CHAPTER FIVE

Chronological Considerations

By C. Roger Nance, Jan de Leeuw, Katheen Prado, and David S. Verity

Introduction

+++As indicated in chapter 4, the chronological position of each ceramic type can be estimated through the three-site correspondence analysis. We will deal here only with sherds from level/square samples that figured in that analysis and assign to each sherd a sample horizontal-axis CAvalue according to its sample provenience. This procedure will be followed whether or not the sherd is from a type actually included in the CA. This sample horizontal- or x-axis value (CAvalue) serves as an estimate of relative age. The mean and/or median CAvalue by type, then, should, at least ideally, indicate the age of a type relative to other types for which these same CAvalue statistics have also been computed.

Grater Bowls

Table 5-1 lists grater bowl types, their totaled sample frequencies, their mean and median CAvalues, standard deviations, and skewness statistics.

The bulk of included sherds are of the General Form type (3), and for this type the mean CAvalue (table 5-1) is close to that for all grater bowl sherds (.305). This figure is consistent with the type's high frequency and the probability that nondiagnostic sherds from both early and late types in a sense are included. Setting aside this General Form type, the

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
3	General Form	1,254	.847	.288	.429	448
7	Red and Black on Buff, Complex	86	.454	.982	.993	151
8	Red and Black on Buff, Stripes	79	.450	.752	.759	-1.709
9	Red and Black on Buff, General	79	.612	.744	.788	915
10	Black Bands	20	.825	.173	.343	-1.175
11	Red on Buff	32	.803	132	152	027
13	Fine Ware	83	.765	789	-1.038	.894

Table 5-1: Grater bowl types, summary statistics

statistical significance of these findings can be assessed through several chi-square tests. Table 5-2 compares the three types (7, 8, 9) with the highest mean CAvalues to the three (10, 11, 13) with the lowest. The mean CAvalue for all 379 sherds in these six types combined is approximately .36, and Table 5-2 also groups these sherds according to whether each sherd's CAvalue falls above or below that mean. Viewed in this way, the data are significant; it is highly unlikely that these differences in CAvalue by type grouping are due to random fluctuation.

Strickly speaking, significance levels are only theoretically appropriate for large samples of independent observations. Both assumptions are always only approximately true. To remind the reader of this limitation, we report significance levels in this book using asterisks, replacing traditional *p* values as follows: probability level = * for *p* < .05, probability level = ** for *p* < .01, and probability level = *** for *p* < .001.

Types 7, 8, and 9 encompass the Huistla Polychrome (i.e., Red and Black on Buff) grater bowl component of the CA. The sherds of these

CAvalue	Types 7, 8, 9	Types 10, 11, 13	Total
>.36	206 84.4%	28 20.7%	234
< .36	38 15.6%	107 79.3%	145
Total	244	135	379

Table 5-2: Grater bowl types by CAvalue

Table chi-square = 149.231 Probability level = ***

CAvalue	Type 7	Type 8	Total
> .87	50 58.1%	25 31.6%	75
< .87	36 41.9%	54 68.4%	90
Total	86	79	165

Table 5-3: Red and Black on Buff Grater Bowl types by CAvalue

Table chi-square = 11.657

Probability level = ***

three types were lumped together for the CA, but the types can now be considered individually. Clearly, they are closely related, with type 9 containing the more fragmentary sherds that could not be assigned specifically to either type 7 or 8. Table 5-3 compares CAvalue distributions for type 7 (complex zigzag elements) to those of type 8 (simple red and black stripes). The mean CAvalue (.87) for the two types was used to divide sherds into potentially early and late groupings. And again, the difference is highly significant statistically.

Finally, there are the apparently early types (10, 11, 13) included in table 5-4. These also display differing CAvalue distributions by type, and the mean for the three types is -.49. Type 13, Fine Ware Grater Bowls, has more sherds from early contexts than the types Black Banded Grater Bowls (10) and Red on Buff Grater Bowls (11). Differences are highly significant, though we should keep in mind the small sample size for the Black Banded type.

We can hypothesize a sequence of grater bowl types as follows. Fine Ware Grater Bowls are the earliest identified or at least seem to peak during a relatively early period in the sequence. The types Black

CAvalue	Type 10	Type 11	Type 13	Total
>49	16 80.0%	20 62.5%	26 31.3%	62
<49	4 20.0%	12 37.5%	57 68.7%	73
Total	20	32	83	135

Table 5-4: Early grater bowl types by CAvalue

Table chi-square = 20.014 Probability level = ***

Banded and Red on Buff Grater Bowls follow. Then, during a relatively late period, the Huistla Polychrome types become important, with type 7 showing the latest peak in popularity.

In figure 5-1, a box plot displays the distribution of sherd CAvalues as percentiles by grater bowl type. In these box plots, horizontal bars represent the median CAvalue by type (fiftieth percentile), and each ellipse encompasses the twenty-fifth to the seventy-fifth percentiles of the type observations—what is referred to as the interquartile

Figure 5-1. Grater bowls, CAvalue distributions by type.

CHAPTER FIVE / 158

range (IQR). Adjacent values are encompassed by T-shaped drawings above and below the ellipse, extending from the twenty-fifth percentile minus 1.5 times the IQR to the seventy-fifth percentile plus 1.5 times the IQR. Values outside this range are regarded as outliers. This plot provides some idea of the progression and possible overlap of these types through time. (For further details on box plots, see McGill et al. 1978.)

One statistic shown in table 5-1 but not yet discussed is the skewness value included for each type. Skewness is one measure of a distribution's deviation from the normal curve. A negative skewness value indicates a more pronounced tail to the left (i.e., toward negative values) and a positive value, a pronounced tail to the right. The differences can be seen in figure 5-2 in which the distribution for type 7 shows a slight negative skew, and figure 5-3, which depicts a positively skewed distribution for type 13 (cf., figs. 4-11 and 4-12). Grater bowl type skewness values and medians were compared through the correlation coefficient, and the result was a negative correlation not quite significant statistically. That is, skewness values decrease generally as median CAvalues increase.

These findings would seem most compatible with an archaeological sequence involving essentially two components. Early types, introduced suddenly at the onset of occupation, gradually decreased proportionately through time as a result of culture change or a tendency to mix into later deposits containing sherds of the later component. Later types, on the other hand, either were either introduced gradually into the prehistoric community and slowly replaced earlier types, or else they were introduced suddenly but tended to mix through time into deposits containing sherds of the earlier component.

Other Huistla Polychrome Types (Non–Grater Bowl)

The three Huistla Polychrome (i.e., Red and Black on Buff) types listed in table 5-5 were combined in the CA but are examined here individually in terms of their mean CAvalues. All three types are in a late position (table 5-5) with little difference among them. The Red and Black on Buff, Stripes type (21) has a slightly lower mean than found for the others, paralleling the finding for Red and Black on Buff, Complex (type 7) and Red and Black on Buff, Stripes (type 8; see table 5-3) grater bowls, but here the difference is not statistically significant. It can be seen, however, in the elongated ellipses for types 19 and 20 in figure 5-4.

Figure 5-2. CAvalues for type 7, Red and Black on Buff Grater Bowl, Complex.

Figure 5-3. CAvalues for type 13, Fine Ware Grater Bowl.

CHAPTER FIVE / 160

Among the three types, the one with the highest median CAvalue (type 20) also has the lowest skewness value (table 5-5).

White on Red, Black and White on Red Types

Three of these types, all White on Red, were combined for the CA, while the Black and White on Red types were not included. One of these, Black and White on Red, Slipped and Polished (25), has a high standard deviation combined with a small sample frequency (table 5-6) and probably should be disregarded. This grouping of sherds was hardly homogeneous in the first place (see type descriptions in chapter 3).

The three White on Red types, combined, have a low mean CAvalue (-.573) and as a general class of pottery, count early in the sequence. Yet their distributions, when compared one to another, proved to be dissimilar. Type 16 with simple white lines and type 17 with more complex designs tend to be spread out timewise, as indicated by their high

Figure 5-4. Red and Black on Buff, CAvalue distributions by type.

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
19	Red and Black on Buff, Zigzag	148	.677	.797	.759	664
20	Red and Black on Buff, Unique	78	.662	.792	.865	851
21	Red and Black on Buff, Stripes	245	.600	.649	.759	789
Total		471	.638	.719	.759	704

Table 5-5: Red and Black on Buff types, summary statistics

Table 5-6: White or Black and White on Red types, summary statistics

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
14	Black and White on Red	249	.705	.556	.720	-1.269
16	White on Red, Simple	324	1.042	601	-1.043	.388
17	White on Red, Complex	257	1.014	321	240	.074
18	White on Red, Parallel	79	.775	959	-1.300	1.275
25	Black and White on Red, SP	14	.929	698	-1.054	.560

Table 5-7: White on Red types by CAvalue

CAvalue	Type 16	Type 17	Type 18	Total
>537	136 42.0%	88 56.1%	17 21.5%	241 43.0%
<537	188 58.0%	69 43.9%	62 78.5%	319 57.0%
Total	324	157	79	560

Table chi-square = 25.92 Probability level = ***

Table 5-8: Black and White on Red, White on Red by type and CAvalue

CAvalue	Types 16–18	Type 14	Total
>226	206 36.8%	224 90.0%	430
<226	354 63.2%	25 10.0%	379
Total	560	249	809

Table chi-square = 195.72 Probability level = ***

standard deviations (table 5-6), but the latter type became popular later in the sequence (table 5-7). Type 18, with its very distinctive design, clusters earlier than either of the others, and these differing distributions among the three types are highly significant statistically (table 5-7).

The last type considered here, Black and White on Red (14), is similar to the White on Red types in its lack of polished surfaces, relatively thin vessel walls, and abundant sand temper. Yet the type peaks later in the sequence than any one of the White on Red types or all of them combined, as can be seen in table 5-8, which also is highly significant. The distribution of all these types is displayed graphically in figure 5-5.

Skewness and median values for these five types were compared through a correlation coefficient, as was also done for grater bowl types. Again, the correlation is negative (r = -.960) and in this case statistically significant (probability level = **).

Figure 5-5. White or Black and White on Red, CAvalue distributions by type.

Red on Cream

At the site of Tiana, two Red on Cream types with single or parallel straight lines (22, 23) were found to be later stratigraphically than those with complex designs (24), as described in chapter 4. In the CA, then, types 22 and 23 were combined, and type 24 functioned separately. In terms of CAvalue distributions by type, this contrasting distribution shows up clearly in figure 5-6. By themselves, however, types 22 and 23 have significantly different distributions when CAvalues are compared (table 5-9). Red on Cream sherds with broad stripes (type 23) tend to be more frequent later in the sequence than the narrow-striped sherds of type 22. (See also table 5-10 for summary statistics.) Sherds of the former type are from larger, thicker-walled vessels compared to the latter, so the shift may have significance beyond discussion of simple ceramic chronology. Altogether and consistent with other type groupings, the three types produced a negative correlation when median and skewness values were compared, although it was not significant statistically.

Figure 5-6. Red on Cream, CAvalue distributions by type.

Major Polychrome Types

One of these types, Incised Polychrome (15), was included in the CA; the other, Polychrome, White Dots (26), was not. Both types are early (table 5-11), but one, type 26, was significantly more so (table 5-12). This latter type for the most part occupied a limited time span but also had significant outliers extending late into the sequence (fig. 5-7). This result probably was due either to the physical mixing of sherds in the deposits or the vagaries of classification. Skewness and median values for these types vary inversely (see table 5-11).

Incised/Engraved Types

For the thirteen incised/engraved types, and in line with other findings, type skewness varies inversely with median CAvalue. Figure 5-8 depicts the relationship graphically (r = -.863, probability level = ***; figs. 5-9, 5-10). The alignment of types in figure 5-8 shows two clusters of incised/ engraved types, one near each end of the plot. Table 5-13 compares the

CAvalue	Type 22	Type 23	Total
> .046	147 51.2%	224 61.4%	371 56.9%
< .046	140 48.8%	141 38.6%	281 43.1%
Total	287	365	652

Table 5-9: Two Red on Cream types by CAvalue

Table chi-square = 6.75 Probability level = **

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
22	Red on Cream, Thin Lines	287	.876	032	.221	242
23	Red on Cream, Broad Lines	365	.946	.108	.429	522
24	Red on Cream, Complex	264	.941	663	884	.562

Table 5-10: Red on Cream types, summary statistics

five types in the early cluster to the six types in the late by the mean CAvalue for all eleven types. The probability is exceedingly low that differences are due to random distribution.

Early Incised/Engraved Types

Turning to examples of the early cluster, we find that type 51, Black Fine Engraved, has a low count coupled with a high standard deviation and appears to have little value as a chronological marker (table 5-14). By contrast, type 50, Red Fine Engraved, appears to be concentrated at the early end of the sequence. It seems possible that this type is from

Figure 5-7. Major polychrome types, CAvalue distributions by type.

Tab	le	5-11:	Ma	jor p	olyc	hrome	types,	summary	statistics	
-----	----	-------	----	-------	------	-------	--------	---------	------------	--

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
15	Incised Polychrome	269	.852	611	884	.475
26	Polychrome, White Dots	92	.697	816	-1.066	1.452

an earlier period of time than that encompassed by other types in our study. Of the remaining three types (40, 43, 47), type 43, Brushed or Combed Utility, is the earliest, but not significantly so. The distribution of early incised/engraved types can be seen graphically in figure 5-9, and figure 4-12 depicts a histogram of the distribution of type 47, Dark Red to Black Engraved, Complex.

CAvalue	Type 15	Type 26	Total
>663	113 42.0%	20 21.7%	133 36.8%
<663	156 58.0%	72 78.3%	228 63.2%
Total	269	92	361

Table 5-12: Major polychrome types by CAvalue

Table chi-square = 12.103 Probability level = ***

Median Value

Figure 5-8. Median CAvalue by skewness, incised/engraved types.

Table 5-13: Incised/engraved types, early versus late by CAvalue

CAvalue	Early Types	Late Types	Total
>135	43 23.2%	159 78.7%	202 52.2%
<135	142 76.8%	43 21.3%	185 47.8%
Total	185	202	387

Table chi-square = 119.07 Probability level = ***

CHAPTER FIVE / 168

Figure 5-9. Early incised/engraved, CAvalue distributions by type.

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
40	Fine Engraved, Arcaded	58	.870	982	-1.255	.811
43	Brushed or Combed Utility	64	.836	567	890	.470
47	Red to Black Engraved, Complex	41	.920	633	782	.761
50	Red Fine Incised	13	.418	-1.352	-1.482	.203
51	Black Fine Engraved	9	1.132	825	-1.043	.593

Table 5-14: Earl	y incised/engraved	types, summar	y statistics
/ /			

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
42	Washboard Exterior	38	.511	.611	.674	435
44	Hatched from Rim Exterior, Incised	43	.515	.581	.759	518
45	Black Crude Engraved, Complex	37	.737	.309	.674	566
46	Black Crude Engraved, Suspended Triangles	14	.500	.785	.785	879
49	Exterior Incised, Deep Parallel Lines	21	.746	.189	.260	-1.049
52	Miscellaneous Broad-Line Incised	49	.609	.353	.262	645

Table 5-15: Late incised/engraved types, summary statistics

Table 5-16: Types 49, 52 versus other late incised/engraved types by CAvalue

CAvalue	Types 49, 52	Other Late Types	Total
> .455	30 42.9%	85 64.4%	115 56.9%
< .455	40 57.1%	47 35.6%	87 43.1%
Total	70	132	202

Table chi-square = 8.653 Probability level = **

Late Incised/Engraved Types

Several of the late types listed in table 5-15 have relatively small standard deviations and are concentrated toward the late end of the sequence. This is especially true of type 46, Black Crude Engraved, Suspended Triangles. Except for the design motif, these sherds are identical to those of type 45, Black Crude Engraved, Complex, and this design motif may be very late in the sequence. The fourteen sherds of type 46 are scattered through nine different lots, so their distribution may not be the misleading product of one or two broken vessels.

Viewing the distribution of all late types in figure 5-10, we see that two of them, types 49 and 52, definitely appear earlier than the others. Figure 4-11 shows, as a histogram, the distribution of type 44, Hatched from Rim Exterior, Incised. The mean CAvalue for all late incised/ engraved sherds is .455, and table 5-16 indicates that types 49 and 52 have significantly more sherds with low CAvalues when their combined distribution (above and below the mean) is compared to that for others.

Figure 5-10. Late incised/engraved, CAvalue distributions by type.

Figure 5-11. CAvalues for type 53, Complex Broad-Line Incised.

Intermediate Incised/Engraved Types

Two types, 39 and 53, fall between the two clusters in figure 5-8. Both their skewness values and median CAvalues are relatively close to 0. Type 39 is a residual type containing small well-finished sherds on which incising or engraving could be identified. The high standard deviation (table 5-17) indicates the presence of both early and late sherds. The distribution for type 53 (fig. 5-11) is more problematic, and with eighteen sherds from one lot, sampling error is a possibility.

Red Ware Types

While present in great abundance, red ware sherds were difficult to sort into potentially useful types. Sorting criteria did not readily suggest themselves, and many sherds seemed to be intergrades between the categories we did define. In some cases, type assignment seemed somewhat arbitrary. And for this reason, these types were not included in the CA. Yet the four type groupings do sort out chronologically to some extent when CAvalues are assigned to these sherds by lot and type designation.

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
39	Miscellaneous Fine Incised/ Engraved	171	.977	-0.63	240	058
53	Complex, Broad-Line Incised	50	.618	048	199	180

Table 5-17: Intermediate incised/engraved types, summary statistics

This is evident in their widely varying mean CAvalues (table 5-18) and in the graph of their distributions (fig. 5-12). Table 5-19 indicates that these differences in all probability are not the result of random fluctuation. Moreover, when the two early types, Red Fine Ware and Red Utility, are compared to one another, the difference is still significant, and the same is true for the two later types as well. Red ware type skewness values and medians show a significant negative correlation (r = -.99, probability level = **).

Figure 5-12. Red ware, CAvalue distributions by type.

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
61	Fine Red Ware	152	.868	179	152	.259
62	Red Utility	680	.945	595	553	.522
63	Red Streaky- Polish Jars	360	.856	.246	.605	529
64	Red Utility, Very Thick	208	.610	.650	.686	758

Table 5-18: Red ware types, summary statistics

Table 5-19: Red ware types by CAvalue

CAvalue	Type 61	Type 62	Type 63	Type 64	Total
>149	72 47.4%	152 22.4%	251 69.7%	189 90.9%	664
<149	80 52.6%	528 77.6%	109 30.3%	19 9.1%	736
Total	152	680	360	208	1400

Table chi-square = 400.637 Probability level = ***

Other Major Plain Ware Types

In contradistinction to red ware types, other major types lacking decoration did figure in the CA. One of these encompassed sherds identified as comal fragments. These appear to have been present throughout the sequence but increased proportionately through time compared to red ware types. Table 5-20 compares Comales (type 2) proportions to red ware types combined (61, 62, 63, 64), on the one hand, and to grater bowl types combined (3, 7, 8, 9, 10, 11, 13), on the other. More than the others, grater bowl sherds tend to concentrate at the late end of the sequence. One can see differences among these major type groupings graphically by comparing figures 5-13, 5-14, and 5-15.

Figure 5-13. CAvalues for type 2, Comales.

Figure 5-14. CAvalues for red ware types (61-64).

Figure 5-15. CAvalues for grater bowl types (3, 7, 8, 9, 10, 11, 13).

Table 5-20: Major type category by CAvalue

CAvalue	Comal	Red Ware	Grater Bowl	Total
>071	674 53.1%	630 45.0%	1075 65.8%	2379
<071	596 46.9%	770 55.0%	558 34.2%	1924
Total	1270	1400	1633	4303

Table chi-square = 135.878 Probability level = ***

It must be mentioned that Long and Glassow discarded thousands of excavated potsherds prior to shipping the remainder of the collection to Los Angeles. Presumably, these were plain sherds, which they tabulated by square and level and designated as "red" or "all other" (data archived at the UCLA Fowler Museum). Proportions of red ware versus other types reported here are based only on the extant collection.

Other major plain types are Gray/Buff Slipped and Polished (5) and Black/Brown Slipped and Polished (6). Their distributions along with

that for Comales (2) are depicted in figure 5-16. Summary statistics for the same types are included in table 5-21. As indicated in several of the CAs, Black/Brown Slipped and Polished sherds tend to be later than well-finished sherds with lighter surfaces (type 5), and the difference viewed through CAvalues for these sherds is statistically significant (table 5-22).

Figure 5-16. Other major plain ware types, CAvalue distributions by type.

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
2	Comales	1270	.963	014	.261	225
5	Gray/Buff Slipped and Polished	314	.976	038	.261	330
6	Black/Brown Slipped and Polished	325	.870	.254	.606	635

Table 5-21. Other major blam types, summary statistic	Table 5-21	: Other	maior	plain	types.	summar	v statistics
---	------------	---------	-------	-------	--------	--------	--------------

CAvalue	Type 5	Type 6	Total
>.11	170 54.1%	215 66.2%	385
< .11	144 45.9%	110 33.8%	254
Total	314	325	639

Table 5-22: Plain slipped, polished types by CAvalue

Table chi-square = 9.624 Probability level = **

Other Low Frequency Types

Most of these types tend to occupy late positions in the sequence (table 5-23). Four types are either Black on Red or Red on Black bichrome. Since it was difficult at times to distinguish among the decorative techniques manifested on sherds of these types, we were not surprised to find them on the same time level (fig. 5-17).

Figure 5-17. Red on Black and Black on Red types, CAvalue distributions by type.

CHAPTER FIVE / 178

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
27	Red on White	11	.995	.265	.343	039
28	Thick White Paint	12	.651	.607	.626	-1.234
29	Negative Painted	10	.769	.884	.900	627
30	Thick White Paint on Red	2	0	738	738	
31	White on Black	35	1.153	.033	.343	530
33	Red on Black	10	.606	.483	.640	872
34	Red on Black (?)	14	1.045	.132	.262	092
35	Red Wash/ Slip over Black	10	.593	.370	.579	-1.386
36	Black on Gray/White	33	.778	.466	.606	667
37	Black on Red	32	.571	.595	.592	327
38	Black on Red Striped	47	.792	.423	.606	422
41	Glazed Majolica	46	.692	.471	.451	248
48	Reed Punctate	25	.532	.661	.604	.278
60	Polished Utility	26	.867	748	-1.066	1.075
70	Black on Orange	5	1.113	889	-1.317	.675

Table 5-23: Other minority types, summary statistics

Other minority type distributions are depicted in figure 5-18. Of these, one is the historic type Glazed Majolica ware (41), which is very distinctive and datable to the colonial era. Interestingly enough, in the collection at hand these historic sherds show up not as might be predicted at the late end of the sequence, but somewhat earlier (table 5-23). We will discuss this problem in a later chapter.

Residual Types

Two types are residual, and sherds we could not assign to other types were placed in one or the other. Included sherds either have eroded surfaces or are plain and lack distinctive features of decoration, surface finish, or vessel function. Distributions for the two types are summarized in table 5-24. In some ways, sherds of these two types tend to distribute through the sequence, as does the entire body of sherds where all types are combined (cf., figs. 5-19, 5-20, and 5-21), although for some reason sherds of the type Eroded Fine Ware (4) tend to be more plentiful late in the sequence compared to sherds of Gray/Buff Utility (1). The difference is statistically significant (table 5-25).

Figure 5-18. Other minority types, CAvalue distributions by type.

Chapter five / 180

Figure 5-19. CAvalues for type 1, Gray/Buff Utility.

Figure 5-20. CAvalues for type 4, Eroded Fine Ware.

Figure 5-21. CAvalues for all types combined.

Table 5-24: Res	idual types,	summary	statistics
-----------------	--------------	---------	------------

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
1	Gray/Buff Utility	1502	.952	029	.005	102
4	Eroded Fine Ware	618	.923	.158	.262	36

Table 5-25: Residual types by CAvalue

CAvalue	Type 1	Type 4	Total
>.026	741 49.3%	366 59.2%	1107
< .026	761 50.7%	252 40.8%	1013
Total	1502	618	2120

Table chi-square = 17.161 Probability level = ***

CHAPTER FIVE / 182

Designation*	Type Code	Site	CAvalue
А	57	Las Cuevas	88405
В	58	Las Cuevas	1.03376
С	70	Anona	n/a†
D	71	Tiana	n/a
E	32	Las Cuevas	-1.66352
F	32	Las Cuevas	70465
G	32	Las Cuevas	1.02483
Н	32	Las Cuevas	88405

Table 5-26: CAvalues for unique sherds

*See chapter 3.

†Site not analyzed, that is, CAvalue not calculated.

Figure 5-22. CAvalues for ceramic plaques.

Type Code	Description	Count	Standard Deviation	Mean CAvalue	Median CAvalue	Skewness
43	Brushed Plaques	64	.836	567	890	.470
81	Cookie- Cutter Figurines	9	1.028	071	298	.618
82	Spindle Whorls	15	.891	143	298	.664
83	Modeled Figurine Fragments	3	.099	997	-1.043	.665
85	Stamp	1	_	-1.653	-1.653	
86	Molded Effigy Feet	13	.501	750	884	1.282
93	Whistle Fragment	1	—	.785	.785	—
94	Rattle Pellet	2	.001	.262	.262	_
95	Possible Pipe Stem	1	—	.262	.262	—
97	Historic Molded Figurine	1	_	.262	.262	_
98	Decorative Plaque Fragment	2	.412	.051	.051	_

Table 5-27: Other ceramic artifacts, summary statistics

Unique Sherds

A few sherds manifest unique designs and may be from low-frequency wares traded into the Etzatlán basin. Table 5-26 lists these sherds and the CAvalues of their square/level samples where they could be calculated, that is, for sherds falling within the three-site CA study sample.

Other Ceramic Artifacts

Included here are the ceramic Brushed Plaques (type 43) and the few ceramic artifacts not included in the ceramic data sets and described separately in chapter 3. Plaques were included in the ceramic data sets, and CAvalue distributions for the type are summarized in figure 5-22 and table 5-27. These plaques apparently were used through most of the Etzatlán sequence but most commonly in prehistoric times.

For the other artifacts, those that were not included in the ceramic data sets, CAvalues have been assigned where possible but only for the site of Las Cuevas. Results are summarized in table 5-27. Four categories are present in sufficient quantity to allow tentative chronological assessments. Mazatlán figurines and spindle whorls appear to be in the later portion of the prehistoric sequence, but standard deviations are high and the two samples relatively small. While only three modeled figurine fragments can be assessed, they are tightly clustered at a very early position in the sequence. The thirteen molded animal effigy vessel feet also fall into the early portion of the three-site sequence.