
An Introduction to the .C Interface to R

Roger D. Peng Jan de Leeuw
UCLA Department of Statistics

August 28, 2002

1 Introduction

It is easy to extend R with R code. You just write functions in R, save them in text
files, and if you are very motivated you write documentation and organize them as R
packages.

In this note we discuss one way to extend R with compiled C code. The code
discussed in this note should work on any Unix installation of R and for the Dar-
win/X11 version, running on Mac OS X 10.1 or better. We do not discuss (yet) how
to add C code to the Carbon version of R. This is more complicated, and certainly
requires a different set of tools. Similarly, one can incorporate C code in Windows
using MinGW or Cygwin, but it is somewhat more complicated than in Unix and is
not discussed here.

The PDF manual Writing R Extensions provides many more details on incor-
porating C code into R. The manual is available from the CRAN website. It also
covers the .Call interface which is somewhat more complicated to use but much
more powerful. Here we only provide a brief introduction to .C.

2 Tools

We assume you have the cc or gcc compiler installed. On OS X cc comes with the
Apple Developer Tools, which you probably have if you bought OS X 10.1. If you
don’t have them, you can go to the Apple Developer site, become a member (for free),
and download the developer tools. If you are using a Solaris machine or another Unix
system (such as GNU/Linux), then either cc or gcc should already be installed.

Of course, you should also have a current version of R. The current version as of
this writing is 1.5.1.

1

http://cran.r-project.org
http://www.apple.com/developer
http://connect.apple.com/MemberSite

3 Writing the C Code

If we want to interface C code with R, the functions we write in C need to have a few
important properties:

1. C functions called by R must all return void, which means they need to return
the results of the computation in their arguments.

2. All arguments passed to the C function are passed by reference, which means
we pass a pointer to a number or array. One must be careful to correctly
dereference the pointers in the C code. Sloppy handling of pointers can be a
source of many nasty (and hard to trace) bugs.

3. Each file containing C code to be called by R should include the R.h header
file. The top of the file should contain the line

#include <R.h>

If you are using special functions (e.g. distribution functions), you need to
include the Rmath.h header file.

When compiling your C code, you use R to do the compilation rather than call the C
compiler directly. This makes life much easier since R already knows where all of the
necessary header files and libraries are located. If you have written C code in a file
called foo.c, then you can compile that code on the command line of your Terminal
window with the command

R CMD SHLIB foo.c

This command produces a file called foo.so, which can be dynamically loaded into
R (more on that later). If you do not want to name your library foo.so, then you
can do the following:

R CMD SHLIB -o newname.so foo.c

The file extension .so is not necessary but it is something of a Unix tradition.
Once you have compiled your C code you need to launch R and load the library.

In R, loading external C code is done with the dyn.load function. If I have compiled
C code from a file foo.c into a file foo.so then I can load that code using

> dyn.load(‘‘foo.so’’)

Now all of the functions that you wrote in the file foo.c are available for R to call.

2

4 Your First Program

The first program everyone writes is the “Hello, world!” program. This might well
be the only program that has been written in every computer language on the planet.
The program, when executed, simply prints out the string “Hello, world!” to the
screen. Since that’s a little boring, we will modify the standard version slightly so
that it takes an argument n indicating the number of times to print the string “Hello,
world!”. This program is only slightly more annoying. The pure R version of this
program is:

hello1 <- function(n) {

for(i in 1:n) {

cat("Hello, world!\n")

}

}

Simple. Now what if we wanted to run the for loop in C code rather than use pure
R? We can do this by writing the relevant C code and calling it from R using .C.

First, one must create a separate file containing the C code which will do the work.
We will call that file hello.c. The file hello.c might look something like this:

#include <R.h>

void hello(int *n)

{

int i;

for(i=0; i < *n; i++) {

Rprintf("Hello, world!\n");

}

}

As you can see, we have simply taken the loop in R and translated it into C. Notice
that there is no main function. Since we are not really writing a C program, just a
C function, there is no need for a separate main function. The function Rprintf is
exactly like the standard printf function in C except that Rprintf sends its output
to the R console so that you can see it when running R.

The corresponding R program would be as follows:

hello2 <- function(n) {

.C("hello", as.integer(n))

}

The first argument to .C is a quoted string containing the name of the C function to
be called. Recall that in the file hello.c we named our C function hello. Therefore,

3

the first argument to .C in this case should be ‘‘hello’’. The rest of the arguments
to .C are arguments that need to be passed to the C function. The C function only
has one argument, the number of times to print “Hello, world!”, so we pass in the
variable n (after coercing it to an integer). The type to which you coerce the variables
passed to the C function and the types in the prototype of your C function should
match (as well as the order of the variables passed). Notice that we coerce n to
integer type using as.integer and in the C function we have set n to be of type int

* (remember that variables are always passed as pointers when using .C).

4.1 Running the hello2 Program

The first thing you must do is write the code! We put the R code in a file called
hello.R and the C code in a file called hello.c. Having done that, we must then
compile the C code. At the command line (in your Terminal window), we can type

R CMD SHLIB hello.c

Running this command will produce a file called hello.so. Now, startup R. In R we
type

> source(‘‘hello.R’’)

> dyn.load(‘‘hello.so’’)

> hello2(5)

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

[[1]]

[1] 5

Wait! What are those numbers and brackets at the bottom? They are the return
values for .C. .C returns a list containing the (possibly modified) arguments which
were passed into your C function. In this .C call, we passed in an integer with the
value 5. Therefore, .C returns a list containing the number 5. If we had passed in
more arguments, then .C would return a longer list. For this program we don’t care
about the return value so we ignore it. But in most practical programs, we will need
some elements of the return value.

5 More Examples

In this section we present more (statistically relevant) examples of calling C code
from R.

4

5.1 Kernel Density Estimator

We will implement a simple kernel density estimator in this section. Given iid data
x1, . . . , xn from an unknown density, we estimate the density at a point x with

f̂(x) =
1

nh

n∑
i=1

K
(
x− xi
h

)

where K is a kernel function which is symmetric, positive, and integrates to 1. For
this example we will use

K(z) =
1√
2π
e−z/2,

i.e. the normal density.
The naive way to implement this in pure R code would be something like the

following:

ksmooth1 <- function(x, xpts, h) {

dens <- double(length(xpts))

n <- length(x)

for(i in 1:length(xpts)) {

ksum <- 0

for(j in 1:length(x)) {

d <- xpts[i] - x[j]

ksum <- ksum + dnorm(d / h)

}

dens[i] <- ksum / (n * h)

}

dens

}

Here, x is the original data, xpts is a vector of points at which we want to evaluate
the density, and h is the bandwidth parameter for the kernel function. While this
function does work, it can be made much more compact with the following:

ksmooth2 <- function(x, xpts, h) {

n <- length(x)

D <- outer(x, xpts, "-")

K <- dnorm(D / h)

dens <- colSums(K) / (h * n)

}

Unfortunately, ksmooth2 is not really much faster than ksmooth1 because the outer

function also has quite a bit of overhead.

5

What we would like to do is implement something like ksmooth1 but with the
double for loop implemented in C rather than in R. In R we would like to have
something like

ksmooth3 <- function(x, xpts, h) {

n <- length(x)

nxpts <- length(xpts)

dens <- .C("kernel_smooth", as.double(x), as.integer(n),

as.double(xpts), as.integer(nxpts), as.double(h),

result = double(length(xpts)))

dens[[‘‘result’’]]

}

The .C function calls a C function called kernel smooth which essentially implements
the double for loop. Before we get to the C code, notice that here we store the return
value of .C, which is a list containing all of the arguments we passed to kernel smooth.
When calling .C the last argument was given a name — the name here is result.
The reason this argument was given a name is because it represents the vector of
values of the estimated density function, i.e. the numbers that we eventually want to
output. We will have to extract this vector after .C is finished so we give it a name.
Since dens is just a list, we can extract the result element by subsetting the list
using the given name. That is what happens in the last line of the function.

The corresponding C function is

#include <R.h>

#include <Rmath.h>

void kernel_smooth(double *x, int *n, double *xpts, int *nxpts,

double *h, double *result)

{

int i, j;

double d, ksum;

for(i=0; i < *nxpts; i++) {

ksum = 0;

for(j=0; j < *n; j++) {

d = xpts[i] - x[j];

ksum += dnorm(d / *h, 0, 1, 0);

}

result[i] = ksum / ((*n) * (*h));

}

}

6

Note that we had to include the Rmath.h header file so that we could use the dnorm

function. The special functions which can be used in C code are all documented in
the PDF manual Writing R Extensions.

5.2 Convolutions

The following C function computes the inner product of a vector x with a lagged
version of itself. Arguments are the lag, the vector, its length, and the result. Such a
function is useful in time series analysis to compute convolutions and autocorrelations.

void cconv(int *l, double *x, int *n, double *s)

{

double *y = x + (*n - *l), *z = x + *l, *u = x;

while (u < y)

*s += *u++ * *z++;

}

Suppose this function sits in a file cconv.c. We compile the C code in such a way
that it can be loaded into R. The easiest way to do this is to use R. Just go to your
terminal window, move to the directory which contains cconv.c, and say

R CMD SHLIB cconv.c

You will see

gcc -I/usr/local/lib/R/include -I/sw/include \

-fPIC -g -O2 -c cconv.c -o cconv.o

gcc -bundle -flat_namespace -undefined suppress \

-L/sw/lib -o cconv.so cconv.o -L/usr/local/lib

Of course you could also enter these commands yourself.
Now there are two things left to do. First you load the file into R. This is simply

a matter of opening R, from the directory containing the newly created cconv.so,
and saying

> dyn.load("cconv.so")

The second is to write a convenient wrapper function in R that calls the loaded code
with the appropriate arguments. For this we use the .C function in R, which does
most of the dirty work. Our R function rconv is

rconv <- function(lag,x) {

.C("cconv",

as.integer(lag),

as.double(x),

as.integer(length(x)),

as.double(0.0))[[4]]

}

7

Observe that we convert all arguments to the approriate type (just to be sure). The .C
function returns a list with all its arguments, we only need the last (fourth) argument.
In this case we did not name the last argument but extracted it using a numeric index.
Whether one uses named arguments (as in Section 5.1) or numeric indices is a matter
of personal preference.

Thus, as an example,

> x <- rnorm(100)

> rconv(0, x)

[1] 108.0924

> rconv(1, x)

[1] 1.832316

With a little bit more trouble we can vectorize this, i.e. make it accept a vector of
lags and return a vector of convolutions of the same length. The C code now becomes

void cconv (int *l, int *m, double *x, int *n, double *s)

{

double *y, *z, *u;

int i;

for (i = 0; i < *m; i++)

{

y = x + (*n - l[i]);

z = x + l[i];

u = x;

s[i] = 0.0;

while (u < y)

s[i] += *u++ * *z++;

}

}

and the R wrapper function is written as

rconv <- function(lag,x) {

.C("cconv",as.integer(lag),

as.integer(length(lag)),

as.double(x),

as.integer(length(x)),

as.double(vector("double",length(lag))))[[5]]

}

The example now is

> l <- c(0,1,2,10)

> x <- rnorm(100)

8

> rconv(l, x)

[1] 108.092417 1.832316 3.694085 -29.567533

> rconv(seq(10), x)

[1] 1.832316 3.694085 -11.332405 3.703928 -1.572233 2.954725

[7] 1.942543 -7.963158 -2.347786 -29.567533

6 A Note on Manipulating Matrices in C

Very often in statistics we deal with matrices. However, in C there is no matrix
data type. Therefore, manipulating matrices in C can be cumbersome and confusing.
One should generally try to deal with matrices using pure R code; R has many
matrix manipulation routines that are highly optimized. Standard operations such
as eigenvalue, singular value, QR, or Cholesky decompositions should not be done in
user-written C code. However, there may still come a time when you need to pass a
matrix to some specialized C code. In that case, it is important to remember that
matrices are represented as just very long vectors (of length nrows × ncols) in C.
Extracting particular elements of the matrix will require careful handling of indices.

9

	Introduction
	Tools
	Writing the C Code
	Your First Program
	Running the hello2 Program

	More Examples
	Kernel Density Estimator
	Convolutions

	A Note on Manipulating Matrices in C

