 0 .109 .891)

fora = A — G. It can be seen that the majority of the students in the public suburban (4,5,6)
and the private (10,11,12) schools come from families with yearly incomes larger than $20,000,
while those in the rural schools (7,8,9) from families with incomes less than $20,000. The students
attending public urban schools (1,2,2) are more evenly distributed over the three income categories.
The reason for applying restrictions to all seven variables is that by just restricting the first three
(as in section 4.2), very similar results to the previous analysis were obtained.

A two-dimensional solution produced a satisfactory fit, with total eigenvalues .529 and .315
respectively. There is some loss of fit on both dimensions, as a consequence of restricting all the
variables. All schools experience a loss in fit, but schools exhibiting a good fit in the previous
solution continue to do so (see Table 6.1).

The category quantifications and object scores plots are given in Figures 6.1 and 6.2 respec-
tively. Almost all schools exhibit a quadratic pattern, with the 'serious problem' and the 'not a
problem' categories forming separate clouds. This is expected since there are constraints (with
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School # | Dimension 1 | Dimension 2

1 526 287
2 .632 348
3 527 354
4 562 316
5 520 362
6 546 275
7 524 244
8 518 326
9 458 231
10 590 417
11 450 .266
12 493 316
Overall 529 315

TABLE 6.1. School Eigenvalues

differential weighting) imposed on the first seven variables across all schools. An examination of
the object scores plot reveals that in the public rural schools only a small minority of the students
responded using the 'serious problem' category. In general, the constraints 'filter' most of the
'noise' present in the unconstrained Homals solution. However, the more general coding scheme
mixes the 'rougher’ public urban schools (see section 4.2) with the relative 'problem free' private
ones, thus producing a more uniform profile.

7. Concluding Remarks
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