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In this paper we discuss non-linear path models for continuous
or smooth data. Instead of formulating a non-linear model for the
relationships between the variables, i.e. a non-linear structural-
equation-model, the observed variables are transformed non-
linearly. For the transformed variables a linear path model is
assumed. The transformations are defined by B-splines. An
example is given from physics.

1. Introduction

In this paper we discuss recursive path models for continuous data, i.e. we are dealing
with structural equations models without latent variables. See for discussion of
structural equations models with latent variables: LISREL developed by Joreskog
(1982), PLS developed by Wold (1982) and some ALS method given by De Leeuw
(1984). In econometrics these models are called errors-in-variables models, see Aigner,
Hsiao, Kapteyn and Wansbeek (1983).

Path models can be conceived as more complicated linear (multiple) regression models.
For these regression models there exist generalizations to non-linear regression models,
see Jennrich (1969) and Wu (1981). Another type of non-linear regression models is
the Box-Cox model, Box and Cox (1964, 1982). In the Box-Cox model the dependent
variable is transformed non-linearly according to a one-parameter family of functions. It
is along this line that we propose a generalization of the linear path models. To stress
the differences of our model with the Box-Cox model we mention: 1. in our model all
variables, i.e.the exogene and endogene variables, may be transformed and 2. our
model is not restricted to one-parameter functions.

This approach of transforming the variables is very much alike the non-linear
multivariate analysis as discussed extensively by Gifi (1981, 1984). In these analyses
there is a combination of transforming the variables optimally (in a well defined sense)
and the standard linear multivariate techniques, like Regression Analysis, Principal
Component Analysis, Canonical Correlation Analysis and other techniques. One of the
main interests of these non-linear techniques is that they can deal with variables of

different measurement levels. So, for instance, ordinal variables are transformed in such
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a way that the ordinal information is not destroyed. For literature about non-linear
multivariate analysis and our model, see De Leeuw(1986 a,b &c). In the model we
present here we are dealing with continuous or smooth data which may be transformed
too. A model which can be compared with our model is PATHALS , see Coolen and De
Leeuw (1987). In PATHALS , however, the variables are discrete and a least squares
loss-function is used, whereas we use a maximum likelihood function.

The transformations we use are polynomial or piece-wise polynomial transformations.
These transformations will be defined by so-called B-splines. For a general discussion
of splines, see De Boor (1978) and for some applications in the field of regression see
Winsberg and Ramsey (1980) and Stone (1985a, 1985b). Spline functions are
interesting because they can approximate non-linear functions very efficiently. A further
nice feature of splines is that splines form a linear space, by which it is possible,
although non-linear functions are approximated, to use the well-known linear algebra
and corresponding computations.

The basic idea of our model is: let there be several unobserved random variables, y;, for
which a path model is specified to describe the relationships between these variables.
(In our notation random variables will be denoted by a bold face letter.) Instead of these
Y; variables, variables called X; are observed. The latter variables are strictly,
monotonously related with the unobserved random variables y;, say x; = f;(y;). We
further assume that the y variables are multivariate normally distributed. Because of this
assumption and the assumption of monotonicity it is easy to write down the likelihood
function for the observed x variables. This likelihood function is some function of the
structural parameters (path coefficients and error variances) and the spline coefficients.
An algorithm will be given to estimate the parameters.

This paper ends with an illustration of some empirical data.
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2. The model

Let x; be an observed random variable, where j = 1,...,p. The linear path model,
however, is not defined for x;, but for y;, where x; = fi(y;)- It is supposed that the
function f; is a strictly monotously increasing function. So there is an inverse function
gj(.) = fj'l(.). Consequently we can write y; = g;(x;). The random variables y; are
collected in a p-dimensional vector y. The following assumptions with respect to y are

made
y ~ N(©0, Z(8)) , 1)

where the covariance matrix of y is formulated as a function of the unknown
parameters collected in vector 0. The latter function, 2(.), defines in this paper the path
model for the transformed y variables. The dendity function for these variables can be

written as

D, (y:8) = (2m) P 1= Zexp[-y'y/2] . @

However, because the x variables are observed instead of the y variables, we write the

density function of x as
D, (x;6) = (2m) P8y/Sx'l 1= Zexpl-g'(x)Z " g(x)/2] , 3)

where 8y/8x' is the Jacobian. Obviously, because it holds y; = g(x;), the Jacobian is

diagonal, so 19y/0x'l= I"JI dy;/Ox;.

Let matrix Y of order (n x p), with the scores on the y variables ,for n sample units, and

let Y; be column j of matrix Y. By using B-spline functions Y; can be written as
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where Q; consists of the basic splines, and Sj are the unknown spline coefficients. See
for an extensive discussion of splines de Boor (1978). The basic idea of using splines
is that the relationship between two variables, x and y, is described by several
polynomials. Spline functions are also called piecewise polynomal functions. For
instance, variable x is divided in several intervals and within each interval a best, in
some sense, fitting polynomial for describing y is looked for. Instead of using one
polynomial of a high degree, several polynomials of low degree are utized to
approximate the relationship between variables. Spline functions are some efficient
compromise between approximation of stepfunctions and polynomial approximations.
See for a discussion Gifi (1981, pp. 289-292). The user must specify the order of the
polynomial, say k, and the intervals. The order of a polynomial is defined as the degree
of the polynomial +1. Although there are methods also to find optimal intervals, we will
fix the intervals in our approach. Intervals are seperated by so-called knots and the
number of intervals for a variable will be denoted as I, i.e. the number of knots minus
1. The set of splines forms a linear space of dimensionality r =1+ k - 1. So in (4)
matrix Q; has the order (n x 1), where 1; is the dimensionality of the splines for variable
y; It holds r; =[; +k; -1, where I; and k; are analogously defined for variable y;. Note

that this matrix Q; is a function of the scores on the variable x;.

A sufficient condition for a strictly increasing function g; is

Sjl < 812 <..< 8jrj’ 5)

which is a necessary condition for k; <3 (see de Boor (1978)). In this paper we will be
dealing with the class of spline functions in which (5) holds. Because (5) is not a
necessary condition for monotonic increasing functions, this means that we are dealing
with a subset of all monotonic increasing spline functions. By imposing the order

restrictions of the 8's (4) can be rewritten as

Y;=QTy; = GyY;.» ©6)



where T; is of order (rj X rj) and [Tj]kl =1,fork 21, and [Tiha = 0, otherwise, and Vi

>0, forj= 2,...,rj.

By the choice of the splines in this paper a property of Q; is that the sums of the rows

are one, i.e. lerj = 1,. So, because the first column of T; is 1rj , it follows
Y =171+ Gy (7

where ¥;; is the first element of ;, yj* is y; minus the first element, and Gj* is matrix G;
minus the first column. More generally, we write Y = GI', with G = (G1§~--;C'19 and T
a matrix with columns the vectors ¥, augmented with zeros. Alternatively, we can write
Y = 1,0+ G'T", where t' = (Y11, ., Yp1)» G = (G 15..;G"p) and T is " minus the

rows with elements 7;;.

3. Estimation of the parameters

Define x; en y; as row i of X and Y, respectively. Then the likelihood can be written as
L = L(X;0,I) = (2n) ™" 2™ (I11] 8y;/8x;;}expl-3 g (x)Z ' g(x)/2], (8)
and so -2 log L is
-2 log L = np(log 2x) + nlog Xl + X g'x)Z lg(x;) - 22122J110g( By;i/dxy).  (9)
Let Z be a matrix with element z;; = log( 8y;/8x;;) and 8y;;/dx;; = g'y;;Y;, where g'y;; is
row i of the matrix of derivatives of the splines called G,;. Notice that the first column

of Gy consists of zero elements only. The function to be minimized is now

for = f(X;0,T) = nlog ISl + tr(GTE "G} - 2(1;Z1,) (10)
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with the unknown parameter matrices © and I'. The algorithm we use to minimize this
function is some alternating method, i.e. first the function is minimized w.r.t. 0, for
fixed T, then the function is minimized w.r.t. T, for fixed ©. This process is repeated
till convergence is reached. The two steps will be discussed seperately.

Step 1: for given I" let S be defined as I'G'GI'/n, then the function to be minimized is
fg = £(S;0) = nlog IZ! + ntr{SZ ). (11)

Minimizing this functjon w.r.t. © is a standard problem. This problem arizes also in
maximum likelihood methods for normally distributed variables. Because we are here
dealing with recursive path models only, the unknown model parameters can be solved
easily by a series of least squares problems, see Wold (1954).

Step 2: for given ©, and so for given Z, the function to be minimized is

fr=fX;I) = r{GIr'z'rG'} - 2(1,Z1p). (12)

This function can be written as

£ e = {17 + GTHE(1,T + G'T")) - 2(1, (log G;'TH)1,).

T

Instead of minimizing f_ ., we minimize f, which is defined as f, = min_ fop Itis
simply to prove, by taking derivatives of f . w.r.t. 1 and by setting this vector of

derivatives equal to zero, that an optimal estimate of T is

=-T"G"1,/n.
(13)

Define E=1_-1,1 "/n, and (_} = EG’ (ie.in é are the columns in deviations of the
n'n

means) then the function to be minimized is



fry = r{GI"TT™G') - 2(1; (log G, TH1). (14a)

A more convenient way of writing (14a) is
fre=3% o A Y - 22132}10g(g'1iﬂj*), (14b)

where o is element (i,j) of 7, and A = G; Gy
The estimation method we have chosen for estimating the vectors 'yj*, is some modified

Newton-Raphson method. This method is designed to achieve quadratic convergence
when the Hessian matrix is positive definite, see, e.g. Luenberger (1973). The reason

for a modified method is that there do hold some order restrictions for the elements of

%*

Y - In this method we write for an estimate of yj*
¥ D = O o (HO )Y VL), (15)

where k refers to iteration step k, H(yj*(k)) is the matrix of second derivatives of fr*
W.I.L. 'yj*, evaluated in the point 'yj*(k), and Vfr,.,('yj*(k)) is the gradient of fr‘* W.I.t. yj*,

evaluated in the point yj*(k). o is some optimal chosen step length in the direction -

{H(Yj*(k))}'IVfI-*(Yj*(k)). So the first and second derivatives are necessary. These

derivatives are given by

Bf /8, = 23 oA u 1" - 22 gy )
(16a)
S /O, BY " = 207Ay + 285 gy AT CETT D I (16b)

where 8 = 1 for j=k, and &' = 0 otherwise.
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In the next section we give an algorithm for estimating % »under the condition that Y

2 0.



4. The Algoritm

For the sake of ease and without ambiguity, we drop all sub- and superscripts. So we
are dealing with a function f(y), its gradient Vf, its Hessian H and the parameter vector
v, for which it holds that ;> 0. The method we discuss here is the rapid "Manifold
Suboptimization Method", as described by Zangwill (1969). However, because we are

dealing with very simple restrictions (y; 2 0) we will specialize this method down to our

specific case.

Let, in general, the restrictions be written as
()20, i=1,.m

and let the derivatives of the functions c; w.r.t. y be written as a;(y). For a solution of y
some constraints are active, i.e. ¢;(y) = 0, and some are inactive, i.e. ¢;(Y) > 0. Then the
function f(y) is minimized if for the active constraints the gradient of the function can be

written as

Vi(y) = AZ Aa;(y), forA; 20,
1

€

where A is the set of active constraints. See for a proof of this, e.g., Zangwill (1969).
In our case where the restriction is y; 2 0 we have c;(Y) =;, and so a;(Y) = 1. From this
it follows that for an optimal point

1: if restriction i is inactive, i.e. ¥; > 0, the derivative of the function w.r.t. ¥; is equal to
0, and 2: if restriction i is active, i.e. ¥; = 0, the derivative of the function w.r.t. ¥; is A;,
which should be positive.

In the algorithm given below B, (y) is defined as the set of active constraints in iteration
k. So an important point in the algorithm is to check whether the gradient is positive or
not for an active constraint. If not, then the corresponding constraint is made inactive

and the process is continued. The whole procedure can now be summarized as follows:
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Step I: choose a feasable start configuration for v, say Y(O). Setk =0, and Bo('y(o)) =
{0}. See for a proper choice Remark 1 and 2.

Step II: Set k = k+1. Compute the direction d® = -H®-1yf®) and determine the
optimal step-size o along this direction (see Davidon (1959)). There are two

possibilities:
Step IIIa: the point 'fk“) =% 4+ ad® is feasable, then there are three possibilities

Step [Mal: VEYE™D) 0 fori g B (y**D), then go to Step IL.

Step IMa2: VE@G®™) = 0 fori ¢ B(¥**) and VEG* ) > 0 fori € Bp(y**D), then
an optimal y has been reached.

Step IMa3: VE(y**) =0 for ie B, (Y**V) and for some i V£,(y**D) <0 forie
B, (Y D) , then define j € By (y**D) , for which V£;(y**) = min., and let
B (v = B,(y¥**D) - {j}, and go to Step IL

Step IIIb: the point Y(k+1) =y® 4 ad® is infeasable. Define p; = - 'yi(k)/ di(k) and u'=
min{ui I .%k+l) = Y(k) + uid(k) > 0}. Then ,Y(k+1) - ,Y(k) +u* d® and Bk+1(’¢k+1)) _

B, (Y**D) + {i}, and go to step II.

A geometrical interpretation of this method is as follows:

In step II an optimal point along the direction d® is found, without any constraints on
the parameters. Then it is verified whether this point is feasible.

--If this point is feasible but it is not yet optimal, then the process continues (Step Illa).
--If this point is feasible and the gradients for the free parameters are zero and the
gradients for the fixed parameters (i.e. the parameters which are set equal to zero) are
positive, then the optimal point has been found.

--If this point is feasible and the gradients for the free parameters are zero but some of
the gradients for the fixed parameters are negative, then a suboptimal point has been

found on a boundary. The boundary for which the gradient is most negative is looked
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for and the corresponding constraint is skipped. This means the set of active boundaries
is diminished with one.

-- if this point is not feasible, then a feasible point on the direction d® is looked for the
one which is closest to the optimal infeasible point. This feasible point will be on a

boundary and this boundary then enters as an active boundary.

Remark 1: A start configuration for y can be found by, e.g., a least squares solution of
¥;» for j = 1,...,p, from formula (6). Obviously, by doing so transformations are found
without taking into account the underlying path model. Empirical studies with these start
configurations have shown that they are very appropriate.

Remark 2: If the start configuration is too far from the optimal solution, then the
Hessian matrix may be not positive definite. In those situations another start
configuration has to be supplied.

Remark 3: As a consequence of the used method, it may happen that a temporary
solution is on a combination of boundaries for which the function is not defined. In

such cases 8y;;/8x;;= 0, and the logarithm is not defined. A remedy to solve this

problem is starting again with another start configuration.
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5. Some Statistical Remarks
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6. An example

The example we discuss here was also analyzed by De Leeuw (1986¢) and Van Wijk
(1987). It was taken from a very interesting paper by Wilson (1926). He discusses the
question if statistical methods in general, and correlational methods such as regression
in particular, can help us to discover natural laws. Wilson's point of view is that
correlational procedures are not of much help if they are not combined with 'antecedent
rationalism’, i.e. with proir knowledge about the subject matter. He illustrates his point
by a physical example, taken from the work of Willard Gibbs on the equilibrium of
heterogeneous substances. Gibbs derived, from theoretical considerations, a formula

connecting absolute temperature X;, pressure X, and density x5 of a mixture of gases

with convertible components. The formula is of the form
g3(x3) = B3181(xy) + 82(X2) + Bao»

with g;(x;) = 1/x;, g2(X5) = 1n Xy, and gs(x3) =In (A (x5 - A)/Q2A - x3)2}, where A
= 2.073. B4, and B3, are two constants which must be determined empirically. Gibbs

determined the constants from experiments by Cahours and Bineau, and then used the
formula to predict the outcomes of 65 new experiments by Neumann. He discusses the
deviations he finds in terms of the rational formula above.

Wilson uses ordinary linear least squares to predict x3 from x; and X,, and he
concludes that the results of this blind approach are quite useless from the point of view
of physical theory. It seems to us that this conclusion is a bit pessimistic. It turns out
that with the nonlinear technique of this paper we can recover the rational
transformations quite nicely. Let us illustrate this with some results.

Temperature has only 9 discrete values therefor just one interval is used for this
variable. The other two variables are divided into 4 intervals each. In table 1 the
function values of different solutions are given. The function value is given by -2 In
likelihood. In this example we concentrate on the rational transformation of the variable

density. The solutions differ in the specified order of the B-splines for this variable.
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--- Insert Table 1 about here ---
1t is obvious from table 1 that the fit, in terms of the In likelihood, becomes better if the

explanation: .....). In table 1 there is also a column for the explained variance, R> for
each solution, another measure for indicating how good the prediction is. We see,
roughly, that this coefficient becomes larger with the order of the splines. However,
this is not necessarily so. The explanation for a possible decrease of R? is that we do
not maximize the R2, but the likelihood. Maximizing the explained variance can be
done by specifying the least squares function, instead of the likelihood function.
Another way of investigating how well our solution is, is to compare the optimal
transformations of density and the rational transformation. These comparisons are given

in figure 1 to **.

--- Insert figure 1 to ** about here ---
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TABLE 1

goodness of fit measures for different transformations

order of splines function value  difference
- 381.7469 917
2 208.6416 985
3 209.0473 985
4 208.1766 985
5 207.1702 985
6 204.9572 985
7 203.5085 985
8 200.9457 986
9 198.7750 986

R2




