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THOMAS P. NOVAK, JAN de LEEUW, and BRUCE MacEVOY* 

Overall evaluation of market segmentation often is based on variance-explained 
measures, such as R2. However, variance explained measures can be misleading if 
applied to the managerial problem of selecting target segments. Richness curves are 
proposed as an alternative way of evaluating market segmentation. Statistical con- 

siderations (bias and stability) are addressed. 

Richness Curves for Evaluating Market 

Segmentation 

The managerial utility of market segmentation schemes 
typically is evaluated on the basis of the degree to which 
the scheme maximizes within-segment homogeneity and 
among-segment heterogeneity (e.g., Frank, Massy, and 
Wind 1972; Kotler 1988). In the marketing literature, R2 
commonly is used to evaluate market segmentation be- 
cause it assesses this property (see, e.g., Belk 1974; Frank, 
Massy, and Wind 1972; Green 1973; Kahle, Beatty, and 
Homer 1986; Kamakura and Mazzon 1991; Kamakura 
and Novak 1992; Lutz and Kakkar 1974; Novak and 
MacEvoy 1990; Rosekrans 1969; Sawyer and Ball 1981). 
However, though variance explained measures such as 
R2 do provide an overall index of differences among 
market segments, they do not address the managerial is- 
sue of selecting target segments on which to focus mar- 
keting activity. 

We propose a method for evaluating market segmen- 
tation for the strategic purpose of forming target seg- 
ments from a current segmentation scheme. The target 
segment problem implies an asymmetric evaluation. For 
example, an attractive target segment could be con- 
structed by combining segments containing high pro- 
portions of product users. Segments containing nonusers 
are simply not of interest in constructing the target. In 
contrast, variance explained measures, such as R , pro- 
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vide a symmetric evaluation because both users (positive 
deviations about the mean) and nonusers (negative de- 
viations about the mean) contribute to variance ex- 
plained. Though they are useful for quantifying the de- 
gree to which segments differ from each other, symmetric 
measures of evaluation are not useful for quantifying the 
degree to which target segments can be identified. 

We propose a method of evaluation based on the con- 
cept of "richness" (Christen 1987; MacEvoy 1989). In 
a marketing context, richness is simply the proportion of 
individuals in a market segment who are "consumers." 
If a segmentation scheme can be used effectively to tar- 
get consumers, the richness of a target segment will be 
substantially higher than the richness of the unsegmented 
market taken as a whole. 

Because segmentation schemes divide the population 
into several segments, the evaluative criterion must com- 
bine information about the richness of each segment into 
information about the scheme as a whole. This is done 
by means of a richness curve, which is computed as a 
running average of the richness of each segment in the 
scheme as segments are added in descending rank order 
of segment richness. Richness curves, and statistics de- 
rived from them, form a simple and direct way of eval- 
uating segmentation schemes. However, because rich- 
ness curves are based on a rank ordering of sample values 
of segment richness, the front end of the richness curve 
will tend to be loaded with a positive bias due to sam- 
pling error that inflates the estimated richness. There- 
fore, statistical adjustment is necessary, and we describe 
how it can be accomplished using bootstrap methodol- 
ogy. 

In evaluating market segmentation, we primarily con- 
sider consumption behaviors, broadly defined in terms 
of product or media use, frequency of purchase, dollars 
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spent, and other factors, but many other measures of 
consumer behavior could be considered as well. In par- 
ticular, we consider product usage behaviors, which are 
commonly used as criterion variables for evaluating seg- 
mentation schemes (e.g., Andreason 1966; Assael and 
Roscoe 1976; Bass, Tigert, and Lonsdale 1968; Frank, 
Massy, and Boyd 1967; Grover and Srinivasan 1987; 
Henry 1976; Kahle, Beatty, and Homer 1986; Kamakura 
and Mazzon 1991; Novak and MacEvoy 1990; Schan- 
inger 1981). 

We recognize that there are limitations to focusing on 
segment differences in product usage. Establishment of 
differences in consumption is a necessary, but not suf- 
ficient, condition for a complete evaluation of market 
segmentation. If the marketing problem is to increase the 
size of the market, directing resources to the segment 
containing most of the users may not be profitable be- 
cause that segment may be close to its potential. In ad- 
dition, if the segments containing the highest proportion 
of users are difficult to identify or access, targeting those 
segments will not be profitable. Numerous researchers 
have cautioned against defining target segments on the 
basis of consumption differences without considering re- 
sponse to marketing mix variables (Blattberg and Sen 
1974; McCann 1974; Winter 1984). Because usage rates 
and segment sizes can be adjusted for acccessibility, re- 
sponse to marketing mix, or identifiability, many of these 
limitations can be overcome, but we do not explicitly 
address them. 

In the following sections we define and discuss the 
richness curve and compare it with the closely related 
Lorenz curve (Singer 1968). Bias and stability in the 
richness curve are addressed and an empirical example 
is used to illustrate the application of richness curves. 

RICHNESS CURVES 

An Informal Definition of the Richness Curve 

A richness curve is easily motivated and illustrated by 
example. Consider the data in Table 1, representing three 
hypothetical segmentation schemes. Each scheme spec- 

Table 1 
THREE HYPOTHETICAL SEGMENTATION SCHEMES 

Proportion of consumers using brand x in 
each segment 

Segment Scheme A Scheme B Scheme C 

1 .74 .63 .54 
2 .54 .57 .52 
3 .40 .51 .50 
4 .38 .45 .48 
5 .36 .39 .46 
6 .34 .33 .44 
7 .32 .27 .30 
8 .30 .21 .10 

Total .42 .42 .42 

R2 for scheme .08 .08 .08 

ifies a different mutually exclusive partitioning of 400 
consumers into eight segments of 50 consumers each. 
Given a pattern of segment proportions, as in Table 1, 
R2 provides one way to compare overall magnitude of 
differences among segments. For these three schemes, 
we find that R2 for each scheme equals .08, suggesting 
that all perform equally well. A quick inspection of the 
proportions, however, suggests that it is unrealistic to 
consider all three schemes equivalent. For example, a 
manager would likely find scheme A much more useful 
than scheme C, because the differentiation among scheme 
A segments is at the highest usage rates, whereas that 
for scheme C is among the lowest. 

The difficulty in using R2 for evaluating market seg- 
mentation schemes is that it does not reflect the mar- 
keting context. In obtaining R2, one considers all devia- 
tions of segment means about the overall mean to be 
equally important. This is not the normal marketing con- 
text, however; marketers generally concentrate on only 
a few segments rather than all segments, and their con- 
cern is how effective targeting is within those few seg- 
ments. If R2 "fails" in this application, how else can we 
represent differences among segments in these three 
schemes? 

Richness curves provide one solution. Figure 1 is the 
richness curve for scheme A.' The vertical axis repre- 
sents richness, the percentage of consumers who use 
product x, and the horizontal axis the proportion of the 
market targeted. The richness curve shows how much 
above the base rate in the unsegmented market the mar- 
keter can expect to reach consumers by segmenting the 
market at a given size target market, given the optimal 
combination of segments in the segmentation scheme. 
For example, the marketer who targets the segment hav- 
ing the highest concentration of users in Figure 1 will 
get a return of 74% from the "richest" segment; as the 
marketer attempts to reach a larger part of the population 
by adding part or all of the second richest segment (and 
subsequent segments), the richness drops. The superi- 
ority of the first segment is clearly seen, and the richness 
for any target size can be seen at a glance. 

Besides providing a context-contingent evaluation of 
market segmentation, richness curves afford a more in- 
terpretable evaluation than variance explained measures. 
As noticed by Bass, Tigert, and Lonsdale (1968) and 
Rosenthal and Rubin (1979, 1982), low R2 values do not 
imply trivial differences among segment means. Rich- 
ness curves measure scheme effectiveness in terms of 
proportion of market targeted, which is directly inter- 
pretable. Further, richness can be converted into profits 
and expenditures per capita across different shares of the 
total market. Thus, the curve provides what some re- 

'We are not the first to apply richness curves to market segmen- 
tation. Sleight and Leventhal (1989) use richness curves to compare 
four geodemographic segmentation schemes, but mistakenly refer to 
the curves as "Lorenz" curves. 
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Figure 1 
CONSTRUCTING THE RICHNESS CURVE 
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taining t = i/n of the sample. The richness curve is al- 
most, but not quite, piecewise linear (actually it is piece- 
wise concave). Quantities u* are interpreted as the 
probability that the jth respondent engages in a given 
consumer behavior, conditional on membership in seg- 
ment s.2 Appendix A provides a more formal definition 
of the richness curve as the solution to a linear program- 
ming problem. 

RICHNESS CURVES AND LORENZ CURVES 

Marketing researchers recently have expressed interest 
in applying measures of market concentration (Buchanan 
and Morrison 1987; Schmittlein 1986; Schmittlein, 
Cooper, and Morrison 1990) developed in industrial or- 
ganization for problems involving measurement of cus- 
tomer concentration. In particular, these researchers have 
applied the Lorenz curve and Gini coefficient (see, e.g., 
Singer 1968). We therefore contrast the richness curve 
with the Lorenz curve, as the latter has also been dis- 
cussed in a segmentation context and provides an alter- 
nate way to proceed. Whereas the richness curve spec- 
ifies the proportion of respondents in a target of size t 
who are users of a product, the "modified" (Buchanan 
and Morrison 1987) Lorenz curve3 specifies the per- 
centage of all users that is contained in a target of size 
t, where targets are formed as in the richness curve by 
aggregating segments in descending order of u,. The 
modified Lorenz curve is a simple function of the rich- 
ness curve, 

searchers have referred to as a "meaningful measure of 
effect" (Yeaton and Sechrest 1981). 

The "base rate," r, indicating the proportion of the 
entire sample of n = 400 consumers that use the hy- 
pothetical product, is the richness of the unsegmented 
market and is indicated by a dashed horizontal line in 
Figure 1. This rate (42% in Figure 1) indicates the return 
the marketer can expect from not segmenting the market, 
but appealing to a random sample of consumers. The 
S = 8 segments in Figure 1 are arranged, left to right, 
in decreasing order of richness. The richness for each 
segment separately, u, is shown as a descending step 
function. The richness curve can be expressed as a 
weighted average of segment-level usage rates, added in 
decreasing rank order (us - u+ 1). The richness for a tar- 
get containing a proportion t of the market, rt, is infor- 
mally defined as: 

(1) 
j=r 
1l. 

where: 

i = RND(nt), 
u*= us if ith consumer E sth segment, and 

RND is a rounding function. 

Elements r, specify the richness curve, where rt - r, if 
t' > t, so that r, specify monotonically decreasing (i.e., 
nonincreasing) richness values of target segments con- 

(2) L, = tr,/r, 

where L, is the proportion of all users who are in a target 
of size t. 

In the "worst case," all us are equal and the modified 
Lorenz curve is given by a straight line passing through 
(0,0) and (n,l). In the "best case," one segment (of size 
nr) captures 100% of the consumers; this defines a Lo- 
renz curve from (0,0) to (nr,l) and from (nr,l) to (n,1). 
Figure 2 shows best, worst, and observed modified Lo- 
renz curves for segmentation scheme A from Table 1. 

The modified Lorenz curve, like the richness curve, 
is contingent on the size of market targeted and is easily 

2The probabilities u* are assumed to be constant within segment, 
as opposed to approaches taken by stochastic modelers, which specify 
a distribution of probabilities. In our case, a constant probability is 
reasonable. Our consumption variable is a fixed binary indicator of 
consumer status (user/nonuser) rather than an indicator of stochastic 
choice. The person either uses the product or does not. We do not 
have a true purchase probability estimated, say, from a string of scan- 
ner data. If we did have such data, we could model purchase prob- 
abilities with the beta-binomial distribution (Buchanan and Morrison 
1987, 1988). Or, following Schmittlein, Cooper, and Morrison (1990), 
we could use Morrison's (1969) extension of the negative binomial 
to model number of purchases. 

3The Lorenz curve typically orders consumption along the horizon- 
tal axis from lowest to highest; our modification orders consumption 
from highest to lowest for comparability with the richness curve. 
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Figure 2 
MODIFIED LORENZ CURVE FOR SCHEME A 
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Overall Measures for Comparing Segmentation 
Schemes 

The Gini coefficient is an overall measure of concen- 
tration based on the Lorenz curve (Schmittlein 1986; 
Schmittlein, Cooper, and Morrison 1990) that has direct 
application as an evaluative index for market segmen- 
tation. The "modified Gini coefficient," g (Buchanan and 
Morrison 1987), is an overall measure that quantifies the 
extent to which the modified Lorenz curve deviates from 
the 45-degree line in Figure 2 that represents equal con- 
sumption rates across segments. The modified Gini coef- 
ficient is obtained as the ratio of the area B in Figure 2 
to areas A + B,4 and values for each of the three schemes 
are gA = .280, gB = .323, and gc = .281. Thus, the 
modified Gini coefficient suggests that scheme A per- 
forms the worst. Again, inspection of Table 1 shows the 
practical utility of this conclusion to be questionable. 

An alternate overall measure based on the richness curve 
is simply the area between the richness curve and the 
horizontal base rate line. It is directly interpreted as the 
"average richness gain"5 (ARG) over the base rate across 
all t. For the three schemes in Table 1, average richness 
gains are ARGA = .127, ARGB = .117, and ARGc = 
.086. These values fit with our intuition about Table 1. 

The reason for the discrepancy between the Gini coef- 
ficient and ARG is easy to see if we express 

ARG = (r - r) 
Jo 

interpretable. However, the two curves are useful for 
different applications. The relationship presented in the 
richness curve is a simple series of "moving deviation 
scores"-that is, differences in proportions between tar- 
get segments of gradually increasing size and the unseg- 
mented total market. Thus, a marketing problem that can 
be formulated in terms of the degree of "deviance" of a 
target segment from the market as a whole suggests us- 
ing the richness curve representation. Product position- 
ing and advertising decisions center around documen- 
tation of such patterns of deviance. The modified Lorenz, 
in contrast, should be considered if attention is to be di- 
rected specifically to the problem of reaching or captur- 
ing a fixed proportion of all consumers. Because by ob- 
serving the slope of the modified Lorenz we can identify 
a point of "diminishing return," the modified Lorenz is 
also useful for identifying an optimal target size (note 
that this can also be simply seen by comparing the seg- 
ment proportions in Table 1 with the base rate). In Fig- 
ure 2, diminishing returns are obtained in the sample af- 
ter inclusion of the first two segments. However, 
comparing the two curves highlights some problems in 
the presentation of segmentation data. The Lorenz curve 
puts the visual emphasis at the "back end" of the curve, 
which is not usually of interest. Moreover, the superi- 
ority of segment 1 is not shown as clearly as in the rich- 
ness curve. 

g = (t(r/r- 1)). 

ARG is the mean increase in richness, whereas the mod- 
ified Gini coefficient is the average proportionate in- 
crease in richness weighted by the target size. Though 
the Gini coefficient incorporates both target size and 
richness in an overall index, we believe target size is a 
separate strategic decision and should not influence the 
overall index. 

However, one should question whether either overall 
index is practically meaningful. In a specific application, 
it is realistic to obtain an index only for values of t that 

4The maximum Lorenz curve in Figure 2 assumes that individual 
probabilities are either 0 or 1. For product usage, a stochastic as- 
sumption that individual probabilities range between 0 and 1 may be 
more realistic (Buchanan and Morrison 1987), and the maximum curve 
will be attenuated. However, the relative across-scheme comparisons 
of the modified Gini coefficient will not be affected because the at- 
tenuated denominator term in the Gini coefficient will be constant for 
all schemes. 

SThe overall measure based on the richness curve can be normed 
by dividing by the area under the maximum richness curve. Given a 
base rate of r, the area under the maximum curve is r(l - r) + 
(1 - r)2/2 = (1 - r2)/2. The normed measure should be used when 
one or more segmentation schemes are compared across a series of 
products with different base rates. 
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correspond to target sizes of managerial interest. As a 
manager is unlikely to target 80% or more of the mar- 
ketplace, why should these target sizes affect the overall 
index? If overall indices are used, they should be con- 
ditional on a relevant range of target sizes. 

BIAS AND STABILITY OF THE RICHNESS CURVE 

Unfortunately, it is not possible simply to calculate 
richness curves, such as in Figure 1, from sample survey 
data and immediately use the curve and summary statis- 
tics to evaluate the effectiveness of one or more seg- 
mentation schemes. The estimates of richness, us, ob- 
tained in sample data contain sampling error and, because 
of the way richness curves are constructed, this error will 
overstate the richness that can be expected in the pop- 
ulation. We first examine the problem and then describe 
bootstrap methods to correct for the bias. 

Respondents in the sample who are classified into a 
given segment may overrepresent or underrepresent the 
actual segment richness in the population. However, be- 
cause segments are ranked by apparent richness when 
richness curves are constructed, segments with a positive 
error in the estimated segment richness tend to be put 
first in the richness curve. As an illustration, suppose 
there are only two segments, A and B, and that our seg- 
mentation system is useless-on average, the population 
segment richness for both segments is equal to the base 
rate, which we assume is .50. To test the segmentation, 
we draw a sample and find, by chance, that one segment 
is "richer" than the other (say the sample richness values 
are A = .40 and B = .60). If we naively place the "richer" 
segment B first, construct a richness curve, and an- 
nounce that we expect a lift of .10 over the base rate by 
targeting segment B, we are clearly wrong. However, 
with only one sample on which to base estimates, we 
cannot recognize this mistake. 

This mistake means that the rank ordering of segments 
in the sample based on observed richness is also subject 
to error. Unless this possible transposition of segments 
and the inflation in richness caused by positive errors can 
be adjusted, the sample will give us misinformation as 
to which segments should be targeted first. Finally, 
without some sort of confidence interval about the (ad- 
justed) richness curve, a manager cannot know how ac- 
curate results are or for which target sizes a richness curve 
is significantly different from the base rate. An overall 
test of the null hypothesis that the richness curve is equal 
to the base rate for all values of t is provided by the 
standard chi square test of the equality of segment pro- 
portions. However, if the chi square test is significant, 
we will not know for which specific target sizes the rich- 
ness curve differs from the base rate. Confidence inter- 
vals based on the bootstrap provide such specific guid- 
ance. 

Bootstrapped Richness Curves 

The bootstrap (Efron 1982) is a nonparametric method 
for estimating bias and variability of a sample estimate, 

using replicated resampling from the empirical sample 
probability distribution. As such, the bootstrap provides 
a simple method of determining the extent of bias in a 
richness curve estimated from sample data, as well as a 
confidence interval for the richness curve. 

Informally, the bootstrap adjusts for bias in the sample 
richness curve as follows. Let p, specify the population 
value of the richness curve for target size t, and r, the 
observed value of richness in the sample data. The true 
bias will be (r, - pt). Unfortunately, we do not know p,, 
so we cannot directly establish the degree of bias. How- 
ever, we can estimate bias by considering a different 
population that has r, as its true population richness. Then 
we can sample from this known population distribution 
and, by simulation over a series of J samples, estimate 
the average sample richness, Pr, for this population. Then 
bias can be estimated indirectly as (r, - r,) and an es- 
timate of the true population richness curve can be ob- 
tained as p, = r, - (r, - r) = 2r, - ,. 

Formally, let ( be the function that generates a sample 
richness curve, r, from a joint probability vector, p. 
Values pi, where i = 1, ... 2S, specify the joint prob- 
ability of the binary consumption variable and segment 
membership, as observed in the sample data. We can 
express the sample richness curve as 

(4) r = +(p). 

We then generate J = 200 bias-adjusted "pseudo-rich- 
ness curves" (Gifi 1990, p. 420), rj, 

(5) r,= +(p) - [K(v,/n) - c(p)] 

= 2+(p) - -(vj/n) 

= 2r - r, 

where vj is one of J vectors whose elements specify n 
observations sampled with replacement from the multi- 
nomial distribution with probability vector p, and where 
rj = 4(vj/n). The population richness curve, p = +(s), 
with i the population probability vector, is then ap- 
proximated as the average 

(6) P = 2Er/J. 

A confidence interval is defined, based on the middle 
95% of fij values for each j in the J pseudo-richness curves. 

Parts A through D of Figure 3 show sample (solid line) 
and mean adjusted, upper 2.5%, and lower 2.5% boot- 
strapped (dashed lines) richness curves. As expected, the 
confidence interval narrows for all three schemes as tar- 
get size increases. Part D superimposes the adjusted curves 
for the three schemes. Clear differences among the three 
schemes can be seen. In parts A and B, curves for schemes 
A and B show minimal bias, whereas part C shows that 
bias in scheme C is particularly large, with an adjusted 
richness curve that is almost flat and a 95% confidence 
interval that generally includes the base rate for all target 
sizes. In part D, scheme A clearly outperforms scheme 
B for target sizes t < .3, whereas scheme B outperforms 
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Figure 3 
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A for t > .3. If a niche strategy is to be pursued, scheme 
A is preferable, but as the size of the target segment 
approaches the base rate, scheme B is preferred. 

The richness curve makes clear that the superiority of 
a segmentation scheme is not effectively determined 
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through (1) R2 (which suggests all are the same), (2) 
modified Gini (which suggests scheme B is best), or (3) 
visual inspection of Table 1 (which suggests scheme A 
is the best). Richness curves, in contrast, facilitate a con- 
tingent evaluation of market segmentation schemes. 
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Factors That Contribute to Bias in Richness Curves 

Parts A through C of Figure 3 show the extent of bias 
in a sample richness curve for our hypothetical example. 
In a broader context, however, how large is the bias in 
a sample richness curve and what factors affect the de- 
gree of bias and stability? A Monte Carlo analysis was 
performed to address these questions. Table 2 presents 
the levels of the seven factors investigated in the Mont6 
Carlo analysis. The first three factors-number of seg- 
ments, sample size, and base rate-are self-explanatory. 
Factor 4 specifies the range of segment sizes. Three con- 
ditions were used: all segments of equal size, two dif- 

ferent segment sizes with the larger segments three times 
the size of the smaller, and two different sizes with the 
larger eight times the smaller. Factor 5 specifies whether 
the larger or smaller segments have relatively higher or 
lower usage rates and factor 6 specifies the range in seg- 
ment usage rates. Finally, factor 7 specifies the degree 
of "skew" in the usage rates. For example, schemes A, 
B, and C in Table 1 provide illustrations, respectively, 
of top, equal, and bottom skew conditions. 

Because the seven factors produce 2187 possible com- 
binations, a 37 fractional factorial design (Addleman 1962) 
was used to generate a subset of 27 trials that allowed 
main effects to be estimated (see DeSarbo and Carroll 

Table 2 
FACTORS FOR MONTE CARLO ANALYSIS 

Factor 

1 Number of segments, S 

2 Sample size, n 

3 Base rate, r (total sample usage rate) 

4 Ratio of largest to smallest n,, where half of the n, are "large" 
and half are "small" 

5 Size of n, for segments ordered by usage rate 

6 Range of segment usage rates, d = max(u,) - min(u,) 

7 Evenness' of usage rates, u, 

A 1:1 (n, = n/S) 
B 3:1 (small n, = n/2S, big n, = 3n/2S) 
C 8:1 (small n, = 2n/9S, big n, = 16n/9S) 

A Small n, segments have highest usage 
B Small and large n, segments alternate (half replications using 

Isls..., half Isls...) 
C Large n, have highest usage rates 

A .10 
B .20 
C .40 

A Top heavy 
B Equal differences 
C Bottom heavy 

aAfter specification of r, n, and n, from the above parameters, usage rates in these three conditions are solved for as follows: 

A. Top skew condition. Bigger difference between largest usage rates. 
We have S equations in S unknowns, and solve for u,: 
In,u, = rn 

U - U2 = d(w,/Yw,); w, = 10 

u2 - U3 = d(w,/Ew,); w, = 5 

U3 
- 

U4 = d(w,/Xw,); w, = 1 

Us-I - Us = d(w,/ws) w, = 1 

B. Equal difference condition. Solve for u,: 
En,u, = rn 
U - U2 = d(w,/Xw,); w, = 1 
U2 

- 
U3 = d(w,/2w,); w, = 1 

Us-1 - Us = d(w,/w,) w, = I 

C. Bottom skew condition. Bigger difference between smallest usage 
rates. Solve for u,: 
sn,u, = rn 
Ul - U2 = d(w,/Ew,); w, = 1 
U2 - U3 = d(w,/Ew,); w, = 1 

US-3 - US-2 = d(w,/Xw,); w, = 1 

US-2 - Us-1 = d(w,/2w,); w, = 5 
s-_, - Us = d(w,s/w,) w, = 10 

Levels 

A4 
B8 
C 12 

A 250 
B 500 
C 1000 

A .10 
B .20 
C .30 
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1985; DeSarbo and Cho 1989 for similar analyses).6 These 
27 trials appear in Table 3.7 Given the constraints in Ta- 
ble 2, each of the 27 trials uniquely specifies an S x 2 
contingency table. For each of the 27 trials, 200 sample 
contingency tables were randomly generated. The bias 
for five different target sizes was obtained as 

(7) bt, = r,,ij 
- 

ptj, for t = .1, .2, .3, .4, .5, 

where r,ij is the richness for the i" replication of the jh 
combination of design factors and tj is the "population" 
richness for the jth combination. Standard errors, s,, also 

6Because of the modest scope of this Monte Carlo analysis, these 
results should be considered preliminary. Ideally, a full factorial de- 
sign is preferred, possibly with additional levels of some factors. 
However, computational time and expense generally preclude that op- 
tion in actual applications. 

7Some of the potential combinations produced negative usage rates 
(e.g., 1A + 2A + 3A + 4C + 5C + 6C + 7C). Though the design 
in Table 3 was found by trial and error, the approach suggested by 
Steckel, DeSarbo, and Mahajan (1991) could be used to derive a de- 
sign matrix more directly. 

were obtained. Results for the 27 trials are reported in 
Table 3. We can see that some trials produce bias up to 
.10; clearly there are certain situations in which bias ad- 
justments are crucial. 

Results of main-effect ANOVAS for five mean bias 
dependent variables and five standard error variables, as 
well as the marginal means on these variables, are re- 
ported in Table 4. Across all five target sizes, bias in- 
creases with factor 1 (a higher number of segments), fac- 
tor 2 (a smaller sample size), and factor 3 (a higher base 
rate). Factor 4 (the ratio of largest to smallest segment 
sizes) and factor 5 (the sample sizes of segments with 
relatively high or low usage rates) are not significantly 
related to bias. Thus, individual segment sizes do not 
significantly affect bias, but the number of segments and 
total sample size do. Market segmentation in small sam- 
ples and with many segments will produce highly biased 
richness curves. For target size t equal to .1, factor 7 (a 
"bottom-heavy skew") contributes to bias, whereas for 
target sizes t equal to .1 and .5, factor 6 (a small range 
of segment usage rates) is related to bias. In practical 

Table 3 
BIAS AND STANDARD ERROR FOR 27 TRIALS 

Design factorsa Bias measuresb Standard error measuresc 

Trial Fl F2 F3 F4 F5 F6 F7 b, b2 b bS bs, S24 b s5 

1 A A A B C A C .0246 .0227 .0218 .0195 .0147 .0296 .0290 .0291 .0280 .0250 
2 B B A C C A C .0344 .0289 .0241 .0197 .0165 .0269 .0238 .0207 .0188 .0176 
3 C C A A C A C .0402 .0297 .0228 .0179 .0136 .0229 .0181 .0157 .0142 .0123 

4 A A A B B B B .0108 .0093 .0077 .0053 .0016 .0529 .0439 .0402 .0379 .0346 
5 B B A C B B B .0227 .0140 .0099 .0065 .0034 .0342 .0319 .0283 .0239 .0219 
6 C C A A B B B .0175 .0112 .0077 .0051 .0030 .0267 .0216 .0187 .0164 .0148 

7 A A A B A C A -.0083 -.0017 .0013 .0019 .0022 .0883 .0694 .0571 .0439 .0362 
8 B B A C A C A .0103 .0085 .0073 .0046 .0032 .0522 .0299 .0248 .0213 .0189 
9 C C A A A C A -.0005 .0039 .0055 .0036 .0018 .0439 .0295 .0232 .0193 .0168 

10 A B B A B A A .0019 .0019 .0029 .0048 .0054 .0326 .0326 .0290 .0252 .0236 
11 B C B B B A A .0118 .0100 .0127 .0128 .0111 .0306 .0269 .0223 .0190 .0168 
12 C A B C B A A .0813 .0647 .0622 .0451 .0421 .0531 .0446 .0405 .0373 .0343 

13 A B B A A B C .0171 .0171 .0115 .0053 .0003 .0334 .0334 .0300 .0271 .0255 
14 B C B B A B C .0336 .0214 .0166 .0115 .0064 .0322 .0245 .0209 .0191 .0176 
15 C A B C A B C .1089 .0812 .0616 .0472 .0356 .0611 .0456 .0393 .0365 .0346 

16 A B B A C C B -.0011 -.0011 -.0006 .0003 -.0014 .0468 .0468 .0408 .0352 .0334 
17 B C B B C C B .0175 .0161 .0123 .0097 .0077 .0270 .0262 .0220 .0201 .0182 
18 C A B C C C B .0658 .0533 .0418 .0339 .0278 .0530 .0459 .0398 .0358 .0331 

19 A C C C A A B .0123 .0064 .0043 .0033 .0024 .0419 .0257 .0209 .0193 .0185 
20 B A C A A A B .0823 .0669 .0549 .0449 .0357 .0584 .0481 .0434 .0394 .0359 
21 C B C B A A B .1041 .0815 .0673 .0559 .0459 .0441 .0342 .0305 .0278 .0262 

22 A C C C C B A -.0009 .0391 .0390 .0390 -.0001 .0233 .0233 .0233 .0233 .0210 
23 B A C A C B A .0301 .0329 .0363 .0374 .0326 .0694 .0511 .0432 .0390 .0357 
24 C B C B C B A .0180 .0251 .0287 .0297 .0272 .0472 .0366 .0301 .0267 .0246 

25 A C C C B C C .0070 .0018 .0000 -.0008 -.0043 .0277 .0221 .0216 .0217 .0212 
26 B A C A B C C .0728 .0579 .0462 .0363 .0273 .0606 .0507 .0460 .0429 .0405 
27 C B C B B C C .0518 .0350 .0255 .0200 .0147 .0462 .0395 .0348 .0316 .0293 

'As identified in Table 2. 
bBias measures for five target sizes as defined in expression 7. 
CStandard error in sample richness values for five target sizes. 
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Table 4 
ANOVA RESULTS AND MARGINAL MEANS FOR BIAS AND STANDARD ERROR 

Design Factor Results for bias, b,, where: Results for S.E., s,, where: 

factor level t = . t = .2 t = .3 t = .4 t = .5 t = . t = .2 t = .3 t = .4 t = .5 
****a ** ** ** n**s ns ns ns ns 

Fl A .0070 .0106 .0098 .0087 .0023 .0418 .0362 .0324 .0291 .0266 
B .0351 .0285 .0245 .0204 .0160 .0435 .0348 .0302 .0271 .0248 
C .0541 .0428 .0359 .0287 .0235 .0443 .0358 .0303 .0273 .0251 

*** ** ** ** **** **** **** **** **** **** 

F2 A .0520 .0430 .0371 .0302 .0244 .0585 .0476 .0421 .0379 .0344 
B .0288 .0234 .0196 .0163 .0128 .0404 .0343 .0299 .0264 .0246 
C .0154 .0155 .0134 .0113 .0046 .0307 .0242 .0210 .0192 .0175 

** * ** ** **** ns ns ns ** *** 
F3 A .0169 .0141 .0120 .0094 .0067 .0420 .0330 .0287 .0249 .0220 

B .0374 .0294 .0246 .0190 .0150 .0411 .0363 .0316 .0284 .0264 
C .0419 .0385 .0336 .0295 .0202 .0465 .0368 .0326 .0302 .0281 

ns ns ns ns ns ns ns ns ns ns 
F4 A .0290 .0245 .0208 .0173 .0131 .0439 .0369 .0322 .0287 .0265 

B .0293 .0244 .0216 .0185 .0146 .0442 .0367 .0319 .0282 .0254 
C .0380 .0331 .0278 .0221 .0141 .0414 .0325 .0288 .0264 .0246 

ns ns ns ns ns * ns ns ns ns 
F5 A .0400 .0317 .0256 .0198 .0148 .0506 .0378 .0322 .0281 .0256 

B .0308 .0229 .0194 .0150 .0116 .0405 .0349 .0313 .0284 .0264 
C .0254 .0274 .0251 .0230 .0154 .0385 .0334 .0294 .0268 .0245 

* ns ns ns * * * * * 

F6 A .0437 .0348 .0303 .0249 .0208 .0378 .0315 .0280 .0254 .0234 
B .0286 .0279 .0243 .0208 .0122 .0423 .0347 .0305 .0278 .0256 
C .0239 .0193 .0155 .0122 .0088 .0495 .0400 .0345 .0302 .0275 

** ns ns ns ns ns ns ns 
Fl A .0160 .0205 .0218 .0199 .0139 .0490 .0382 .0326 .0283 .0253 

B .0369 .0286 .0228 .0183 .0140 .0428 .0360 .0316 .0284 .0263 
C .0434 .0329 .0256 .0196 .0139 .0379 .0319 .0287 .0267 .0249 

'Significance levels: 
ns p > .05 
*p - .05 
**p - .01 
***p < .001 
****p - .0001 
The p-values are for tests of the null hypothesis that the three bias measures (or standard errors) for the three factor levels are the same for 

each of the seven design factors. 

terms, these results indicate that unless the characteris- 
tics of the data (few segments, high sample size, top 
skew, etc.) suggest otherwise, bias adjustment should be 
performed routinely. 

Standard error, in contrast, is related significantly to 
factor 2 (sample size) across all target sizes, as one would 
expect. In addition, standard error differs by factor 6 
(increases as the range of segment usage rates increases), 
also across all target sizes. For small target sizes (t = 
.1), standard error is reduced if the largest segments have 
the highest usage rates (factor 5) and if there is a "top- 
heavy" skew condition (factor 7). Finally, for large tar- 
get sizes (t = .4, .5), standard error is smaller for lower 
base rates (factor 3). Though not as dramatic as the dif- 
ferences in mean bias, the results indicate that charac- 
teristics of the data other than sample size can affect the 
confidence interval about a richness curve, and that con- 

fidence intervals for a number of segmentation schemes 
should not be assumed to have equal widths. 

Performance of the Bootstrap Adjustment 

Nonmonotonicity of adjusted richness curves. On 
careful examination, we see that the bootstrapped rich- 
ness curves in Figure 3 are not entirely monotone de- 
creasing. Rather, they first increase and then decrease. 
Appendix B shows how the nonmonotonicity results from 
the bias adjustment formula in expression 5, in that a 
linear combination of monotone decreasing functions, 
<>(p) and 4(vj/n), may not be a monotone decreasing 
function. Thus, a monotone decreasing adjusted curve is 
not guaranteed by bootstrap methodology. 

However, the nonmonoticity observed in a single sam- 
ple disappears when we average adjusted curves ob- 
tained from a number of samples. We performed an ad- 
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ditional analysis in which the usage rates in Table 1 were 
assumed to be population values for the three segmen- 
tation schemes, rather than observed sample tables. We 
then sampled from the population tables to generate T = 
50 "observed sample tables." Further, for each of these 
50 observed sample tables, we obtained a bootstrap-ad- 
justed richness curve by using expressions 5 and 6, based 
on J = 50 resampled tables. The nonmonotonicity ob- 
served in Figure 3A-C canceled out when we aggre- 
gated over T = 50 observed samples. Hence, though in- 
creasing adjusted richness curves may appear in a given 
sample, the expected value of the adjusted curve does 
not appear to exhibit nonmonotonicities. 

This assertion is supported by further Monte Carlo 
simulations with the same 27 trials defined by the factors 
in Table 2. For each of the 27 trials, 25 sample contin- 
gency tables were generated, and for each of the 25 sam- 
ple tables an adjusted bootstrapped curve based on 25 
resampled tables was obtained. Other than minor fluc- 
tuations likely due to sampling error, we found no evi- 
dence of nonmonotonicity in the average adjusted rich- 
ness curves obtained for the 27 trials. 

Adequacy of the bootstrap adjustment. Another issue 
is how much of the bias in the observed richness curve 
is corrected by the bootstrap adjustment. The 27-trial 
Monte Carlo simulation just described was used to ad- 
dress this issue. For each of the 25 sample contingency 
tables, we obtained the average deviation of the sample 

richness curve (r,) from the known population curve (p,) 
and the average deviation of the adjusted bootstrapped 
curve (p,) from the known population curve. Results are 
reported in Table 5. 

The five columns on the right side of Table 5 show 
the degree of bias in the observed sample richness curve 
(r, - p), and correspond to the first five columns of 
Table 4.8 The first five columns in Table 5 show the bias 
in the adjusted richness curve (P, - Pt); ideally this bias 
would be zero. The bootstrap adjustment removes most 
but not all of the bias in the observed curve. For ex- 
ample, for 10% target sizes, the observed sample rich- 
ness curve for simulation trials with 12 market segments 
(factor Fl, level C) overestimated richness by .0635; the 
adjusted bootstrapped richness curve still overestimated 
richness, but by only .0291. 

Why does the bootstrap not remove all bias? An in- 
formal argument follows. If the adjusted richness curve 
is biased, then Pt - p > 0, so the 2r, - r - p, > 0, so 
that r, - Pt > t - r,. Thus, a sample richness curve r, 
corresponding to a population curve pt will have greater 

8Though the results in Table 5 are based on 25 sample tables and 
those in Table 4 are based on 200 sample tables, the two tables agree 
closely. Because of the computational burden, we reduced the number 
of sample tables from 200 to 25 in Table 5 and used only 25 repli- 
cations in the bootstrap. 

Table 5 
MARGINAL MEANS FOR BOOTSTRAP ADJUSTED BIAS AND SAMPLE BIAS 

Design Factor Biasa in bootstrap adjusted richness curve for target size Biasb in observed sample richness curve for target size 

factor level t = . t = .2 t = .3 t = .4 t = .5 t = . t = .2 t = .3 t = .4 t = .5 

Fl A .0013 -.0011 -.0016 -.0021 -.0026 .0073 .0043 .0027 .0017 -.0000 
B .0106 .0092 .0082 .0068 .0046 .0345 .0283 .0239 .0194 .0147 
C .0291 .0221 .0202 .0177 .0149 .0635 .0492 .0411 .0341 .0275 

F2 A .0243 .0177 .0157 .0134 .0103 .0569 .0441 .0364 .0301 .0234 
B .0140 .0126 .0115 .0100 .0084 .0335 .0280 .0238 .0199 .0157 
C .0027 -.0001 -.0004 -.0010 -.0019 .0150 .0097 .0074 .0053 .0030 

F3 A -.0006 -.0028 -.0027 -.0027 -.0031 .0124 .0082 .0062 .0043 .0021 
B .0179 .0138 .0126 .0102 .0085 .0424 .0328 .0273 .0221 .0171 
C .0236 .0192 .0169 .0149 .0115 .0505 .0407 .0342 .0288 .0228 

F4 A .0135 .0109 .0097 .0081 .0061 .0332 .0277 .0235 .0191 .0145 
B .0149 .0114 .0107 .0097 .0079 .0348 .0272 .0234 .0202 .0161 
C .0125 .0080 .0064 .0045 .0029 .0373 .0268 .0208 .0159 .0115 

F5 A .0176 .0111 .0082 .0054 .0028 .0389 .0286 .0223 .0167 .0118 
B .0163 .0123 .0116 .0105 .0089 .0389 .0295 .0247 .0207 .0163 
C .0070 .0067 .0070 .0065 .0052 .0274 .0236 .0207 .0178 .0140 

F6 A .0242 .0172 .0147 .0119 .0093 .0505 .0382 .0318 .0263 .0211 
B .0088 .0064 .0053 .0042 .0020 .0297 .0231 .0185 .0145 .0100 
C .0079 .0066 .0068 .0062 .0056 .0250 .0204 .0174 .0144 .0110 

F7 A .0088 .0066 .0078 .0079 .0070 .0251 .0210 .0201 .0185 .0159 
B .0124 .0081 .0063 .0048 .0029 .0356 .0261 .0203 .0158 .0111 
C .0197 .0156 .0127 .0096 .0070 .0447 .0346 .0273 .0209 .0150 

'Bias estimated as ,P - p,. 
bBias estimated as r, - p,. 
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upward bias than a sample richness curve r, correspond- 
ing to a population curve r, > p,. Because sample rich- 
ness curves will have positive bias, rt > r, > t,. Note 
that we could extend this sequence by considering r, to 
represent the population richness curve of still another 
population and simulating an average richness curve for 
that population as well. However, because the richness 
curve (and the underlying segment probabilities) has an 
upper bound, there is a limit to how extreme such a se- 
quence of richness curves can become. Therefore, each 
richness curve in this sequence will tend to be less ex- 
treme than the previous (e.g., rt > rt > Pt, with rt - pt 
> r - rt) and the adjusted richness curve will tend to 
have some bias. 

EMPIRICAL EXAMPLE 

We present a brief empirical example, using data from 
the 1987 Leading Edge survey of consumers conducted 
in a national probability sample of 2591 adults by Chil- 
ton Research (Novak and MacEvoy 1990). The con- 
sumer behavior in which we are interested is whether the 
respondent drinks wine with dinner (two or more times 
per month). The base rate of this behavior in the sample 
is r = .143. Four segmentation schemes are used to de- 
fine consumer segments. 

1. VALS (Values and Lifestyles), a proprietary segmenta- 
tion system of SRI International (Mitchell 1983). Re- 
spondents are classified into eight psychographic groups 
on the basis of their responses to eight demographic or 
political questions and 22 social attitude questions (e.g., 
[agree or disagree] "Communists should be banned from 
running for mayor.") The eight segments range in size 
from 2.3 to 36.8%. 

2. VALS2, a proprietary segmentation system of SRI Inter- 
national (MacEvoy 1989) based on the responses to four 
demographic items and 42 self-concept and motivational 
questions (e.g., [agree or disagree] "I like to try new 
things"). The eight segments range in size from 8.1 to 
15.2%. 

3. LOV (List of Values), a nonproprietary segmentation 
scheme developed at the University of Michigan Survey 
Research Center (Kahle 1983; Veroff, Douvan, and Kulka 
1981), based on the ranking of nine value statements (e.g., 
[I value most] "a sense of belonging"). The seven seg- 
ments in this sample range from 4.2 to 20.7%. 

4. DuoVALS2, a scoring of VALS2 that combines the pri- 
mary segment classification with a secondary segment 
score, based on answers to the same VALS2 questions. 
The 34 segments in this survey range from .12 to 6.7%. 

As a basis of comparison, adjusted R2 values for the four 
schemes are: DuoVALS2 = .076, VALS2 = .085, VALS 
= .060, LOV = .013. Thus, R2 suggests that (1) VALS2 
is superior, (2) there is little difference between VALS2, 
DuoVALS2, and VALS, and (3) LOV performs poorly. 

Our marketing objective is to form a target segment, 
based on each of the four schemes, that contains the 
greatest proportion of wine drinkers. Because none of 
the segments in any of the four schemes are directly ac- 
cessible, we assume that customer self-selection is the 

operating principle. To the extent that we can identify a 
psychographic target segment that contains many wine 
drinkers, we can tailor a marketing communications pro- 
gram to that target. Which segmentation scheme can best 
identify such a target segment? 

Adjusted bootstrapped richness curves for each of the 
four segmentation schemes are shown in Figure 4. Note 
that the nonmonotonicity of the adjusted DuoVALS2 curve 
is particularly evident in this example, likely because of 
the very large number of segments. In such situations, 
the pattern of nonmonotonicity indicates caution in in- 
terpreting the front end of the curve. This observation is 
reinforced by comparing standard deviations of the ad- 
justed curves for DuoVALS2 and VALS2. For t = .01, 
the standard deviation is .087 for DuoVALS2 and .057 
for VALS2; for t = .10 the values are .047 for Duo- 
VALS2 and .050 for VALS2. The richness curve for 
DuoVALS2 is more variable than that for VALS2 for 
very small (t < .10) target sizes. 

It is evident that for small target sizes (t ' .15), VALS2 
nearly doubles the increment over base rate provided by 
either LOV or VALS. However, note that even LOV 
does a respectable job of targeting consumer behavior 
for this range of target sizes. The adjusted R2 (.013) dis- 
guises this fact and makes LOV appear nearly useless. 
The richness curves make explicit how each scheme per- 
forms at markets of different sizes. The superiority of 
VALS2 extends to a target segment of about 30% of the 

Figure 4 
WINE WITH DINNER: FOUR ADJUSTED RICHNESS 

CURVES 
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population; thereafter, the schemes are almost indistin- 
guishable. Note that any errors in directing marketing 
communications to the target segment will attenuate the 
richness curve, so that the adjusted curve is best viewed 
as an upper bound. By straightforward multiplication of 
the total richness, or net increment over base rate, by 
the size of the market, one can convert differences among 
the schemes into upper bound estimates of the number 
of consumers for any projected market, and through this 
metric the marketer can project per capita profits, dis- 
tribution costs, and advertising expenditures for each 
segmentation scheme. 

DISCUSSION AND CONCLUSIONS 

Though richness curves closely resemble Lorenz curves, 
our work is conceptually distinct from recent marketing 
applications of the Lorenz curve (Schmittlein 1986; 
Schmittlein, Cooper, and Morrison 1990). These appli- 
cations are used to identify an individual-level con- 
sumption distribution for the purpose of specifying a cu- 
mulative concentration (i.e., Lorenz) curve. The resulting 
concentration curve implies the maximum possible rich- 
ness curve, given specific stochastic assumptions about 
individual consumer behavior. Market segments are not 
identified, but the degree of concentration suggests the 
segmentability of the market. In contrast, we begin with 
predefined market segments and identify a segment-level 
richness curve as a way of quantifying the degree to which 
the segmentation can be used to target consumers effec- 
tively. 

Though we emphasize that measures of variance ex- 
plained can be misleading if used to evaluate market seg- 
mentation, that observation should not be taken to imply 
that variance explained measures should never be used. 
If interest is in a segment profile problem rather than a 
target segment problem, measures of variance explained 
provide a convenient, overall measure of magnitude of 
effect. 

It is important to mention what we have not consid- 
ered in evaluating market segmentation schemes. We fo- 
cus on establishing the magnitude of actionable differ- 
ences in segments, but other aspects of the segmentation 
also must be evaluated, such as segment stability and 
validity, segment responsiveness to the marketing mix, 
and segment accessibility. However, as these character- 
istics can be evaluated in relation to their impact on rich- 
ness, richness curves provide a natural starting point for 
the evaluation process. For example, observed segment 
sizes could be replaced by "effective segment sizes" that 
adjust for reachability via media vehicles and cost of 
reaching. 

Though we use binary criterion variables, the boot- 
strap can be used with continuous variables by resam- 
pling from the observed sample distribution. Continuous 
variables open the possibility of replacing a binary usage 
variable with an index that incorporates such consider- 
ations as segment accessibility and responsiveness. In 
addition, extensions to continuous (e.g., regression-based) 

rather than categorical segmentation variables, as well 
as the effect of measurement error on the segmentation 
and consumption variables, should be explored. 

Last but not least, alternatives to the bootstrap that 
produce monotone decreasing adjusted curves, possibly 
based on the linear programming formulation in Appen- 
dix A, should be investigated. Because the bootstrap does 
not guarantee a monotone decreasing curve (though this 
problem disappears when one aggregates over multiple 
samples, and though the bootstrap does correct for most 
sample bias), other approaches to bias adjustment may 
ultimately prove preferable. Our results provide a bench- 
mark against which future research can be assessed. 

Besides evaluating segmentation, richness curves have 
other applications. They can be used to compare hier- 
archically nested market segments as a way of deter- 
mining the number of segments to retain. The impact on 
richness of using four through 10 nested segments can 
be clearly seen. Further, effective graphic representation 
facilitates a quick and accurate comparison of segmen- 
tation schemes. Richness curves would be useful as part 
of a decision support system, allowing graphic analysis 
of large quantities of marketing data. Finally, richness 
can be used as a criterion for developing market seg- 
mentation schemes. Many cluster analysis algorithms 
implicitly attempt to maximize variance explained. 
However, if variance explained is not a reasonable eval- 
uative criterion, it is not a reasonable developmental cri- 
terion either. 

APPENDIX A 
A FORMAL DEFINITION OF THE RICHNESS 

CURVE 

Here we develop a rigorous definition of the richness curve. 
We have an S x 2 table in which the rows indicate S present 
market segments and the columns the dichotomy user/nonu- 
ser. Now consider an arbitrary segment, T,, containing the 
proportion t of users, representing a target segment that may 
or may not be one of the S present segments. The size of the 
arbitrary target is 

(Al) t = p(T,) = s=l,sp(T,|segment = s)p(segment = s), 

and the proportion of users in the target is 

(A2) p(userlT,) = p(T,luser)p(user)/p(T,) 

= t- '{s= ,sp(Tt,segment=s n user) 

p(userlsegment=s) 

p(segment=s)}. 

Assume that selection into the target segment is unbiased within 
each of the S present segments, that is, 

(A3) p(T,jsegment=s n user) = p(T,|segment=s), 

or equivalently, 

(A4) p(T, n userlsegment=s) 

= p(T,Isegment= s)p(user|segment= s). 
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The richness curve, r, = max{p(userlT,)}, is defined as the set 
of target segments, {T,}, with maximal usage rates. Substitut- 
ing expression A3 into expression A2, and using the constraint 
implied by expression Al, we can formalize this interpretation 
of the richness curve by defining the richness curve as the 
(scaled) solution of a linear program, 

(A5) 

r, = t-l max{,=l,s sUspsl(X=l,s 8sPs = t) n (0 < 8s < 1)} 

where: 

8s = p(T,|segment=s), 
Us = p(userlsegment=s), and 
Ps = p(segment=s) 

Computing the richness at point t is thus a special case of a 
class of separable programs discussed, for instance, by Saaty 
(1959, p. 149-154). 

To solve the linear program, we first reorder the usage rates 
us so they do not increase. Ties are broken arbitrarily. Now, 
let u[Il be the largest of the us, u[21 the second largest, and so 
on. Thus, the u[i, are the order statistics corresponding to the 
Us. Order the ps accordingly. Hence, P[Il is the size of the seg- 
ment with the largest u,, that is, the segment with usage rate 

ut1l, and so on. Now, 

(A6) r, = ull 

rt = t~ {piluill 

if t Pill, 

if P[ll < t ' P[l + P[21, 

+ (t - 
P[l])U[2]} 

r, = t-'{p[lIu[il + Pi21U[21 if P[l] + P[2] < t ' P[l] 

+ (t - P[ii - P[2])U[3]} + P[21 + P[3], 

and so on. 
In addition to providing a rigorous definition of the richness 

curve, expression A5 is compact in that no complicated no- 
tation involving reordering is necessary to define the richness 
curve. The solution in expression A6 is also more convenient 
for obtaining selected values along the richness curve than 
expression 1, particularly for large sample sizes. Further, be- 
cause the optimum of a linear program as a function of the 

parameters of the problem has been studied extensively, many 
results on continuity, convexity, and differentiability are avail- 
able, so that statistical properties of richness curves can be 
studied in future work. 

APPENDIX B 
NONMONOTONICITY OF ADJUSTED RICHNESS 

CURVES 

Figures 3 and 4 show nonmonotonic adjusted bootstrapped 
richness curves. First, note that the observed sample richness 
curve, 4(p), and the jth bootstrap resampled richness curve, 
|(v,/n), are both monotonically decreasing because the rich- 
ness function, )( ), is by definition monotonically decreasing. 
However, the jth bias-adjusted pseudocurve, r, = 2((p) - ( 

(vj/n), may not be monotonically decreasing because the linear 
combination of monotone decreasing functions is not neces- 

sarily a monotone decreasing function. It is easy to show how 

nonmonotonicities in the adjusted curve occur. Let f(t) rep- 
resent the observed richness curve, g(t) the jt bootstrap re- 
sampled curve, and h(t) the jh bias-adjusted pseudocurve, so 
the h(t) = 2f(t) - g(t). Then, taking derivatives, we have 

(B1) h'(t) = 2f'(t) - g'(t). 

Then, h'(t) > 0 (the adjusted curve increases) when 

(B2) 

Because f(t) and g(t) are monotone decreasing, expression B2 

implies that 

(B3) 

Expression B3 will almost certainly be true for values of t 

specifying a target size less than or equal to that of the richest 
segment. For such values of t, the observed richness curve will 
be flat and the derivative, f'(t), will equal zero. If the jth re- 

sampled curve, g(t), is decreasing at this point, so that g'(t) 
< 0, the adjusted curve h(t) will be increasing. 
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