
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

Flexible Multidimensional Scaling with the R
Package smacofx

Thomas Rusch
WU Vienna University of Economics and Business

Patrick Mair
Harvard University

Jan de Leeuw
UCLA

Kurt Hornik
WU Vienna University of Economics and Business

Abstract

In this article we introduce the R package smacofx which offers various implemen-
tations of flexible multidimensional scaling (MDS) techniques for two-way data. These
techniques allow for flexible MDS via utilizing combinations of optimal scaling and spe-
cific parametric transformations of the input dissimilarities and/or the fitted distances,
and/or residual weighting. Examples of techniques available in the package include Sam-
mon mapping, power-stress and r-stress MDS, Box-Cox MDS, local MDS, (extended)
curvilinear component analysis and curvilinear distance analysis. Various post-fit func-
tionality is available that matches the functionality available in smacof (De Leeuw and
Mair 2009), including a broad array of plots to visualize and communicate the results.
The package further includes tools and functions for goodness-of-fit assessment, local op-
timum diagnostics and MDS biplots. All the package functionalities are illustrated using
two data applications.

Keywords: proximity scaling, dimensionality reduction, multivariate statistics, manifold learn-
ing, data visualization, ordination.

1. Introduction
When faced with data in the form of (multivariate) proximities, it is common to represent and
visualize them in lower dimensions by means of techniques that are collected under various
headings including ordination, nonlinear dimension reduction or manifold learning. Many of
these techniques are offshots of multidimensional scaling (MDS) and are especially popular
for unsupervised learning, dimensionality reduction, graph drawing and exploratory data

https://doi.org/10.18637/jss.v000.i00
https://orcid.org/0000-0002-7773-2096
https://orcid.org/0000-0003-0100-6511
https://orcid.org/0000-0003-4198-9911

2 Flexible Multidimensional Scaling with the R Package smacofx

analysis. They have the aim and ability to provide a visualisation of the data, elicit intrinsic
dimensions or remove unwanted ones, provide a scaling of the data into a latent space, suggest
hypotheses or communicate complex multivariate association.
These MDS techniques apply to a single symmetric matrix of pairwise proximities between
objects i and object j (i.e., two-way data). The goal is to find a representation (embedding) of
the objects in a lower dimensional target space in such a way that the distances in the lower-
dimensional space optimally approximate the proximities. This embedding/representation
is also called the configuration of objects and the object positions in the configuration are
the quantities of main interest to be estimated (which is done via fitting distances between
the objects). MDS techniques differ primarily in how the proximities and fitted distances
are treated and also what is considered to be an optimal approximation. Some examples
are “classical” Torgerson scaling (Torgerson 1958), metric and non-metric MDS (Kruskal
1964), Sammon mapping (Sammon 1969) or power-stress MDS (POST-MDS, Buja, Swayne,
Littman, Dean, Hofmann, and Chen 2008; Groenen and De Leeuw 2010).
Some MDS methods feature hyperparameters that offer extra flexibility to represent and
explore the data in manifold ways, yielding what we call “flexible MDS”. These techniques
are the subject of this article, which introduces the R (R Core Team 2025) package smacofx
(Rusch, De Leeuw, Chen, and Mair 2025) and its functionality. This package extends the
package smacof (De Leeuw and Mair 2009; Mair, Groenen, and De Leeuw 2022) which provides
the basic software design, infrastructure such as S3 generics and basic functionality for two-
way data, including unidimensional scaling (Coombs 1950), Torgerson scaling, metric and
non-metric MDS, constrained MDS (De Leeuw and Heiser 1980), spherical MDS (Cox and
Cox 2001), unfolding (Coombs 1950) as well as models for three-way data like INDSCAL and
IDIOSCAL (Carroll and Chang 1970, for both). Building on top of that, the package smacofx
extends the basic functionality in smacof for two-way data with various flexible MDS methods
that apply parametric transformations on the proximities and/or distances and/or weights
(e.g., power transformation or Box-Cox transformations). This includes MDS methods such
as MULTISCALE (Ramsay 1977), ALSCAL (Takane, Young, and De Leeuw 1977), local MDS
(Chen and Buja 2009), elastic scaling (McGee 1966) or r-stress MDS (De Leeuw, Groenen,
and Mair 2016); we describe all of them in detail below. The present article describes the
available MDS methods for obtaining a configuration given transformation hyperparameters,
the infrastructure in smacofx and provides a manual how to use the functionality of smacofx.

Related work. As mentioned, in the present work there is a strong connection to the R
package smacof (De Leeuw and Mair 2009; Mair et al. 2022). The functionality of the packages
smacofx is modeled after what is available in smacof.
Multidimensional scaling models are implemented in other R packages as well. In stats, there
is cmdscale for principal coordinates analysis (aka Torgerson Scaling). The recommended
package MASS (Venables and Ripley 2002) allows to fit non-metric MDS (isoMDS()). Fur-
ther contributed packages allow to fit MDS models: Torgerson scaling can also be carried
out with mmds() from the DistatisR package (Beaton and Abdi 2022), which also allows
to fit MDS models to three-way data. The package vegan (Oksanen, Simpson, Blanchet,
Kindt, Legendre, Minchin, O’Hara, Solymos, Stevens, Szoecs, Wagner, Barbour, Bedward,
Bolker, Borcard, Carvalho, Chirico, De Caceres, Durand, Evangelista, FitzJohn, Friendly,
Furneaux, Hannigan, Hill, Lahti, McGlinn, Ouellette, Ribeiro Cunha, Smith, Stier, Ter Braak,
and Weedon 2022) offers weighted principal coordinates analysis (wcmdsale()), non-metric

Journal of Statistical Software 3

MDS (monoMDS()) and Isomap (isomap()). Torgerson scaling (pco()) and non-metric MDS
(nmds()) is also implemented in labdsv (Roberts 2023) and also with the same function names
in ecodist (Goslee and Urban 2007). Package ExPosition (Beaton, Fatt, and Abdi 2014) im-
plements Torgerson scaling with coreMDS(). The package MLDS (Knoblauch and Maloney
2008) allows to fit maximum likelihood difference scaling with function mlds(). The package
cops (Rusch and Mair 2024) offers an implementation of cluster optimized proximity scal-
ing (Rusch, Mair, and Hornik 2021). Beyond our focus are asymmetric proximity matries,
but the package asymmetry (Zielman 2022) offers the functions asymscal(), slidevector()
and mdsunique() to analyze them. Three-way and/or asymmetric proximity data can also
be analyzed via semds() in semds (Vera and Mair 2019).
The package smacofx offers implementations of MDS techniques that are more flexible than
the ones mentioned above, mainly by allowing for weights, explicit power transformations for
any combination of proximities, distances and weights and implicit metric (ratio, interval or
spline) or non-metric optimal scaling transformations of proximities. For the results obtained,
we can utilize a range of post-fitting functions similar to those that are also available in smacof.
The rest of this article is organized as follows: It starts with a description of proximity
scaling and implicit and explicit transformations in Section 2. In Section 3 we discuss basic
infrastructure available for fitted models. In Section 4 we list MDS methods in smacofx for
obtaining a single configuration from the proximity matrix. After that, we discuss the main
functionality of the post-fit infrastructure available (and matching the ones in smacof) in
Section 5. Throughout the article we already illustrate the use of the functions in various
places, but a streamlined fully worked example analysis is featured in Section 6. Concluding
remarks can be found in Section 7.

2. Multidimensional scaling
In MDS techniques the starting point are proximities between n data points or objects i and
j; i, j = 1, . . . , n. They can either be direct observations (e.g., collected in an experiment) or
derived from objects’ variables (e.g., distances based on a variable vector). See Cox and Cox
(2001) for a discussion on proximities and how to choose them.
The proximities are given as the n × n matrix ∆ containing the pairwise proximities between
the objects pairs i, j, with individual entries δij . The ∆ constitutes the main input in all our
fitting functions. We limit ourselves to dissimilarities or distances as proximities; this implies
that ∆ is symmetric, non-negative and the main diagonal is 0 (i.e., δij = δji ≥ 0 and δii = 0).
If the proximities are given as similarities they need to be turned into dissimilarities first (e.g.,
with the function smacof::sim2diss()).
We denote with ∆̂ a disparities matrix, with entries δ̂ij resulting after transformations were
applied to the elements of ∆. We distinguish between transformations that are explicit or
implicit and parametric or nonparametric; we’ll later talk more about which specific transfor-
mations are offered in our implementations. Following Rusch, Mair, and Hornik (2023a) we
denote explicit transformation as T∆(δij |θ∆) with parameter vector θ∆; here the main interest
lies in transformations that are univariate, parametric and chosen by the analyst. For the
software we will also make the small conceptual distinction of the T∆ being an argument to a
MDS method fitting function vs. the T∆ being manually applied by the analyst beforehand.
We may also have implicit optimal scaling transformations, which we denote by f , which

4 Flexible Multidimensional Scaling with the R Package smacofx

are either parametric or nonparametric. For these transformations we do not specifically
designate a part of the parameter vector θ∆ but we treat them as nuisance parameters that
simply get optimized “under the hood”. In the end, we thus have two possible transformations
applied to our proximities and the disparities are δ̂ij := f (T∆(δij |θ∆)).
The main output of an MDS procedure is the point configuration, a spatial arrangement of the
n points so that distances between the points in the configuration optimally approximate the
δ̂ij based on a criterion for what is optimal. This configuration is denoted by X and is a n×p
matrix; the index s = 1, . . . , p denotes the column dimensions of X in the target space which
usually is of much lower dimension than n (typically p = 2). This space is almost always
the Euclidean space, but in principle can be any metric space. If p ∈ {1, 2, 3} the spatial
arrangement of points in the configuration can be conveniently visualized; the positions then
represent the coordinates of the points in the target space.
What we primarily estimate in MDS are the points (row vectors) xi, xj in X via fitting pairwise
distances dij(X) = d(xi, xj) between the points xi, xj . The matrix of pairwise distances with
elements dij(X) is denoted by D(X). The fitted distances dij(X) can be reconstructed from
X by applying the distance definition used, typically the Euclidean distance,

dij(X) = ||xi − xj ||2 =
(p∑

s=1
|xis − xjs|2

)1/2

i, j = 1, . . . , n. (1)

although there exist MDS versions that use other Minkowski distances (e.g., Groenen, Mathar,
and Heiser 1995). In the presented packages, we limit ourselves to the Euclidean distance
but we allow flexibility by adding an extra layer of abstraction between X and ∆: we may
fit transformed Euclidean distances d̂ij(X) = TD(dij(X)|θD)). Expressed as a matrix, this is
D̂(X) with the elements being d̂ij(X). For the d̂ij(X) we have the explicit parameter vector
θD. Note that X is still in Euclidean space.
With these building blocks we can say that what we do in MDS and our software is to find
X so that we approximate the ∆̂ optimally by the D̂(X) or δ̂ij = f(T∆(δij |θ∆)) ≈ d̂ij(X) =
TD(dij(X)|θD). Some MDS methods also allow for explicit weighting of the approximation
with an input weight matrix W and finite elements wij , e.g., by setting them to zero if a
dissimilarity is missing. The weights may also be subject to explicit transformations so we can
further have ŵij = TW (wij |θW). We will collect all the explicit transformations parameters
in a single vector θ = (θ∆, θD, θW)⊤. What is left is to define what is meant by optimal.
There are many different ideas what constitutes an optimal approximation and these give rise
to different versions of MDS we support in our package. What all of them have in common is
to define a loss function based on the approximation error of the ∆̂ by the D̂(X), which we will
call a MDS badness-of-fit criterion denoted by σ. We use an optional designator specifiying the
name of the fit criterion or method as a subscript, e.g., σALSCAL which means “badness-of-fit
for ALSCAL”, with the MDS subscript designating a general MDS badness-of-fit.
In what follows we use MDS badness-of-fit criteria of the following kind,

σMDS(X|θ) =

O
(
∆̂ = [f(T∆(∆|θ∆))] , D̂(X) = [TD(D(X)|θD)] , Ŵ = [TW (W |θW)]

)
(2)

with O denoting an objective function with the arguments ∆̂ and D̂(X) and optionally Ŵ .
For a method to be a MDS method we need both ∆ and D(X).

Journal of Statistical Software 5

Many badness-of-fit proposals have been introduced over the years that Rusch et al. (2023a)
classify into three main groups based on the type of loss function O used:
First, the strain family (dating back to Torgerson 1958) which uses the negative of the doubly
centered dissimilarities as the ∆̂ (so, doubly centered similarities) and approximates them
with the inner product matrix of X as the D̂(X). The resulting MDS method goes by
many names, such as classical MDS, principal coordinates analysis, principal axes scaling or
Torgerson scaling. Strain-based MDS methods are appealing because the optimization can
be solved with an eigenvalue decomposition. Their drawback is that they are not particularly
flexible and only accommodate explicit transformations T∆, if any.
Second, the family of least squares methods that use a quadratic loss for O, typically called
stress (dating back to Kruskal 1964). Stress-based MDS methods are arguably the most
common. The majority of methods we offer in smacofx are stress-based. These methods can
be very flexible and may allow implicit transformations f and explicit transformations T∆ and
TD. Stresses typically are non-convex, however, and have to be solved iteratively, making them
difficult to optimize. Algorithms following the majorization-minimization or minorization-
maximization (MM) principle (De Leeuw 1977; Lange 2016) and gradient descent algorithms
(Curry 1944) are the most frequently encountered optimization methods used.
Third, the family of energy models (Noack 2007) that conceptualize MDS as a weighted
combination of a repulsion force proportional to −∆D(X) and an attraction force proportional
to D(X)µ of the objects. This family is popular in graph drawing. Energy models can be quite
flexible with respect to allowing explicit transformations T∆ and TD but were only envisioned
for metric scaling. They are typically optimized with gradient descent algorithms.
In Section 4 we describe which O and T∆ and TD we specifically support in our software; the
methods available in our software comprise a large array of MDS methods including the most
popular MDS models that we are aware of.
To instantiate flexible MDS models specifically, one would plug in the transformations to the
respective O. For example, for stress-based MDS this is

σMDS(X|θ) =
∑
i<j

TW (wij |θW) (f (T∆(δij |θ∆)) − TD(dij(X)|θD))2 (3)

Minimizing the badness-of-fit (2) criterion means finding the optimal configuration X∗ out of
all possible X as

X∗ = arg min
X

σMDS(X|θ)

= arg min
X

O
(
∆̂ = [f(T∆(∆|θ∆))] , D̂(X) = [TD(D(X)|θD)] , Ŵ = [TW (W |θW)]

)
(4)

This is the task of proximity scaling and can be quite difficult. Note that in our packages
we do not optimize Eq. 4 in this generality but use tailored algorithms for specific concrete
instances, either as MM or gradient descent algorithms. We refer to the publications that
contain the respective technical details throughout this article.

2.1. Implicit transformations: Metric and non-metric MDS

We mentioned that we can have transformations for the dissimilarities ∆ that are implicit
or explicit. For the latter we have an explicit parameter vector θ∆ and we will talk more

6 Flexible Multidimensional Scaling with the R Package smacofx

about this when we discuss the specific methods in Section 4. Implicit transformations are
traditionally used in MDS under the term “optimal scaling”. They are typically used to
accommodate the scale levels of the dissimilarities (Borg and Groenen 2005). The main
distinction is between metric MDS (ratio, interval, monotone spline transformations) and
non-metric MDS (ordinal transformations). These transformations are admissable under the
assumed scale level of the dissimilarities, and are under the constraint that f(δij) ≥ 0:

ratio: f(δij) = bδij

interval: f(δij) = a + bδij

mspline: f(δij) being a monotone smooth function
ordinal: f(δij) being rank-preserving monotonic

In the ordinal transformation one uses isotonic regression to find the optimal rank-order
preserving monotonic f , which implies that d̂ij(X) ≈ δ̂ij ≤ d̂kl(X) ≈ δ̂kl if δij < δkl. Ties
(i.e., δij = δkl) can also be handled in two other ways (secondary or tertiary approach, Borg
and Groenen 2005). For montone splines, an I-spline (Ramsay 1988) is used. Note that these
implicit transformations are functions of all δij .
These transformations are implicit in the presented MDS methods, which means that the f
or its parameters are not of interest by themselves but nuisance parameters. They are found
automatically during the scaling process via an inner optimization step that finds the optimal
implicit transformation and there is no interference by the user other than specifying the
type of optimal scaling. Because of that we do not specifically refer to these as parameters
in our models, but call this the “MDS type” as it relates to choosing an appropriate MDS
for the nature of the dissimilarities. They can be selected with the type argument, which
should be the character strings "ratio" for ratio, "interval" for interval, "mspline" for
monotone spline and "ordinal" for non-metric (so one would use type="ordinal" to get a
non-metric MDS type). If distances (metrics or pseudo-metrics) are used for δij , then ratio,
interval or spline transformations can and should be considered. If the δij are dissimilarities
that lack the properties of a distance (e.g., do not satisfy the triangle inequality) and/or are
experimentally determined from human raters where transitivity cannot be expected than the
ordinal transformation is appropriate. We will give an overview which implicit transformations
are possible in the techniques that we support in the presented packages in Table 1.

2.2. Input dissimilarities

In MDS in general and our software in particular, one can use any dissimilarity matrix that
is symmetric and hollow (i.e., non-negative). This includes matrices of any metric norm, dis-
tance, pseudo-distance and divergence measure. Dissimilarities can either be directly observed
(via an experiment) or derived from a data matrix, by using an appropriate dissimilarity mea-
sure to capture the essence of the data.
Within the R ecosystem one can manually create a dissimilarity matrix or use a huge variety
of functions that return dissimilarities either as a symmetric matrix, symmetric data frame or
‘dist’ object. All of them can be used with the functions in smacof and smacofx, including all
the distances and dissimilarities in the dist() function and the functions in vegan (Oksanen
et al. 2022), proxy (Meyer and Buchta 2022) and analogue (Simpson 2007) or the ϕ-distance
in cops (cops::phidistance(), Rusch, Venturo-Conerly, Baja, and Mair 2023b). We also

Journal of Statistical Software 7

offer a distance function in the smacofx package to be used with count data or histograms,
the blended χ2-distance in (bcsdistance()).
We also single out vegan::isodist() which implements geodesic distances, i.e., distances
between points as imposed by a weighted neighbourhood graph with either the parameter k
for the number of nearest neighbours, or ε as the neighbourhood radius. Geodesic distances
approximate (curvilinear) distances along a manifold. They are used for manifold learning,
for example in Isomap (Tenenbaum, De Silva, and Langford 2000) which is a strain MDS with
the δ̂ij being the geodesic distance. Note that a ∆̂ obtained from geodesic distances can also
be used in other stress or energy badness-of-fit functions and subjected to additional implicit
transformations and weighting as we do below. The explicit transformation for geodesic
distances is governed by θ∆ = k or θ∆ = ε as the parameter that defines the neighborhood
graph.
The reason for singling out this dissimilarity is that MDS variants applied to geodesic distances
are generally useful for manifold learning and often constitute methods in their own right (e.g.,
curvilinear distance analysis is curvilinear component analysis with gedodesic distances). We
stress that all our functions can take geodesic distances as input (or do it automatically)
and that way all presented flexible MDS method can be turned into Isomap-type manifold
learning techniques as well.

3. Design principles of package functionality
One of the design principles of the smacofx package was for it to be largely compatible
and comparable with the infrastructure in the smacof package. This was not only because
conceptually the functionality is related to the functionality in smacof (i.e., two-way MDS
and built around MM algorithms), but also because smacof offers generics to postprocess and
extend fitted MDS models, see De Leeuw and Mair (2009); Mair et al. (2022) and Section 5.
This is reflected in our package in two ways: First, we made the UI as similar as possible
between the packages and smacof by using the same arguments whenever we refer to the same
aspect of a MDS model. For example, type is the argument to choose the implicit optimal
scaling transformation both in smacof as well as in smacofx. The one exception is the desired
accuracy at which to stop the iterations; we call the argument acc whereas in smacof it is
called eps. Second, we chose an object-oriented approach to various MDS models and made
sure that the objects returned by the functions from smacofx can be used with the appropriate
ideas and generics of smacof.
To that end, we use the S3 system and designed a unified output for models with explicit
transformation parameters that return an X. These objects are of class ‘smacofP’ and inherit
the class ‘smacofB’ in smacof. We implemented S3 methods for many smacof generics to make
use of the functionality in smacof designed for ‘smacofB’ objects also with objects of class
‘smacofP’. We also wrote wrappers for stats::cmdscale() and MASS::sammon() to return
objects of class ‘cmdscalex’ that are largely similar to ‘smacofB’, allowing them to also use
specific functionality, especially with respect to the plot() method. This way we believe
users familiar with the package smacof can use the new package with little additional effort.
For the class ‘smacofP’ we implemented methods for the standard generics:

print(): Prints basic model information, typically including the call, the fitted MDS Model,

8 Flexible Multidimensional Scaling with the R Package smacofx

the number of objects, and the square root of the badness-of-fit value at convergence
(stress-1).

summary(): The configuration X and the percentage contribution of each point to the overall
badness-of-fit (“stress per point”) (only recommended for models with low n).

coef(): Returns the explicit transformation parameters used in fitting.

plot(): The plot method features a number of plot types that can be selected via the
plot.type argument. See Section 5 and the help file ?plot.smacofP.

We make the functionality in R accessible via

R> library("smacofx")

An overview of the main fitting functions available in smacofx are given in Table 1. As far as
we know this functionality is not duplicated anywhere else in the R ecosystem.
Throughout this article we make use of a data set as the running example. It is fairly small,
suitable for quick illustration and allows to show all the functionality of the package. The
data are from Koller, Floh, Zauner, and Rusch (2013) and consist of responses of n = 1013
people to items related to consumer susceptibility to interpersonal influence (the 12 item CSII
scale, Bearden, Netemeyer, and Teel 1989) and self-concept clarity (the 12 item SCC scale,
Campbell, Trapnell, Heine, Katz, Lavallee, and Lehman 1996). The responses were recorded
on a 5-point scale for each item, with 5 denoting “fully disagree”; the 10th item of the SCC
scale was reversed. Theoretically, the two concepts are distinct but related. Self-concept
clarity may be seen as an antecedent to consumer’s level of susceptibility to interpersonal
influence and can explain its level. People that have a clear and strong self-image are less
prone to being interpersonally influenced, whereas people that tend to doubt themselves are
more susceptible (Koller et al. 2013). We use Euclidean distances between the scale items.

R> data("koller")
R> dis <- dist(t(koller))

4. Multidimensional scaling methods in smacofx
In this section we describe MDS variants in smacofx and illustrate them with the data of
Koller et al. (2013). To establish a baseline we first fit standard MDS versions from smacof.

R> mds0 <- mds(dis)
R> mds0i <- mds(dis, type = "interval")
R> mds0o <- mds(dis, type = "ordinal")

The configurations1 for the ratio, interval and ordinal MDS are given in Figure 1. All of the
plots in this section will be Procrustes adjusted to the ratio MDS solution with the function
alignplot(). It takes a list of objects objectlist, Procrustes adjusts the configurations in
the list objects to a reference configuration (argument reference).

1In what follows, slight discrepancies between numbers and figures can appear for different operation systems
and different low-level linear algebra libraries (e.g., LAPACK). The results in this article were produced with
R version 4.5.1, smacofx version 1.21-1 on Linux Mint 22.1 with LAPACK 3.12.0.

Journal of Statistical Software 9

M
et

ho
d

Sc
al

e
le

ve
l

ty
pe

R
fu

nc
tio

n
Sa

m
m

on
M

ap
pi

ng
M

et
ric

"r
at

io
",

"i
nt

er
va

l"
sa

mm
on

ma
p(

)
El

as
tic

Sc
al

in
g

M
et

ric
"r

at
io

",
"i

nt
er

va
l"

el
sc

al
()

A
LS

C
A

L
M

et
ric

"r
at

io
",

"i
nt

er
va

l"
al

sc
al

()
M

U
LT

IS
C

A
LE

M
et

ric
"r

at
io

"
mu

lt
is

ca
le

()
PO

ST
-M

D
S

M
et

ric
"r

at
io

",
"i

nt
er

va
l"

po
st

md
s(

)
R

es
tr

ic
te

d
PO

ST
-M

D
S

M
et

ric
"r

at
io

",
"i

nt
er

va
l"

rp
os

tm
ds

()
A

pp
ro

xi
m

at
e

PO
ST

-M
D

S
M

et
ric

"r
at

io
",

"i
nt

er
va

l"
ap

os
tm

ds
()

R
-S

tr
es

s
M

D
S

M
et

ric
"r

at
io

",
"i

nt
er

va
l"

,"
ms

pl
in

e"
rs

tr
es

sm
ds

()
N

on
-M

et
ric

"o
rd

in
al

"
B

ox
-C

ox
M

D
S

M
et

ric
"r

at
io

"
bc

md
s(

)
Lo

ca
lM

D
S

M
et

ric
"r

at
io

"
lm

ds
()

C
ur

vi
lin

ea
r

C
om

po
ne

nt
A

na
ly

sis
M

et
ric

"r
at

io
"

cl
ca

()
C

ur
vi

lin
ea

r
D

ist
an

ce
A

na
ly

sis
M

et
ric

"r
at

io
"

cl
da

()
Ex

te
nd

ed
C

ur
vi

lin
ea

r
C

om
po

ne
nt

A
na

ly
sis

M
et

ric
"r

at
io

",
"i

nt
er

va
l"

,"
ms

pl
in

e"
ec

lc
a(

)
Ex

te
nd

ed
C

ur
vi

lin
ea

r
Po

w
er

C
om

po
ne

nt
A

na
ly

sis
M

et
ric

"r
at

io
",

"i
nt

er
va

l"
,"

ms
pl

in
e"

ec
ld

a(
)

Ex
te

nd
ed

C
ur

vi
lin

ea
r

D
ist

an
ce

A
na

ly
sis

M
et

ric
"r

at
io

",
"i

nt
er

va
l"

,"
ms

pl
in

e"
ec

lp
ca

()
Ex

te
nd

ed
C

ur
vi

lin
ea

r
Po

w
er

D
ist

an
ce

A
na

ly
sis

M
et

ric
"r

at
io

",
"i

nt
er

va
l"

,"
ms

pl
in

e"
ec

lp
da

()

Ta
bl

e
1:

M
D

S
m

et
ho

ds
th

at
ca

n
be

fit
w

ith
fu

nc
tio

ns
in

sm
ac

of
x.

10 Flexible Multidimensional Scaling with the R Package smacofx

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5

ratio MDS

csii_1

csii_2

csii_3

csii_4

csii_5

csii_6

csii_7

csii_8

csii_9

csii_10

csii_11

csii_12

scc_1

scc_2

scc_3

scc_4
scc_5

scc_6

scc_7scc_8

scc_9

scc_10r

scc_11

scc_12

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

interval MDS

csii_1csii_2
csii_3

csii_4

csii_5 csii_6 csii_7csii_8

csii_9

csii_10

csii_11csii_12

scc_1scc_2

scc_3

scc_4 scc_5
scc_6 scc_7scc_8

scc_9
scc_10r scc_11

scc_12

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ordinal MDS

csii_1
csii_2

csii_3

csii_4
csii_5

csii_6

csii_7

csii_8

csii_9

csii_10csii_11

csii_12

scc_1

scc_2

scc_3

scc_4
scc_5scc_6

scc_7

scc_8

scc_9
scc_10r

scc_11

scc_12

Figure 1: Ratio, interval and ordinal MDS configurations for the Koller data.

R> cg <- "grey30"
R> olist <- list(mds0, mds0i, mds0o)
R> par(mai = c(0.27, 0.27, 0.4, 0))
R> alignplot(olist, mds0$conf,
+ mains = c("ratio MDS", "interval MDS", "ordinal MDS"),
+ label.conf = list(pos = 5, col = cg), xlab = "",
+ ylab = "", asp = 1)

We see there is little spatial separation between the SCC and the CSII items in the ratio
MDS, some in ordinal MDS and most in interval MDS. We also see that the CSII items 1, 7,
9 and 10 are scaled away from the rest, almost like a third scale. We will see how this changes
with other MDS types.

4.1. Sammon mapping

Sammon mapping (Sammon 1969) is a nonlinear stress-based MDS method that weights
the squared residuals of dissimilarities and fitted distances with the inverse dissimilarities.
Originally envisioned for ratio MDS, we extend it to allow for both metric implicit optimal
scaling transformations of input dissimilarities δij (ratio, interval) and weights.
The badness-of-fit can be formulated as

σSammon(X) =
∑
i<j

wij

(
δ̂ij − dij(X)

)2

δij
=
∑
i<j

wij
(f(δij) − dij(X))2

δij
(5)

with δ̂ij being the transformed dissimilarities and the wij being non-negative weights (with 0
if the δij is missing). We optimize this with MM (De Leeuw 1977).
The function to get a configuration is called sammonmap() and is part of the smacofx pack-
age. Its basic usage is sammonmap(delta, type, weightmat) with delta being an input
dissimilarity matrix (can be pre-transformed), type specifying the MDS type/implicit trans-
formation (one of "ratio" or "interval") and weightmat being the symmetric matrix of
weights [wij].
For our data example, we can fit an interval Sammon mapping with

Journal of Statistical Software 11

R> sam <- sammonmap(dis, type = "interval")

The configuration is displayed in Figure 2 (corresponding code in Section 4.4).

4.2. Elastic scaling

Elastic scaling (McGee 1966) is similar to Samon mapping but weights the squared residuals
of dissimilarities and fitted distances with the square of the inverse dissimilarities, so weights
them more heavily. Originally envisioned for ratio MDS, we extend it to allow metric implicit
transformation f for the input dissimilarities δij and weights. This can be formulated as

σelastic(X) =
∑
i<j

wij

(
δ̂ij − dij(X)

)2

δ2
ij

=
∑
i<j

wij
(f(δij) − dij(X))2

δ2
ij

(6)

with δ̂ij being the transformed dissimilarities and the wij being non-negative weights (with 0
if the δij is missing). We again optimize this with MM.
Standard usage is elscal(delta, type, weightmat) with delta being an input dissimilar-
ity matrix (can be pre-transformed), type specifying the MDS type/implicit transformation
(one of "ratio" or "interval") and weightmat being the symmetric matrix of weights [wij].
For our data example, we can fit a ratio elastic scaling model as

R> els <- elscal(dis, type = "ratio")

The configuration is displayed in Figure 2 (corresponding code in Section 4.4).

4.3. ALSCAL

ALSCAL or s-stress MDS (Takane et al. 1977) is a metric MDS method that uses an explicit
square transformation for input dissimilarities δij and the fitted distances dij(X) as well as
the ratio and interval implicit transformations in a stress-type loss. The associated stress is

σALSCAL(X|θ) =
∑
i<j

wij

(
δ̂ij − d̂ij(X)

)2
=
∑
i<j

wij

(
f(δ2

ij) − dij(X)2
)2

(7)

with δ̂ij , d̂ij(X) being the transformed dissimilarities and fitted distances respectively. The
explicit transformations are T∆(δij |θ∆) = δ2

ij and TD(dij(X)|θD) = dij(X)2 with explicit
parameter vector θ = (θ∆, θD)⊤ = (2, 2)⊤. The implicit transformations allowed are the ratio
and interval transformations. We optimize this with the MM algorithm of De Leeuw et al.
(2016).
Standard usage is alscal(delta, type, weightmat) with delta being an input dissimi-
larity matrix (can be pre-transformed), type specifying the implicit transformation (one of
"ratio" or "interval") and weightmat being the symmetric matrix of weights [wij].
For our data example, we can fit ratio ALSCAL as

R> als <- alscal(dis, type = "ratio")

12 Flexible Multidimensional Scaling with the R Package smacofx

The configuration is displayed in Figure 2 (corresponding code in Section 4.4).

4.4. MULTISCALE

MULTISCALE (Ramsay 1977) is a metric MDS method that was derived as a maximum
likelihood model for lognormal distributed dissimilarities. This leads to explicit logarithmic
transformations for input dissimilarities δij and the fitted distances dij(X). We extend this
to allow for ratio and interval implicit transformations, so the associated stress is

σMULTISCALE(X) =
∑
i<j

wij

(
δ̂ij − d̂ij(X)

)2
=
∑
i<j

wij (f(log(δij)) − log(dij(X)))2 (8)

with δ̂ij , d̂ij(X) being the transformed dissimilarities and fitted distances respectively. The
explicit transformations are T∆(δij) = log(δij) and TD(dij(X)) = log(dij(X)) with no explicit
parameter vector2. The implicit transformations that are allowed are the ratio and interval
transformations. We optimize this with an MM algorithm (De Leeuw et al. 2016).
We use this as multiscale(delta, type, weightmat) with delta being an input dissim-
ilarity matrix (can be pre-transformed), type specifying the MDS type (one of "ratio" or
"interval") and weightmat being the symmetric matrix of weights [wij]. Note that we inter-
nally take the logarithm of the δij , so one must ensure that the δij are so that δ̂ij = log(δij) ≥ 0
(as dissimilarities must be non-negative). This can often be achieved by adding 1 to the dis-
similarities.
A ratio MULTISCALE MDS for our data is then

R> ms <- multiscale(dis, type = "ratio")

The configuration is displayed in Figure 2 via the following code

R> twobytwo <- matrix(1:4, ncol = 2, nrow = 2, byrow = TRUE)
R> olist2 <- list(sam, els, als, ms)
R> par(mai = c(0.3, 0.4, 0.4, 0))
R> alignplot(olist2, mds0$conf,
+ mains = c("interval Sammon mapping", "ratio elastic scaling",
+ "ratio ALSCAL", "ratio MULTISCALE"),
+ layoutmat = twobytwo,
+ label.conf = list(pos = 5, col = cg),
+ xlab = "", ylab = "", asp = 1)

When looking at the configurations in Figure 2 we see that elastic scaling does not help
with separating the items well. The interval Sammon result is pretty close to the interval
MDS solution. ALSCAL and MULTISCALE separate the SCC and the CSII items into two
density-connected clusters; they also single out the CSII items 1, 7, 9, 10 as separated from
the other CSII items (but less separated than the SCC items).

2Technically, we only approximate this stress by using TD(dij(X)) = dij(X)κ with κ → 0; this is based on
log(z) ≈ az

1
a − a and thus the difference log(δij) − log(dij(X)) ≈ a(δ1/a

ij − dij(X)1/a).

Journal of Statistical Software 13

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

interval Sammon mapping

csii_1csii_2
csii_3

csii_4

csii_5csii_6 csii_7csii_8

csii_9

csii_10
csii_11csii_12

scc_1
scc_2

scc_3

scc_4 scc_5
scc_6

scc_7
scc_8

scc_9
scc_10r scc_11

scc_12

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ratio elastic scaling

csii_1

csii_2
csii_3

csii_4
csii_5

csii_6

csii_7

csii_8

csii_9

csii_10

csii_11

csii_12

scc_1
scc_2

scc_3

scc_4
scc_5

scc_6
scc_7

scc_8

scc_9

scc_10r

scc_11

scc_12

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

ratio ALSCAL

csii_1
csii_2

csii_3
csii_4

csii_5

csii_6
csii_7

csii_8

csii_9

csii_10csii_11

csii_12

scc_1

scc_2 scc_3

scc_4

scc_5scc_6
scc_7

scc_8

scc_9

scc_10r
scc_11

scc_12

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5

ratio MULTISCALE

csii_1
csii_2
csii_3

csii_4
csii_5

csii_6

csii_7
csii_8

csii_9 csii_10

csii_11csii_12

scc_1
scc_2

scc_3
scc_4

scc_5
scc_6

scc_7

scc_8
scc_9 scc_10r

scc_11

scc_12

Figure 2: Configurations of interval Sammon, ratio elastic scaling, ratio ALSCAL and ratio
MULTISCALE for the Koller data.

4.5. Power-Stress MDS

Power-stress MDS or POST-MDS (Buja et al. 2008; Groenen and De Leeuw 2010; Rusch et al.
2021) is a metric MDS method that allows for explicit power transformations of the input
dissimilarities δij , the fitted distances dij(X) and also of given input weights wij . It uses a
stress-type loss which is called power-stress or p-stress and is

σPOST-MDS(X|θ) =
∑
i<j

ŵij

(
δ̂ij − d̂ij(X)

)2
=
∑
i<j

wν
ij

(
f(δλ

ij) − dij(X)κ
)2

(9)

with δ̂ij , d̂ij(X), ŵij being the transformed dissimilarities, transformed fitted distances and

14 Flexible Multidimensional Scaling with the R Package smacofx

transformed weights respectively. The explicit transformations are T∆(δij |θ∆) = δλ
ij for input

proximities, TD(dij(X)|θD) = dij(X)κ for configuration distances, and TW (wij |θW) = wν
ij for

the weights, so any power transformation with exponents κ ∈ R≥0, λ, ν ∈ R. The explicit
parameter vector θ comprises the powers in the exponents, θ = (θ∆, θD, θW)⊤ = (λ, κ, ν)⊤.
As implicit transformations f we allow the ratio and interval transformation. Setting the
powers allows for many different effects, for example it covers convex power functions (for
exponents > 1), root functions that are concave (for exponents ∈ [0, 1]) or inverse functions
(for exponents < 0 if admissiable). We optimize this with the MM algorithm of De Leeuw
et al. (2016).
For metric scaling this is a very flexible and versatile MDS badness-of-fit function. First, it
encompasses many different metric stresses, including the standard ratio MDS stress results
for κ = λ = ν = 1, ALSCAL for κ = λ = 2, Sammon mapping for wij = δij , ν = −1, elastic
scaling for wij = δij , ν = −2; it also approximates MULTISCALE with δ̂ij = log(δij), κ →
0. It also encodes a configuration for constant dissimilarities with λ = 0. It is closely
related to r-stress which is equivalent to p-stress if we use δλ

ij in r-stress with metric implicit
transformations.
It is even more versatile when recognizing that we may use any manual pre-transformation
of proximities together with the built-in transformation T∆ and their θ parameters creatively
in a mix-and-match approach; for example, we can create the (hitherto unexisting) “2nd
order polynomial MULTISCALE elastic scaling MDS model” when using POST-MDS with
a + b log(δij) + c log(δij)2 as the input proximities, λ = 1, κ = 0.01, wij = a + b log(δij) +
c log(δij)2, ν = −2. Using pre-transformation vs. using built-in transformation makes no
difference for the fit of an individual MDS with given θ.
Standard usage is postmds(delta, kappa, lambda, nu, type, weightmat) with delta
being an input dissimilarity matrix (can be pre-transformed), kappa, lambda, nu being the
elements of θ and weightmat being the symmetric matrix of weights [wij] and type specifying
the MDS type/implicit transformation (one of "ratio" or "interval").
We also offer a version of POST-MDS where κ and λ are restricted to be equal, which is
the stress of Groenen, De Leeuw, and Mathar (1996) with power functions. The command is
rpostmds(delta, expo, nu, type, weightmat) with delta being the input dissimilarity
matrix (can be pre-transformed), expo, nu being the elements of θ (with expo being the
κ = λ) and the rest as in postmds().
Because POST-MDS can be hard to fit we offer a simplified version called “approximate
power-stress” (ap-stress, Rusch et al. 2021) that approximates ratio p-stress. With using the
proximities as weights, so wij = δij and allowing a free parameter for a power transformation
of the weights (υ), we can approximate p-stress (9) by

σapstress(X|θ) =
∑
i<j

δυ
ij

(
δτ

ij − dij(X)
)2

(10)

with θ = (τ, υ). The connection to power-stress is so that υ = ν + 2λ(1 − 1/κ) and τ = λ/κ.
This works well in cases when for xi, xj for which wij is large, the error δλ

ij −dij(X)κ in p-stress
is small, so that dij(X)κ is approximated reasonably well by δλ

ij and, equivalently, dij(X)κ

is approximated well by dij(X)δ(λ(κ−1)/κ)
ij . Optimization of ap-stress is more straightforward

than of p-stress, e.g., one can use standard SMACOF (De Leeuw 1977).

Journal of Statistical Software 15

One can fit this as apostmds(delta, kappa, lambda, nu, weightmat) with delta being
the input dissimilarity matrix (can be pre-transformed), kappa, lambda, nu being the ele-
ments of θ and weightmat being the symmetric matrix of weights [wij] (which are currently
only allowed to be binary here). This only works with implicit ratio transformations.
For our data example, fitting only ratio models this would be

R> pst <- postmds(dis, kappa = 0.35, lambda = 1.2, nu = -0.5, weightmat = dis)
R> rpst <- rpostmds(dis, expo = 1.5, nu = -1.5, weightmat = dis)
R> apst <- apostmds(dis, kappa = 3, lambda = 0.8, nu = -0.5)

The resulting configurations of all three models can be found in Figure 3 (corresponding code
in Section 4.6).

4.6. R-Stress MDS

With r-stress MDS we denote an MDS method that allows for explicit power transforma-
tions of the fitted distances dij(X) and any of the mentioned implicit transformations f(δij)
(De Leeuw et al. 2016). Therefore, r-stress is

σrstress(X|θ) =
∑
i<j

wij

(
δ̂ij − d̂ij(X)

)2
=
∑
i<j

wij

(
f(δij) − dij(X)2r

)2
(11)

with δ̂ij , d̂ij(X) being the transformed dissimilarities and transformed fitted distances. The
explicit transformation built-in is TD(dij(X)|θD) = dij(X)2r with r ∈ R≥0. The explicit free
parameter vector is thus θ = r. The ratio, interval, spline and ordinal implicit optimal scaling
transformations are found internally.
This is a very flexible, versatile badness-of-fit measure that can be used in a large variety of
settings and encompasses many other stresses. For r = 0.5 it yields standard metric or non-
metric MDS. If one inputs δλ

ij or wν
ij in r-stress and sets r = κ/2 with the ratio transformation

for f , then it becomes power-stress. If in the same setup another manual transformation is
used we can for example also fit interval POST-MDS, e.g. as δ̂ij = a + bδλ

ij . This latter
property is an example of a general approach that can be used in r-stress which is to include
any T∆ and any TW in combination with any of the implicit transformations by manually
pre-transforming the δij beforehand and using r-stress with the manually pretransformed
δij . This way one can include any type of monotonic or nonmonotonic T∆(δij) in r-stress in
combination with any pre-transformed weights and any implicit transformation f , thus even
encompassing the versatility of POST-MDS. To illustrate this flexibility, we can create the
(hitherto nonexistant) “interval MULTISCALE MDS model with Sammon weighting” if we
manually set up r-stress with δ̂ij = a + b log(δij), r = 0.01, wij = 1/ log(δij).
One can fit it via rstressmds(delta, r, type, weightmat) with delta being an input
dissimilarity matrix (can be pre-transformed), type specifying the optimal scaling (one of
"ratio", "interval", "mspline", "ordinal"), r being the element of θ, weightmat being
the symmetric matrix of weights [wij].
For our data example, this may be an ordinal r-stress model with a convex relation of dissim-
ilarities and distances

R> rst <- rstressmds(dis, r = 0.6, type = "ordinal")

16 Flexible Multidimensional Scaling with the R Package smacofx

The resulting configuration can be created with the following code and found in Figure 3.

R> olist3 <- list(pst, rpst, apst, rst)
R> par(mai = c(0.3, 0.4, 0.4, 0))
R> alignplot(olist3, mds0$conf,
+ mains = c("ratio POST-MDS", "ratio restricted POST-MDS",
+ "ratio approx. POST-MDS", "ordinal r-stress MDS"),
+ layoutmat = twobytwo,
+ label.conf = list(pos = 5, col = cg), xlab = "", ylab = "",
+ asp = 1)

When looking at the configurations in Figure 3 we see that the POST-MDS gives a similar
configuration than the ordinal MDS perhaps emphasizing the outlier nature of some of the
CSII items more strongly. The restricted POST-MDS separates the items into three groups.
This is also the case for the ordinal r-stress MDS which seems to be able to combine the
results of the ordinal MDS with the POST-MDS, thus allowing to separate the CSII 1, 7, 9,
10 items from the other CSII items and the CSII items from the SCC items. Conversely, the
approximative POST-MDS seems to nullify the separation and scales the items in such a way
that there is less variability in the distances.

4.7. Local MDS
Local MDS (LMDS, Chen and Buja 2009) is a stress-based metric scaling MDS method for
manifold learning that aims at preserving the local neighbourhood around a point. Let Nk

define the symmetric set of nearby pairs of points (i, j) so that (i, j) ∈ Nk if i is among the
k−nearest neighbours of j or the other way round. The stress function is

σlmds(X|θ) =
∑

(i,j)∈Nk

(δij − dij(X))2 +
∑

(i,j)/∈Nk

u (δ∞ − dij(X))2 . (12)

where δ∞ → ∞ is a large “imputed” dissimilarity that is constant and u a small weight. See
Rusch et al. (2023a) for an expression in terms of stress with explicit transformations. The
objective (12) can be simplified by taking u ≈ 1/δ∞ and expanded to the standard LMDS
objective of Chen and Buja (2009). In the latter, LMDS uses the tuning parameter τ = 2uδ∞
for given k, so we have the explicit transformation parameter vector θ = (k, τ)⊤. We optimize
this with gradient descent.
The standard usage in R is to use the function lmds(delta, k, tau) and for our running
data example we may use k = 5 and tau = 0.5, so

R> lms <- lmds(dis, k = 5, tau = 0.5)

The resulting configuration can be found in Figure 4 (corresponding code in Section 4.9).
Note that per default LMDS configurations are not normalized the same way as the models op-
timized via MM; if this is not wanted, one can set normconf = TRUE to change that (but then
the fitted lms$confdist no longer correspond to the manually calculated dist(lms$conf)).

4.8. Box-Cox MDS
Chen and Buja (2013) propose power transformations on observed proximities and Box-Cox
transformations on fitted distances in an energy badness-of-fit formulation. For complete

Journal of Statistical Software 17

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ratio POST−MDS

csii_1

csii_2

csii_3

csii_4csii_5

csii_6

csii_7csii_8

csii_9

csii_10csii_11
csii_12

scc_1
scc_2

scc_3

scc_4
scc_5

scc_6 scc_7scc_8

scc_9

scc_10r

scc_11

scc_12

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

ratio restricted POST−MDS

csii_1

csii_2 csii_3
csii_4

csii_5

csii_6 csii_7

csii_8

csii_9

csii_10
csii_11

csii_12

scc_1

scc_2

scc_3

scc_4
scc_5

scc_6
scc_7

scc_8

scc_9

scc_10r

scc_11

scc_12

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

ratio approx. POST−MDS

csii_1
csii_2

csii_3

csii_4

csii_5

csii_6

csii_7

csii_8

csii_9

csii_10

csii_11

csii_12

scc_1scc_2
scc_3

scc_4

scc_5

scc_6

scc_7
scc_8

scc_9

scc_10r

scc_11

scc_12

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ordinal r−stress MDS

csii_1
csii_2 csii_3 csii_4csii_5

csii_6

csii_7

csii_8

csii_9

csii_10csii_11

csii_12

scc_1

scc_2
scc_3

scc_4 scc_5

scc_6
scc_7

scc_8

scc_9 scc_10r

scc_11

scc_12

Figure 3: Configurations of ratio POST-MDS, ratio restricted POST-MDS, ratio approx.
POST-MDS and ordinal r-stress MDS for the Koller data.

data matrices this yields a three-parameter energy-type MDS family which we coin Box-Cox
MDS (BC-MDS). The badness-of-fit function has explicit transformation parameter vector
θ = (µ, λ, ρ)⊤ with µ, ρ ∈ R and λ ∈ R+ and is

σbcmds(X|θ) =
∑
i<j

δρ
ij

(
BCµ+λ(dij(X)) − δλ

ijBCµ(dij(X))
)

(13)

The transformation BCα is the one-parameter Box-Cox transformation (Box and Cox 1964)
with parameter α,

BCα(d) =
{

dα−1
α if α ̸= 0

log(d) if α = 0
(14)

18 Flexible Multidimensional Scaling with the R Package smacofx

Note that the explicit transformations used for the distances need not be equal in the attrac-
tion and repulsion parts. We optimize this with gradient descent.
The BC-MDS model can be fit via bcmds(delta, mu, lambda, rho). For example for the
Koller data, we may use it as

R> bcm <- bcmds(dis, mu = 3, lambda = 0.7, rho = -1.5)

The resulting configuration can be found in Figure 4 (corresponding code in Section 4.9).
As with LMDS, Box-Cox MDS configurations are not normalized, but one can set normconf
= TRUE to change that with the side effect that the fitted bcm$confdist no longer correspond
to the manually calculated dist(bcm$conf).

4.9. Curvilinear component analysis and curvilinear distance analysis

Demartines and Herault (1997) suggest a version of MDS for manifold learning called curvi-
linear component analysis (CLCA) that gets a local flavour by putting emphasis on smaller
fitted configuration distances which is achieved by setting wij = 0 if dij(X) > τ . This was
proposed for ratio MDS and no explicit transformations, thus

σclca(X|θ) =
∑
i<j

(
δ̂ij − dij(X)

)2
1 (dij(X) ≤ τ) =

∑
i<j

(δij − dij(X))2
1 (dij(X) ≤ τ) (15)

with θ = τ and 1 denoting the indicator function. This stress is optimized via stochastic
gradient descent with a positive number of epochs. It was envisioned by the original authors
that the τ changes in every epoch in a decreasing sequence starting with τ0, similar to the
self-organizing map (SOM, Kohonen 1982).
If the matrix ∆̂ are geodesic distances as in Isomap, CLCA is called curvilinear distance
analysis (CLDA, Lee, Lendasse, and Verleysen 2004).
We include wrapper functions clca() and clda() in smacofx that allows to fit CLCA and
CLDA in the way described above. They use CCA() from ProjectionBasedClustering (Thrun
and Ultsch 2021) as their workhorse and return an object of class ‘smacofP’. The usage is one of
either clca(delta, lambda0, alpha0) or clda(delta, lambda0, alpha0, k, epsilon)
respectively, with delta being an input dissimilarity matrix (can be pre-transformed), lambda0
being the τ0, alpha0 the stepsize of the stochastic gradient descent. In CLDA we use
vegan::isomapdist() so we have one additional explicit transformation parameter, either k
or epsilon as the neighbourhood parameter for the geodesic distance.
For the running data example, we may use

R> set.seed(1)
R> clcares <- clca(dis, lambda0 = 1, alpha0 = 1)
R> cldares <- clda(dis, lambda0 = 1, alpha0 = 1, k = 5)

The resulting configurations can be found in Figure 4, obtained by the following code.

R> olist4 <- list(lms, bcm, clcares, cldares)
R> par(mai = c(0.43, 0.4, 0.4, 0))
R> alignplot(olist4, mds0$conf,

Journal of Statistical Software 19

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

ratio LMDS

csii_1

csii_2

csii_3

csii_4

csii_5
csii_6

csii_7

csii_8

csii_9

csii_10

csii_11
csii_12

scc_1

scc_2scc_3

scc_4 scc_5scc_6
scc_7scc_8

scc_9

scc_10r

scc_11

scc_12

−0.5 0.0 0.5 1.0
−

0.
5

0.
0

0.
5

ratio Box−Cox MDS

csii_1

csii_2csii_3 csii_4
csii_5

csii_6

csii_7

csii_8

csii_9

csii_10csii_11

csii_12

scc_1scc_2

scc_3

scc_4

scc_5

scc_6
scc_7

scc_8

scc_9
scc_10r

scc_11

scc_12

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5

CLCA

csii_1csii_2

csii_3

csii_4

csii_5

csii_6
csii_7

csii_8

csii_9

csii_10

csii_11

csii_12

scc_1

scc_2

scc_3

scc_4

scc_5

scc_6

scc_7scc_8

scc_9 scc_10r

scc_11

scc_12

−0.1 0.0 0.1 0.2

−
0.

15
−

0.
05

0.
00

0.
05

0.
10

0.
15

CLDA

csii_1

csii_2

csii_3

csii_4
csii_5

csii_6

csii_7

csii_8

csii_9

csii_10csii_11

csii_12scc_1

scc_2

scc_3

scc_4

scc_5

scc_6

scc_7

scc_8

scc_9

scc_10r

scc_11

scc_12

Figure 4: Configurations of ratio LMDS, ratio Box-Cox MDS, CLCA and CLDA for the
Koller data.

+ mains = c("ratio LMDS", "ratio Box-Cox MDS",
+ "CLCA", "CLDA"),
+ layoutmat = twobytwo,
+ label.conf = list(pos = 5, col = cg), xlab = "", ylab = "",
+ asp = 1)

When looking at the configurations in Figure 4 we see that CLCA and CLDA do not allow
separation of the items based on the scales. They arrange items in a relatively regular way and
represent the items without obvious crowding; these two methods may be less illuminating
for scale items. Local MDS as a method for emphasizing local structure arranges the items

20 Flexible Multidimensional Scaling with the R Package smacofx

almost linearly in the target space but at least reproduces the cluster nature of the scales we
saw before, with SCC items comprising one and the CSII items comprising a second group
with CSII 1,7,9,10 bridging the two. The ratio BC-MDS result is similar to the restricted
POST-MDS result.

4.10. Extended curvilinear (power) component and distance analysis

Rusch (2025) proposed a generalization of CLCA, coined extended curvilinear power compo-
nent analysis (eCLPCA). It also uses weighting with the Heaviside function 1

(
d̂ij(X) ≤ τ

)
but additionally allows for given static weights, implicit ratio, interval and spline transforma-
tions of dissimiliarities and explicit power transformations of dissimilarities, fitted distances
or weights. It essentially marries metric r-stress MDS or POST-MDS to CLCA, thus allowing
for manifold learning/local version of r-stress MDS and all its special cases (from Sammon
mapping to POST-MDS), and adds flexibility to CLCA.
The stress function that is minimized is:

σeclpca(X|θ) =
∑
i<j

ŵij

(
δ̂ij − d̂ij(X)

)2
1

(
d̂ij(X) ≤ τ

)
=
∑
i<j

wν
ij

(
f(δλ

ij) − dij(X)κ
)2
1 (dij(X)κ ≤ τ) (16)

with θ = (λ, κ, ν, τ)⊤. The Heaviside step function sparsifies the weight matrix as if one were
to set wij = 0 if d̂ij(X) > τ , so this may also be also called sparsified (power) MDS. If λ =
κ = ν = 1 and f is the implicit ratio transformation this is extended curvilinear component
analysis (eCLCA) with a single, fixed τ . We optimize this with the Quasi-MM algorithm of
Rusch (2025). The two versions can be can be fitted with eclpca(delta, lambda, kappa,
tau, nu, type, weightmat) or eclca(delta, tau, type, weightmat) respectively, with
delta being an input dissimilarity matrix (can be pre-transformed), lambda, kappa, nu,
tau being the elements of the respective θ and weightmat being a symmetric matrix of weights
[wij].
For the Koller data, we may fit an interval eCLCA with τ = 0.2 and a eCLPCA with κ = 3,
λ = 1.5 , τ = 0.025 as

R> smdsres <- eclca(dis, tau = 0.2, type = "interval")
R> spmdsres <- eclpca(dis, kappa = 3, lambda = 1.5, tau = 0.025)

The configurations are displayed in the top row of Figure 5 (corresponding code below).
If the δij used are geodesic distances the methods are called extended curvilinear power dis-
tance analysis (eCLPDA) and extended curvilinear distance analysis respectively (eCLDA).
We have implemented convenience functions to fit eCLPDA and eCLDA models that use
vegan::isomapdist() internally. This adds a fifth hyperparameter, either k or ϵ, for the
neighbourhood. The usage is one of eclpda(delta, k, lambda, kappa, tau, nu, type,
weightmat) or eclda(delta, k, tau, type, weightmat) for the k version, or eclpda(delta,
eps, lambda, kappa, tau, nu, type, weightmat) or one can use eclda(delta, eps,
tau, type, weightmat) for the ϵ version.
For our data example and using the k argument

Journal of Statistical Software 21

R> sddares <- eclda(dis, k = 5, tau = 0.3)
R> spmddares <- eclpda(dis, k = 5, tau = 0.05,
+ kappa = 2, lambda = 1.5, nu = -1.5,
+ type = "interval")

The configurations are displayed in the bottom row of Figure 5 from this code.

R> olist5 <- list(smdsres, spmdsres, sddares, spmddares)
R> par(mai = c(0.3, 0.4, 0.4, 0))
R> alignplot(olist5, mds0$conf,
+ mains = c("interval eCLCA", "ratio eCLPCA",
+ "ratio eCLDA", "interval eCLPDA"),
+ layoutmat = twobytwo,
+ label.conf = list(pos = 5, col = cg), xlab = "", ylab = "",
+ asp = 1)

When looking at the configurations in Figure 5 we see that interval eCLCA indeed looks
similar to the interval MDS but with an emphasis on a more regular arrangement of local
neighbourhoods. The three clusters are separated. The ratio eCLPCA result is emphasizing
the clusters even more, giving an arrangement that is reminiscent of the ordinal r-stress
MDS with a more cohesive SCC cluster, again the effect of the sparsification/locality feature.
eCLDA and eCLPDA also use geodesic distances and look similar in structure to the local
MDS result (especially interval eCLPDA and LMDS look similar). They allow to visually
separate the SCC items from the CSII items and arrange the local neighbourhood of the
CSII items fairly well (the configuration can be cut with three horizontal line to yield the
three clusters); CLDA in its original form was not able to do that, showing that the extended
methods can add value.
In the eCLPA functions above we hold τ fixed. In Demartines and Herault (1997) it has been
proposed to vary τ over a decreasing sequence of τs as in a SOM (and is also done in our
CLCA implementation). We adapted this to eCL(P)CA and eCL(P)DA as described in Rusch
(2025), making them into self-organizing variants. The idea is that one starts with a τs = τ0
and then repeats these steps: fit the model with τs, use a new τt < τs, set τs = τt fit the
model with current τs. This gradually refines the solution for increasingly smaller distances
and with every pass through the data, called epochs, the configuration gets re-arranged based
on an increasingly narrower subset of distances. We support this in smacofx with functions
that prefix so_, so

R> so_eclpca(delta, lambda, kappa, tau, nu, type, epochs, weightmat)
R> so_eclca(delta, tau, type, epochs, weightmat)
R> so_eclpda(delta, k, epsilon, lambda, kappa, tau, nu, type, epochs,
+ weightmat)
R> so_eclda(delta, k, epsilon, tau, type, epochs, weightmat)

The arguments are like in eclpca() or eclpda(), with the exception of tau which now is
either a numeric vector containing a sequence of decreasing τ supplied by the user, or if given
as a scalar the highest τ (τ0) of the τ sequence. In case of the latter, a sequence of length

22 Flexible Multidimensional Scaling with the R Package smacofx

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

interval eCLCA

csii_1

csii_2
csii_3

csii_4csii_5

csii_6

csii_7csii_8

csii_9

csii_10
csii_11

csii_12

scc_1
scc_2

scc_3

scc_4 scc_5

scc_6
scc_7scc_8

scc_9

scc_10r scc_11

scc_12

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ratio eCLPCA

csii_1
csii_2

csii_3 csii_4csii_5
csii_6

csii_7

csii_8
csii_9

csii_10csii_11

csii_12

scc_1scc_2 scc_3

scc_4
scc_5scc_6

scc_7scc_8scc_9scc_10r
scc_11

scc_12

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

ratio eCLDA

csii_1

csii_2 csii_3

csii_4

csii_5

csii_6

csii_7

csii_8

csii_9

csii_10

csii_11

csii_12

scc_1scc_2

scc_3

scc_4

scc_5

scc_6

scc_7

scc_8scc_9

scc_10r

scc_11

scc_12

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

interval eCLPDA

csii_1

csii_2

csii_3

csii_4

csii_5

csii_6

csii_7

csii_8

csii_9

csii_10

csii_11
csii_12

scc_1

scc_2

scc_3

scc_4

scc_5

scc_6

scc_7
scc_8

scc_9

scc_10r

scc_11

scc_12

Figure 5: Configurations of interval eCLCA, ratio eCLPCA, ratio eCLDA and interval
eCLPDA for the Koller data.

epochs is created that runs from tau to tau / epochs. If tau is a sequence, the epochs
argument is ignored.

4.11. Wrappers for external MDS functions

Our package also feature wrappers for MDS related functions from other packages to make
them usable within the smacofx framework. Currently we have wrappers for cmdscale() in
base which does Torgerson scaling and the Sammon mapping implementation Sammon() in
MASS.

Journal of Statistical Software 23

5. Post-fit infrastructure
Following in the spirit of smacof we offer the most important post-fitting infrastructure
that smacof offers also for objects returned by the functions in smacofx. Specifically, we
support most of the smacof object plots including the configuration plot, bubble plot and
Shepard plot. We also support MDS biplots (biplotmds()), MDS jackknife (jackmds()),
MDS bootstrap (bootmds()), permutation tests (permtest()), included a multistart func-
tion (multistart()), and a function for the exploration of the effect of initial configurations
(icExploreGen()). We explain them in turn.

5.1. Plotting

Plot method. The standard plot() method for objects of class ‘smacofP’ supports the
plots listed subsequently. They can be selected with the plot.type argument to plot().
The plots are the “configuration plot” (default, plots the objects in the configuration with
or without convex hulls), the “residual plot” (plot.type = "resplot", a plot of the δ̂ij

vs. the d̂ij(X)), the “stress decomposition plot” (plot.type = "stressplot", which plots
the badness-of-fit contribution of each observation and the higher the contribution, the worse
the fit), the “bubble plot” (plot.type = "bubbleplot", which is a configuration plot with
the point size proportional to the badness-of-fit contribution), and a histogram of the δ̂ij

weighted with ŵij (plot.type = "histogram"). These plots correspond directly to the plots
available in smacof for objects of class ‘smacofB’ (see De Leeuw and Mair 2009; Mair et al.
2022, for details).
Objects of class ‘smacofP’ support a tailored form of the Shepard diagram (plot.type =
"Shepard") that takes possible power transformations into account. There are two versions
of this Shepard diagram: With the additional argument shepard.lin = TRUE, it is a diagram
with the transformed observed normalized dissimilarities T∆(δij) on the abscissa and the
transformed fitted distance TD(dij(X)) on the ordinate, plus a regression line corresponding to
MDS type chosen in the fitting procedure (a linear one without intercept for "ratio", a linear
one for "interval", a montone spline for "mspline" and an isotonic one for "ordinal"), as
well as a loess curve. The loess curve can help in gauging how well the power transformation
works by checking the congruence of the loess smoother with the regression line; it can be
turned off with loess = FALSE. We call this “linearized Shepard diagram”. If shepard.lin
= FALSE it is a Shepard plot that uses the untransformed δij on the abscissa instead, as well
as the fitted power transformation regression line and loess smoother.
A unique plot for models with power transformations is the “transformation plot” (plot.type
= "transplot"). This is a 2D plot with the ordinate showing the normalized observed dis-
similarities (δij , light grey) and the normalized explicitly transformed dissimilarities (T∆(δij),
darker) against the abscissa of untransformed fitted distances (dij(X)) together with the
parametric regression curve corresponding to the explicit transformation used by the MDS
(so, the fitted power transformation). This plot is most useful for ratio models with power
transformations as the transformations can be read off directly. For other MDS models, it
still gives a quick way to assess how the explicit transformations worked. If there are no
power transformations this would simplify to a residual plot.
We show the latter two plots for the power stress solution of the running data example in

24 Flexible Multidimensional Scaling with the R Package smacofx

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

Linearized Shepard Diagram

Transformed Dissimilarities

Tr
an

sf
or

m
ed

 C
on

fig
ur

at
io

n
D

is
ta

nc
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
04

0.
06

0.
08

0.
10

Transformation Plot

Untransformed Configuration Distances

N
or

m
al

iz
ed

 D
is

si
m

ila
rit

ie
s

Transformed
Untransformed

Figure 6: Linearized Shepard plot (left) and transformation plot (right) for ‘smacofP’ objects.

Figure 6.

R> op <- par(no.readonly = TRUE)
R> par(mfrow = c(1, 2))
R> plot(pst, plot.type = "Shepard")
R> plot(pst, plot.type = "transplot")
R> par(op)

We see that the chosen parametrization for the POST-MDS leads to a rather good correspon-
dence of disparities and transformed distances, visible by the regression line and the loess
smoother coinciding rather well (with a correlation of 0.992). Only in the region of high δ̂ij

the two curves diverge.

Biplots. We support MDS biplots for all the MDS model classes described previously. These
biplots map one or more external variables into the same space where the MDS configuration
lies. This can help in interpreting directions in the MDS space, which is often more meaningful
then interpreting the axes of the MDS solution. Let’s say we have q centered external variables
(perhaps also standardized) that comprise the columns of a n × q matrix Y . The MDS
biplot uses the OLS estimates of the p × q regression coefficient matrix B obtained from the
multivariate linear regression Y = XB + E as the coordinates of the external variables in the
MDS space. There are two representations that can be chosen, the “vector representation”
and the “axis representation”. More details can be found in Mair et al. (2022). See also the
example in Section 6.

Journal of Statistical Software 25

5.2. Uncertainty quantification

The smacofx packages features methods for the uncertainty quantification functionality gener-
ics in smacof, i.e., for the MDS jackknife, the MDS bootstrap and a permutation test.

Jackknife. We implemented the MDS jackknife method of De Leeuw and Meulman (1986)
for objects returned by the functions in smacofx. It extends the MDS jackknife in smacof to
work with the flexible MDS methods we described, as well as returns values for the cross-
validity, stability and dispersion statistic. See Mair et al. (2022) for a thorough discussion.
The usage is straightforward object-oriented, e.g., for the eCLDA

R> jk1 <- jackmds(sddares)
R> plot(jk1)

See the worked example in Section 6.
The jackknife can also give hints to whether the specific MDS model or optimization at hand
is prone to local minima or premature convergence. This can be signalled by some objects
being placed very far away from their centroid for some jackknife resamples, often discernable
by long rays in the jackknife MDS plot. This then warrants further investigation (but note
that not seeing this does not mean there is no problem).

Bootstrap. We also have implemented a bootstrap method bootmds() that works for the
objects returned by functions in smacofx. This is the same bootstrap as used in smacof. Note
that the bootstrap currently only supports a few distance functions and the original data set
needs to be supplied, see Mair et al. (2022) for details.
The usage is

R> bs1 <- bootmds(sddares, data = koller, method.dat = "euclidean")
R> plot(bs1)

and a worked example is given in Section 6.

Permutation test. Mair, Borg, and Rusch (2016) propose a permutation test for testing
against whether the configuration may have been obtained from a permuted dissimilarity
matrix. If this null is not rejected, any differentiation information that the MDS model used
to find the configuration is consistent with idiosyncratic noise. Note that just because we
reject the null in this test does not mean we actually established that the MDS result is
fitting well—this test only provides some protection against falsely interpreting a MDS result
obtained from an uninformative underlying dissimilarity matrix as substantive.
The test can be conducted for ‘smacofP’ objects with

R> permtest(sddares)

See Section 6 for an example.

26 Flexible Multidimensional Scaling with the R Package smacofx

5.3. Exploring and mitigating local minima

MDS models are notorious for being difficult to optimize, mainly due to most MDS objectives
having multiple local optima when p is low. This problem can be even more pronounced for
flexible MDS models. The smacofx package features functions that can help with exploring
and mitigating the problem of local optima with the jackmds() (as described previously),
icExploreGen() and multistart() functions.

Exploration of starting configurations. The icExploreGen() function in smacofx al-
lows to explore how different (random) starting configurations influence the final result. In
it, we run a given MDS model from different initial starting configurations up to convergence.
The MDS configurations obtained for each different start are then matched via Procrustes
analysis. Then the intercorrelations of the point coordinates between any two obtained con-
figurations are calculated and an interval MDS is fitted based on the intercorrelations. By
default, the starting configurations are generated randomly from a p-dimensional uniform
distribution with given minimum and maximum vectors (defaulting to a p-dimensional vector
of −5 and 5 respectively).
The implementation in smacofx is a bit more general than smacof::icExplore(), as the
former is object-oriented and can accommodate various MDS models including those from
smacof. It can be initialized via a pre-fitted model object, but also setup via a ‘call’ object.
Additionally, one can supply a list of starting configurations. In the plot method the 2D
interval MDS of the configuration similarities is displayed, with the number being the index
of the corresponding MDS configuration and the size reflecting the badness-of-fit value: the
larger the font, the worse the fit. The size is also associated with a corresponding color
shading (the smaller the size the darker the color). See Section 6 for a worked example.

Multiple starts. A way of mitigating the issue of local optima in MDS is to use differ-
ent starting configurations, letting the algorithm run until convergence from every start and
then select the configuration with the overall lowest badness-of-fit value. This is the mul-
tistart method (Borg and Mair 2017) and is implemented in the multistart() function.
It is an object-oriented function and only needs a pre-fitted model object. By default the
multistart() function creates nstart starting configurations from a p-dimensional uniform
distribution (with all elements of the minimum vector of −5 and of the maximum vector of
5). One can also supply a list of starting configurations. By default, the function returns the
MDS object that had the lowest overall stress over all the configurations obtained.
The usage is

R> ms1 <- multistart(bcm)

with ms1$best giving the best configuration. See Section 6 for a worked version.
If the starting configurations are drawn from a uniform distribution, one can make a prob-
abilistic statement about the obtained fit value being within a specific quantile around the
global optimum. This follows from the well-known property of random search that if we
evaluate an objective at o random points, we can calculate the probability P that at least
one objective value lies within the Q%-quantile band around the global optimum. This is
because the probability that none of the o values lies within the Q-th quantile is (1 − Q)o and

Journal of Statistical Software 27

that at least one lies within is then 1 − (1 − Q)o. From this we can derive that the number
of evaluations needed to lie with at least probability P in the Q-th quantile band above the
global minimum is o ≥ log(1−P)

log(1−Q) . So for example, if we want that with probability P = 0.95
the fit measure lies at least once within the Q × 100% = 1% band of the global optimum,
we need to evaluate the badness-of-fit at o ≥ 299 randomly selected configurations. Since
we typically run more than one iteration this is a strict upper bound. In multistart(), the
default o (nstart) we use is 110, which puts us with probability of at least 2/3 inside 1% of
the global minimum and with probability of at least 0.996 inside the 5% lowest badness-of-fit
values.

6. Worked example
For a fully worked example and tour through the functionality in smacofx, we will scale
images of “corpse paint”. Corpse paint is a type of (usually) black-and-white facial make-up
employed by musicians in hard rock, heavy metal, and there especially in Black Metal, meant
to shock and/or make the wearer appear and feel “one with darkness”, corpse-like, inhuman or
demonic (e.g., Phillipov 2012; Venkatesh, Podoshen, Urbaniak, and Wallin 2015). We point
out that this is no laughing matter and should only be worn by the devout and certainly not
by posers.
We use 32 images of corpse paint that have been downloaded from the internet after a Google
image search. We processed these 32 images to a resolution of 90 × 90 pixel and as 8-bit gray
scale images (so allowing for 256 shades of gray) taking intensity values between 0 and 1. The
data are available as corpsepaint in the package smacofx.

R> data("corpsepaint")

Each column vector represents an image, and each vector element is a pixel, so the vectors
are of length 90 × 90 = 8100. The images can be plotted with the following code and are
displayed in Figure 7.

R> par(mfrow = c(8, 4), mai = c(0, 0.01, 0.2, 0.01))
R> for(i in 1:ncol(corpsepaint)) {
+ p1 <- matrix(corpsepaint[, i], ncol = 90, nrow = 90,
+ byrow = FALSE)
+ image(p1, col = gray.colors(256), main =
+ colnames(corpsepaint)[i], axes = FALSE)
+ }
R> par(op)

To measure dissimilarity between the images, we use the L1-distance (Manhattan or city-
block distance) between the image vectors based on the corresponding pixels. For two image
vectors xi and xj this is,

d(xi, xj) =
8100∑
k=1

|xik − xjk|. (17)

with index k running over the pixels. This distance is appropriate for images (Gonzalez and
Woods 2002) and allows us to illustrate the full functionality of the package.

28 Flexible Multidimensional Scaling with the R Package smacofx

F1 F2 F3 F4

F5 F6 F7 F8

F9 F10 F11 F12

F13 F14 F15 F16

F17 F18 F19 F20

F21 F22 F23 F24

F25 F26 F27 F28

F29 F30 F31 F32

Figure 7: 32 images of corpse paint. The images are 90 × 90 pixels in 8-bit gray scale.

Journal of Statistical Software 29

R> disc <- as.matrix(dist(t(corpsepaint), method = "manhattan"))

We fit 15 different MDS models fitted to the data: ratio MDS as reference, CLCA with τ0 = 1,
ratio MULTISCALE, ratio ALSCAL, local MDS with k = 5, τ = 0.5, ratio elastic scaling,
interval Sammon mapping, ordinal r-stress MDS with r = 0.75, ratio Box-Cox MDS with
µ = 3, λ = 0.7, ρ = −1.5, restricted ratio POST-MDS with wij = δij , κ = λ = 3, ν = −1.5,
ratio POST-MDS with wij = δij , κ = 0.3, λ = 0.8, ν = −0.5, interval eCLCA with τ = 0.15,
ratio eCLDA with k = 5, τ = 0.1, ratio eCLPCA with κ = 2.5, λ = 1.5, τ = 0.05 and interval
eCLPDA with k = 5, τ = 0.3, κ = 3, λ = 1.5, ν = −1.5. We set zealous itmax = 50000 and
acc = 1e-8 for all methods.

R> set.seed(0208)
R> mds0c <- mds(disc, eps = 1e-8)
R> clcaresc <- clca(disc, lambda0 = 1, alpha0 = 1)
R> msc <- multiscale(disc, acc = 1e-8)
R> alsc <- alscal(disc, acc = 1e-8, itmax = 50000)
R> lmsc <- lmds(disc, k = 5, tau = 0.5, acc = 1e-8,
+ itmax = 50000)
R> elsc <- elscal(disc, acc = 1e-8, itmax = 50000)
R> samc <- sammonmap(disc, type = "interval", acc = 1e-8,
+ itmax = 50000)
R> rstc <- rstressMin(disc, r = 0.75, type = "ordinal",
+ acc = 1e-8, itmax = 50000)
R> bcmc <- bcmds(disc, mu = 3, lambda = 0.7, rho = -1.5,
+ acc = 1e-8, itmax = 50000)
R> rpstc <- rpostmds(disc, expo = 3, nu = -1.5, weightmat = disc,
+ acc = 1e-8, itmax = 50000)
R> pstc <- postmds(disc, kappa = 0.3, lambda = 0.8, nu = -0.5,
+ weightmat = disc, acc = 1e-8, itmax = 50000)
R> smdsresc <- eCLCA(disc, tau = 0.15, type = "interval", acc = 1e-8,
+ itmax = 50000)
R> sddaresc <- eCLDA(disc, k = 5, tau = 0.1, acc = 1e-8,
+ itmax = 50000)
R> spmdsresc <- eCLPCA(disc, kappa = 2.5, lambda = 1.5, tau = 0.05,
+ itmax = 50000, acc = 1e-8)
R> spmddaresc <- eCLPDA(disc, k = 5, tau = 0.3, kappa = 3, lambda = 1.5,
+ nu = -1.5, type = "interval", itmax = 50000,
+ acc = 1e-8)

The subsequent code produces Figure 8 which gives the 2D configurations of the fitted MDS
variants in Western reading order.

R> lt <- matrix(1:15, nrow = 5, ncol = 3)
R> cplist <- list(mds0c, clcaresc, msc, alsc, lmsc, elsc, samc,
+ rstc, bcmc, rpstc, pstc, smdsresc, sddaresc,
+ spmdsresc, spmddaresc)
R> mains <- c("ratio MDS", "CLCA", "ratio MULTISCALE", "ratio ALSCAL",

30 Flexible Multidimensional Scaling with the R Package smacofx

+ "ratio LMDS", "ratio elastic scaling",
+ "interval Sammon mapping",
+ "ordinal r-stress MDS", "ratio Box-Cox MDS",
+ "ratio restricted POST-MDS", "ratio POST-MDS",
+ "interval eCLCA", "ratio eCLDA", "ratio eCLPCA",
+ "interval eCLPDA")
R> par(mai = c(0.27, 0.27, 0.4, 0))
R> alignplot(cplist, mds0c$conf, mains = mains, layoutmat = lt,
+ label.conf = list(pos = 5, col = cg), xlab = "", ylab = "",
+ asp = 1)

We first notice that the configurations can look quite different in parts, from little discernable
structure in the ratio MDS to structured results like for Box-Cox MDS. This is to be expected
due to the different implicit and explicit transformations utilized and warrants our chosen term
“flexible”.
Going forward we use only a subset for further illustration, namely the ordinal r-stress,
the ratio POST-MDS, the interval eCLPDA and the ratio Box-Cox MDS. The print output
of the models are listed subsequently; it provides information on the model type, explicit
transformation parameters, number of objects, badness-of-fit value (square root of stress)
and the number of iterations.

R> rstc

Call:
rstressMin(delta = disc, r = 0.75, type = "ordinal", acc = 1e-08,

itmax = 50000)

Model: ordinal r-stress MDS with parameter vector= 0.75
Number of objects: 32
Stress-1 value: 0.257
Number of iterations: 39584

R> pstc

Call:
postmds(delta = disc, kappa = 0.3, lambda = 0.8, nu = -0.5, weightmat = disc,

acc = 1e-08, itmax = 50000)

Model: ratio power-stress MDS with parameter vector= 0.3 0.8 -0.5
Number of objects: 32
Stress-1 value: 0.087
Number of iterations: 16410

R> spmddaresc

Call:
eCLPDA(delta = disc, lambda = 1.5, kappa = 3, nu = -1.5, tau = 0.3,

Journal of Statistical Software 31

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ratio MDS

F1

F2

F3

F4
F5F6

F7

F8

F9

F10

F11

F12

F13
F14

F15

F16

F17
F18

F19

F20

F21

F22

F23
F24

F25F26

F27

F28

F29

F30

F31

F32

−1.0 −0.5 0.0 0.5

−
0.

5
0.

0
0.

5

CLCA

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

F18

F19
F20

F21

F22

F23

F24

F25

F26
F27

F28

F29

F30

F31

F32

−0.5 0.0 0.5

−
0.

4
0.

0
0.

2
0.

4
0.

6

ratio MULTISCALE

F1

F2F3

F4

F5

F6
F7

F8

F9

F10

F11

F12

F13

F14

F15

F16
F17

F18

F19

F20

F21

F22

F23

F24

F25

F26

F27

F28

F29

F30F31

F32

−1.0 −0.5 0.0 0.5

−
0.

5
0.

0
0.

5

ratio ALSCAL

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11F12

F13

F14

F15

F16
F17

F18

F19

F20

F21

F22
F23

F24

F25

F26F27

F28

F29

F30

F31F32

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

ratio LMDS

F1

F2

F3

F4
F5

F6

F7

F8F9

F10F11

F12

F13

F14

F15

F16

F17

F18
F19

F20F21

F22

F23

F24
F25

F26

F27

F28
F29

F30

F31F32

−1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

ratio elastic scaling

F1

F2

F3

F4
F5

F6

F7

F8

F9

F10

F11

F12

F13
F14

F15

F16

F17

F18

F19

F20F21

F22

F23
F24

F25

F26

F27

F28 F29

F30

F31

F32

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

interval Sammon mapping

F1

F2

F3

F4
F5

F6

F7

F8

F9

F10

F11

F12
F13

F14

F15

F16

F17

F18

F19

F20

F21

F22
F23

F24

F25F26
F27

F28

F29F30

F31

F32

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ordinal r−stress MDS

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10
F11

F12

F13

F14

F15

F16

F17F18
F19F20

F21

F22

F23

F24

F25
F26F27

F28

F29

F30

F31

F32

−1.0 −0.5 0.0 0.5

−
0.

5
0.

0
0.

5

ratio Box−Cox MDS

F1

F2

F3

F4

F5

F6
F7

F8

F9
F10

F11

F12

F13
F14

F15

F16

F17

F18

F19

F20
F21

F22

F23

F24

F25
F26

F27

F28

F29

F30

F31

F32

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

ratio restricted POST−MDS

F1

F2

F3

F4

F5

F6F7

F8

F9

F10

F11F12

F13

F14

F15

F16

F17

F18 F19
F20

F21

F22

F23

F24

F25

F26

F27 F28

F29

F30

F31

F32

−1.0 −0.5 0.0 0.5

−
0.

5
0.

0
0.

5
1.

0

ratio POST−MDS

F1

F2

F3

F4
F5F6

F7

F8

F9

F10

F11

F12
F13 F14

F15

F16 F17

F18

F19

F20

F21

F22

F23

F24

F25

F26

F27

F28

F29

F30

F31

F32

−1.5 −1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

interval eCLCA

F1

F2

F3

F4

F5F6

F7

F8

F9

F10

F11

F12F13
F14

F15

F16

F17
F18

F19

F20
F21

F22F23
F24

F25F26
F27

F28

F29

F30

F31

F32

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0
ratio eCLDA

F1

F2
F3

F4 F5

F6F7

F8
F9

F10

F11

F12

F13

F14

F15

F16

F17F18

F19
F20

F21

F22

F23

F24

F25
F26

F27
F28

F29
F30

F31

F32

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ratio eCLPCA

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11
F12

F13

F14

F15

F16

F17

F18
F19

F20

F21

F22F23

F24

F25

F26
F27 F28

F29

F30

F31

F32

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

interval eCLPDA

F1

F2

F3

F4

F5
F6F7

F8

F9

F10
F11

F12

F13

F14

F15

F16 F17

F18
F19

F20

F21

F22

F23
F24

F25

F26
F27

F28

F29F30

F31
F32

Figure 8: 15 different MDS configurations of the corpse paint data set (Procrustes adjusted
to the ratio MDS).

32 Flexible Multidimensional Scaling with the R Package smacofx

type = "interval", k = 5, acc = 1e-08, itmax = 50000)

Model: interval eCLPDA with parameter vector= 3 1.5 -1.5 0.3 5
Number of objects: 32
Stress-1 value: 0.51
Number of iterations: 50000

R> bcmc

Call:
bcmds(delta = disc, mu = 3, lambda = 0.7, rho = -1.5, itmax = 50000,

acc = 1e-08)

Model: ratio Box-Cox MDS with parameter vector= 3 0.7 -1.5
Number of objects: 32
Stress-1 value: 0.505
Number of iterations: 520

We are first interested in looking at the configuration with the images plotted. For this we
defined a function plot_cpmds() that allows us to plot the image into the configuration.

R> library("TeachingDemos")
R> plot_cpmds <- function(mdsc, inches = 0.3, main = "MDS", xlab = "",
+ ylab = "")
+ {
+ plot(mdsc, type = "n", main = main, asp = 1, xlab = xlab, ylab = ylab)
+ for(i in 1:dim(mdsc)[1])
+ {
+ r <- array(matrix(rev(corpsepaint[, i]), 90, 90, byrow = TRUE),
+ c(90, 90, 3))
+ my.symbols(mdsc[i, 1], mdsc[i, 2], symb = ms.image, MoreArgs =
+ list(img = r), inches = inches, symb.plots = TRUE,
+ add = TRUE)
+ }
+ }

We use Procrustes adjusted configuration (adjusted to the POST-MDS) configuration to make
them align visually.

R> pstc2 <- pstc$conf
R> bcmc2 <- Procrustes(pstc$conf, bcmc$conf)$Yhat
R> rstc2 <- Procrustes(pstc$conf, rstc$conf)$Yhat
R> spmddaresc2 <- Procrustes(pstc$conf, spmddaresc$conf)$Yhat

The four configurations of the 32 images are displayed in Figure 9.

Journal of Statistical Software 33

R> par(mfrow = c(2, 2), mai = c(0.3, 0.3, 0.4, 0))
R> plot_cpmds(pstc2, inches = 0.3, main = "ratio POST-MDS")
R> plot_cpmds(rstc2, inches = 0.3, main = "ordinal r-Stress MDS")
R> plot_cpmds(spmddaresc2, inches = 0.3, main = "interval eCLPDA")
R> plot_cpmds(bcmc2, inches = 0.3, main = "ratio Box-Cox MDS")
R> par(op)

Luckily the great panda is generally scaled towards the edge. For the arrangement in the
MDS configuration it seems quite important that some images feature high levels of mid-
dling greyness and others show a strong black and white contrast. Dimension 1 (abscissa)
apparently captures this distinction quite well (negative values on Dimension 1 seem to be
associated with higher greyness, positive values with stronger contrasts). The ordinate is
harder to interpret; perhaps the images placed in the upper half look less human and more
animalistic.
The eCLPDA cuts off a substantial number of proximities, so we check with a permutation
test whether the result can be distinguished from a situation with uninformative dissimilar-
ities, which would mean that the explicit transformations in eCLPDA (so, the τ and the
geodesic distance transformation) have the effect of nullifying the information content in the
L1-distance matrix.

R> set.seed(666)
R> pte <- permtest(spmddaresc, nrep = 100)

R> pte

Call: permtest.smacofP(object = spmddaresc, nrep = 100)

SMACOF Permutation Test
Number of objects: 32
Number of replications (permutations): 100

Observed stress value: 0.51
p-value: 0.02

We reject the null at the 5% level (p = 0.02) pointing towards this configuration indeed being
consistent with an informative mapping (the τ does not nullify the information content after
the Heaviside function was applied, see spmddares$tweightmat).
We now calculate a jackknife stability for the POST-MDS and a bootstrap for the ratio
Box-Cox MDS and display the plots in Figure 10.

R> jk <- jackmds(pstc)

R> jk

Call: jackmds.smacofP(object = pstc)

34 Flexible Multidimensional Scaling with the R Package smacofx

−0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

ratio POST−MDS

−0.2 −0.1 0.0 0.1

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

ordinal r−Stress MDS

−0.2 −0.1 0.0 0.1

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

interval eCLPDA

−0.2 −0.1 0.0 0.1

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

ratio Box−Cox MDS

Figure 9: Four configurations with the 32 images overplotted (after Procrustes adjustment
to the ratio POST-MDS result).

Journal of Statistical Software 35

SMACOF Jackknife
Number of objects: 32
Value loss function: 0.4361
Number of iterations: 3

Stability measure: 0.991
Cross validity: 0.9987
Dispersion: 0.0103

R> bs <- bootmds(bcmc, corpsepaint, "manhattan")

R> bs

Call: bootmds.smacofP(object = bcmc, data = corpsepaint, method.dat =
"manhattan")

SMACOF Bootstrap:
Number of objects: 32
Number of replications: 100

Mean bootstrap stress: 0.5007
Stress percentile CI:

2.5% 97.5%
0.4959 0.5070

Stability coefficient: 0.7201

R> par(mfrow = c(1, 2))
R> plot(jk)
R> plot(bs)
R> par(op)

We see that the jackknife stability of the POST-MDS is relatively high, whereas the bootstrap
for the Box-Cox MDS shows large uncertainty ellipses for many points. This is likely due to the
difference in transformation parameters: The POST-MDS parameters are close to the ratio
MDS and the differences in dissimilarities between runs does not change much. In the Box-
Cox MDS, however, we used rather high parameter values which emphasize the dissimilarity
differences very much, and nonlinearly at that. We also map to a space that is quite curved
(µ = 3) and then look at it as if it were Euclidean. These two effects together make the
spatial arrangement quite variable for a few of the points.
We saw interpretation of the axes is not straightforward in the selected examples. An MDS
biplot can help by adding an external covariate into the configuration plot. To that end, we
had five Black Metal experts rate the corpse paint images on a “kvltness” scale from 1 to 7,
with 7 meaning “trve kvlt”. We averaged the ratings over the raters and scaled the rating
into the MDS result with an MDS biplot, in this case for the ordinal r-stress MDS result.
Note that the scaling itself did not take the rating into account.

36 Flexible Multidimensional Scaling with the R Package smacofx

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

SMACOF Jackknife Plot

Dimension 1

D
im

en
si

on
 2

F1

F2

F3

F4 F5

F6

F7

F8

F9

F10

F11

F12

F13 F14

F15

F16 F17

F18

F19

F20

F21

F22

F23

F24

F25

F26

F27

F28

F29

F30

F31

F32

−4000 −2000 0 2000 4000

−
40

00
−

20
00

0
20

00
40

00

MDS Bootstrap Plot

Dimension 1

D
im

en
si

on
 2

F1

F2

F3

F4

F5
F6

F7

F8
F9

F10

F11

F12

F13

F14

F15

F16

F17
F18

F19
F20

F21

F22

F23

F24

F25F26
F27

F28F29

F30

F31F32

Figure 10: MDS jackknife plot (left) for the ratio POST-MDS and MDS bootstrap plot with
95%-confidence ellipses (right) for the Box-Cox MDS.

R> prt.mean <- data.frame(kvltness = c(4.0, 4.8, 5.8, 5.8, 2.6, 3.0, 3.6,
+ 3.2, 4.6, 5.4, 4.6, 1.2, 1.6, 3.2, 4.0,
+ 3.4, 6.0, 2.8, 2.0, 5.8, 2.2, 2.4, 1.8,
+ 3.2, 5.8, 5.4, 4.8, 4.6, 3.4, 2.0, 5.4,
+ 0.4),
+ row.names = paste0("F", 1:32))
R> bi1 <- biplotmds(rstc, extvar = prt.mean)

In the left panel of Figure 11 we see that the external variable points towards positive x
axis values/negative y axis values corresponding to most kvlt. The kvltness direction is
quite highly correlated to the y axis (Dimension 2). In this direction of more kvltness lie
famous Norwegian Black Metal musicians, e.g. Euronymous of Mayhem (F31), Abbath (F25)
of Immortal, Shagrath of Dimmu Borgir (F26), Nocturno Culto (F28) and Fenriz (F29) of
Darkthrone. On the opposite side lie the panda bear (F15), F1, F12 (untypical example)
or F23, musicians of Behemoth (F6, F7) but also the originator of Black Metal’s use of this
make-up, Dead (F4). Images almost perpendicular to the kvltness axis show Kiss’s Demon
(F13), Alice Cooper (F21), over-the-top (F5, F9) and untypical examples (F8, F22). It also
seems that the raters have a tendency to rate the high-contrast images as more kvlt.
When looking at the restricted POST-MDS (with κ = λ = 3, ν = −1.5, wij = δij) and the
Box-Cox MDS result (µ = 3, λ = 0.7, ρ = −1.5), we see that the configuration is unexpectedly
different although they have similar explicit transformations and hyperparameters. When
using the Box-Cox MDS configuration as the initial start to the restricted POST-MDS and
running just one iteration, we see that the stress with the Box-Cox MDS result as the start
is lower compared to the restricted POST-MDS that started from the Torgerson solution and
was run until convergence.

Journal of Statistical Software 37

R> rpst2 <- rpostmds(disc, expo = 3, nu = -1.5, weightmat = disc,
+ init = bcmc$conf, itmax = 1)
R> round(c("Torgerson Start" = rpstc$stress, "BC-MDS Start" = rpst2$stress),
+ 3)

Torgerson Start BC-MDS Start
0.590 0.502

This suggests that the restricted POST-MDS starting from the Torgerson solution was trapped
in a local minimum. We can explore this more systematically with the icExploreGen() func-
tion. We generate a list of 47 random starting configurations manually, and then append them
to the Box-Cox MDS configuration and the restricted POST-MDS configuration which started
from the Torgerson solution. The latter two are on positions 1 and 2 of the list respectively.
We then fit the restricted POST-MDS again with each of these 49 starting configurations.

R> set.seed(666)
R> cl1 <- replicate(47, matrix(runif(2 * 32, min = -5, max = 5), ncol = 2),
+ simplify = FALSE)
R> cl1 <- c(list(bcmc$conf), list(rpstc$conf), cl1)
R> ic1 <- icExploreGen(rpstc, conflist = cl1, verbose = FALSE)

R> par(mfrow = c(1, 2))
R> plot(bi1, vecscale = 0.2, label.conf = list(pos = 5))
R> plot(ic1, cex.scale = 3)
R> par(op)

In the right panel of Figure 11 we see that the configuration 1 (the one we obtained from using
the Box-Cox MDS configuration as the starting configuration) has the lowest stress (smallest
size) and that configuration 2 (the orginal restricted power stress solution from a Torgerson
start) is closest to it and has fairly low stress too.
For the restricted POST-MDS we also run multistart() with 110 random configurations
and hope we improve upon the “best” configuration we found so far.

R> set.seed(666)
R> rpst3 <- rpostmds(disc, expo = 3, nu = -1.5, weightmat = disc,
+ init = bcmc$conf)
R> m2 <- multistart(rpst3,verbose=FALSE)

R> m2$best

Call:
rpostmds(delta = disc, expo = 3, nu = -1.5, weightmat = disc,

init = bcmc$conf)

Model: ratio power-stress MDS with parameter vector= 3 3 -1.5
Number of objects: 32
Stress-1 value: 0.502
Number of iterations: 1

38 Flexible Multidimensional Scaling with the R Package smacofx

−0.4 −0.2 0.0 0.2

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Configuration Plot

Dimension 1

D
im

en
si

on
 2

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10F11

F12

F13

F14

F15

F16

F17
F18

F19F20

F21

F22

F23

F24

F25

F26F27F28

F29

F30

F31

F32

kvltness

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

IC Plot

Dimension 1

D
im

en
si

on
 2

1
2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43
44

45

46

47

48

49

Figure 11: Left panel: MDS biplot for the ordinal r-stress MDS configuration and the
average “kvltness” rating. Right panel: Interval MDS configuration of solutions starting from
different configurations. This is the plot for the result of icExploreGen().

We see that the best stress we found is the one from starting with the Box-Cox MDS solution,
so we can say that with at least a probability of 0.996, it is within 5% of the global optimum.

7. Conclusion
We presented the package smacofx which features flexible multidimensional scaling methods
and extensions to the package smacof. We illustrated various functions for fitting, plotting
and displaying a large number of different flexible MDS models including Sammon mapping
with ratio and interval optimal scaling, MULTISCALE with ratio and interval optimal scal-
ing, ALSCAL with ratio and interval optimal scaling, elastic scaling with ratio and interval
optimal scaling, r-stress MDS with ratio, interval, spline and non-metric optimal scaling,
POST-MDS with ratio and interval optimal scaling, restricted POST-MDS with ratio and
interval optimal scaling, approximate POST-MDS with ratio optimal scaling, Box-Cox MDS,
local MDS, curvilinear component analysis and curvilinear distance analysis, extended curvi-
linear component analysis and extended curvilinear distance analysis with or without powers.
These MDS variants and the accompanying functions are highly flexible and also allow for
other sensible combination of explicit power transformations for weights, distances and input
proximities with implicit ratio, interval, spline or non-metric optimal scaling of the input
proximities. Most functions use a variation of the MM principle for optimization. Currently
the methods are only available for two-way data (symmetric dissimilarity matrices). Together
with the packages smacof this package comprises the most comprehensive multidimensional
scaling suite that we are aware of.
For future research we plan to improve individual aspects of the software such as support for
parallelization for jackknife, bootstrap, and the functions to explore starting configurations.

Journal of Statistical Software 39

We also plan to strengthen the object-oriented approach, for example allowing the MDS
bootstrap to work with more distance functions. While we already feature a large number
of MDS models in this package, there still are developments that have not found their way
into R as of yet and would fit very well into the package. Extending this to unfolding and
three-way data is also planned.

References

Bearden WO, Netemeyer RG, Teel JE (1989). “Measurement of Consumer Susceptibility to
Interpersonal Influence.” Journal of Consumer Research, 15(4), 473–481. doi:10.1086/
209186.

Beaton D, Abdi H (2022). DistatisR: DiSTATIS Three Way Metric Multidimensional Scaling.
R package version 1.1.1, URL https://CRAN.R-project.org/package=DistatisR.

Beaton D, Fatt CRC, Abdi H (2014). “An ExPosition of Multivariate Analysis with the
Singular Value Decomposition in R.” Computational Statistics & Data Analysis, 72(0), 176
– 189. doi:10.1016/j.csda.2013.11.006.

Borg I, Groenen P (2005). Modern Multidimensional Scaling: Theory and Applications. 2nd
edition. Springer-Verlag, New York.

Borg I, Mair P (2017). “The Choice of Initial Configurations in Multidimensional Scaling:
Local Minima, Fit, and Interpretability.” Austrian Journal of Statistics, 46(2), 19–32.
doi:10.17713/ajs.v46i2.561.

Box GE, Cox DR (1964). “An Analysis of Transformations.” Journal of the Royal Statistical
Society B, 26(2), 211–243. doi:10.1111/j.2517-6161.1964.tb00553.x.

Buja A, Swayne DF, Littman ML, Dean N, Hofmann H, Chen L (2008). “Data Visualization
with Multidimensional Scaling.” Journal of Computational and Graphical Statistics, 17(2),
444–472. doi:10.1198/106186008X318440.

Campbell JD, Trapnell PD, Heine SJ, Katz IM, Lavallee LF, Lehman DR (1996). “Self-
Concept Clarity: Measurement, Personality Correlates, and Cultural Boundaries.” Journal
of Personality and Social Psychology, 70(1), 141.

Carroll JD, Chang JJ (1970). “Analysis of Individual Differences in Multidimensional Scaling
via an N-way Generalization of "Eckart-Young" Decomposition.” Psychometrika, 35(3),
283–319. doi:10.1007/BF02310791.

Chen L, Buja A (2009). “Local Multidimensional Scaling for Nonlinear Dimension Reduction,
Graph Drawing, and Proximity Analysis.” Journal of the American Statistical Association,
104(485), 209–219. doi:10.1198/jasa.2009.0111.

Chen L, Buja A (2013). “Stress Functions for Nonlinear Dimension Reduction, Proximity
Analysis, and Graph Drawing.” Journal of Machine Learning Research, 14, 1145–1173.
URL https://jmlr.org/papers/v14/chen13a.html.

https://doi.org/10.1086/209186
https://doi.org/10.1086/209186
https://CRAN.R-project.org/package=DistatisR
https://doi.org/10.1016/j.csda.2013.11.006
https://doi.org/10.17713/ajs.v46i2.561
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1198/106186008X318440
https://doi.org/10.1007/BF02310791
https://doi.org/10.1198/jasa.2009.0111
https://jmlr.org/papers/v14/chen13a.html

40 Flexible Multidimensional Scaling with the R Package smacofx

Coombs CH (1950). “Psychological Scaling without a Unit of Measurement.” Psychological
Review, 57(3), 145.

Cox TF, Cox MA (2001). Multidimensional Scaling. CRC Press, Boca Raton, FL.

Curry HB (1944). “The Method of Steepest Descent for Non-linear Minimization Problems.”
Quarterly of Applied Mathematics, 2(3), 258–261. doi:10.1090/qam/10667.

De Leeuw J (1977). “Applications of Convex Analysis to Multidimensional Scaling.” In
JR Barra, F Brodeau, G Romier, BV Cutsem (eds.), Recent Developments in Statistics, pp.
133–145. North Holland Publishing Company, Amsterdam. URL https://escholarship.
org/uc/item/4ps3b5mj.

De Leeuw J, Groenen P, Mair P (2016). “Minimizing rStress Using Majorization.” Tech-
nical report, UCLA Statistics Preprint Series. URL https://jansweb.netlify.app/
publication/deleeuw-groenen-mair-e-16-a/deleeuw-groenen-mair-e-16-a.pdf.

De Leeuw J, Heiser WJ (1980). “Multidimensional scaling with restrictions on the configura-
tion.” Multivariate Analysis, 5(1), 501–522.

De Leeuw J, Mair P (2009). “Multidimensional Scaling Using Majorization: SMACOF in R.”
Journal of Statistical Software, 31(3), 1–30. doi:10.18637/jss.v031.i03.

De Leeuw J, Meulman J (1986). “A Special Jackknife for Multidimensional Scaling.” Journal
of Classification, 3, 97–112. doi:10.1007/BF01896814.

Demartines P, Herault J (1997). “Curvilinear Component Analysis: A Self-Organizing Neural
Network for Nonlinear Mapping of Data Sets.” IEEE Transactions on Neural Networks,
8(1), 148–154. doi:10.1109/72.554199.

Gonzalez R, Woods R (2002). Digital Image Processing. 2nd edition. Prentice & Hall, New
Jersey.

Goslee SC, Urban DL (2007). “The ecodist Package for Dissimilarity-Based Analysis of
Ecological Data.” Journal of Statistical Software, 22, 1–19. doi:10.18637/jss.v022.i07.

Groenen P, De Leeuw J (2010). “Power-Stress for Multidimensional Scaling.” Technical
report, UCLA, Los Angeles, USA. URL https://jansweb.netlify.app/publication/
groenen-deleeuw-u-10/groenen-deleeuw-u-10.pdf.

Groenen P, De Leeuw J, Mathar R (1996). “Least Squares Multidimensional Scaling with
Transformed Distances.” In W Gaul, D Pfeifer (eds.), From Data to Knowledge: Theoretical
Perspectives and Practical Aspects of Classification, pp. 177–185. Springer-Verlag, Berlin.
doi:10.1007/978-3-642-79999-0_17.

Groenen P, Mathar R, Heiser W (1995). “The Majorization Approach to Multidimensional
Scaling for Minkowski Distances.” Journal of Classification, 12, 3–19. doi:10.1007/
BF01202265.

Knoblauch K, Maloney LT (2008). “MLDS : Maximum Likelihood Difference Scaling in R.”
Journal of Statistical Software, 25, 1–26. doi:10.18637/jss.v025.i02.

https://doi.org/10.1090/qam/10667
https://escholarship.org/uc/item/4ps3b5mj
https://escholarship.org/uc/item/4ps3b5mj
https://jansweb.netlify.app/publication/deleeuw-groenen-mair-e-16-a/deleeuw-groenen-mair-e-16-a.pdf
https://jansweb.netlify.app/publication/deleeuw-groenen-mair-e-16-a/deleeuw-groenen-mair-e-16-a.pdf
https://doi.org/10.18637/jss.v031.i03
https://doi.org/10.1007/BF01896814
https://doi.org/10.1109/72.554199
https://doi.org/10.18637/jss.v022.i07
https://jansweb.netlify.app/publication/groenen-deleeuw-u-10/groenen-deleeuw-u-10.pdf
https://jansweb.netlify.app/publication/groenen-deleeuw-u-10/groenen-deleeuw-u-10.pdf
https://doi.org/10.1007/978-3-642-79999-0_17
https://doi.org/10.1007/BF01202265
https://doi.org/10.1007/BF01202265
https://doi.org/10.18637/jss.v025.i02

Journal of Statistical Software 41

Kohonen T (1982). “Self-Organized Formation of Topologically Correct Feature Maps.” Bio-
logical Cybernetics, 43, 59–69. doi:10.1007/BF00337288.

Koller M, Floh A, Zauner A, Rusch T (2013). “Persuasibility and the Self – Investigating
Heterogeneity among Consumers.” Australasian Marketing Journal, 21(2), 94–104.

Kruskal JB (1964). “Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric
Hypothesis.” Psychometrika, 29(1), 1–27. doi:10.1007/BF02289565.

Lange K (2016). MM Optimization Algorithms. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA. doi:10.1137/1.9781611974409.

Lee JA, Lendasse A, Verleysen M (2004). “Nonlinear Projection with Curvilinear Distances:
Isomap versus Curvilinear Distance Analysis.” Neurocomputing, 57, 49–76. doi:10.1016/
j.neucom.2004.01.007.

Mair P, Borg I, Rusch T (2016). “Goodness-of-Fit Assessment in Multidimensional Scaling
and Unfolding.” Multivariate Behavioral Research, 51, 772–789.

Mair P, Groenen P, De Leeuw J (2022). “More on Multidimensional Scaling and Unfolding in
R: smacof Version 2.” Journal of Statistical Software, 102(10), 1–47. doi:10.18637/jss.
v102.i10.

McGee VE (1966). “The Multidimensional Analysis of ’Elastic’ Distances.” British Journal
of Mathematical and Statistical Psychology, 19(2), 181–196. doi:10.1111/j.2044-8317.
1966.tb00367.x.

Meyer D, Buchta C (2022). proxy: Distance and Similarity Measures. R package version
0.4-27, URL https://CRAN.R-project.org/package=proxy.

Noack A (2007). “Energy Models for Graph Clustering.” Journal of Graph Algorithms and
Applications, 11(2), 453–480.

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Solymos
P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D,
Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly
M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette MH, Ribeiro Cunha
E, Smith T, Stier A, Ter Braak CJ, Weedon J (2022). vegan: Community Ecology Package.
R package version 2.6-4, URL https://CRAN.R-project.org/package=vegan.

Phillipov M (2012). “Extreme Music for Extreme People? Norwegian Black Metal and
Transcendent Violence.” Popular Music History, 6(1-2), 150–163. doi:10.1558/pomh.
v6i1.150.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ramsay JO (1977). “Maximum Likelihood Estimation in Multidimensional Scaling.” Psy-
chometrika, 42(2), 241–266. doi:10.1007/BF02294052.

Ramsay JO (1988). “Monotone Regression Splines in Action.” Statistical Science, 3(4), 425–
441. URL http://www.jstor.org/stable/2245395.

https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF02289565
https://doi.org/10.1137/1.9781611974409
https://doi.org/10.1016/j.neucom.2004.01.007
https://doi.org/10.1016/j.neucom.2004.01.007
https://doi.org/10.18637/jss.v102.i10
https://doi.org/10.18637/jss.v102.i10
https://doi.org/10.1111/j.2044-8317.1966.tb00367.x
https://doi.org/10.1111/j.2044-8317.1966.tb00367.x
https://CRAN.R-project.org/package=proxy
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1558/pomh.v6i1.150
https://doi.org/10.1558/pomh.v6i1.150
https://www.R-project.org/
https://doi.org/10.1007/BF02294052
http://www.jstor.org/stable/2245395

42 Flexible Multidimensional Scaling with the R Package smacofx

Roberts DW (2023). labdsv: Ordination and Multivariate Analysis for Ecology. R package
version 2.1-0, URL https://CRAN.R-project.org/package=labdsv.

Rusch T (2025). “Multidimensional Scaling with Heaviside Weighting: Extensions to Curvi-
linear Component Analysis and Curvilinear Distance Analysis.” Stat, 14(3), e70086. doi:
10.1002/sta4.70086.

Rusch T, De Leeuw J, Chen L, Mair P (2025). smacofx: Flexible Multidimensional Scaling
and ’smacof’ Extensions. R package version 1.21-1, URL https://CRAN.R-project.org/
package=smacofx.

Rusch T, Mair P (2024). cops: Cluster Optimized Proximity Scaling. R package version
1.12-1, URL https://CRAN.R-project.org/package=cops.

Rusch T, Mair P, Hornik K (2021). “Cluster Optimized Proximity Scaling.” Journal of
Computational and Graphical Statistics, 30(4), 1156–1167. doi:10.1080/10618600.2020.
1869027.

Rusch T, Mair P, Hornik K (2023a). “Structure-Based Hyperparameter Selection with
Bayesian Optimization in Multidimensional Scaling.” Statistics and Computing, 33(28),
1–18. doi:10.1007/s11222-022-10197-w.

Rusch T, Venturo-Conerly K, Baja G, Mair P (2023b). “COPS in Action: Exploring Structure
in the Usage of the Youth Psychotherapy MATCH.” Psych, 5(2), 274–302. doi:10.3390/
psych5020020.

Sammon JW (1969). “A Nonlinear Mapping for Data Structure Analysis.” IEEE Transactions
on Computers, C-18(5), 401–409. doi:10.1109/T-C.1969.222678.

Simpson GL (2007). “Analogue Methods in Palaeoecology: Using the analogue Package.”
Journal of Statistical Software, 22(2), 1–29.

Takane Y, Young F, De Leeuw J (1977). “Nonmetric Individual Differences Multidimensional
Scaling: An Alternating Least Squares Method with Optimal Scaling Features.” Psychome-
trika, 42(1), 7–67. doi:10.1007/BF02293745.

Tenenbaum JB, De Silva V, Langford JC (2000). “A Global Geometric Framework for Non-
linear Dimensionality Reduction.” Science, 290(5500), 2319–2323. doi:10.1126/science.
290.5500.2319.

Thrun MC, Ultsch A (2021). “Using Projection-Based Clustering to Find Distance- and
Density-Based Clusters in High-Dimensional Data.” Journal of Classification, 38, 280–312.
doi:10.1007/s00357-020-09373-2.

Torgerson WS (1958). Theory and Methods of Scaling. John Wiley & Sons, New York.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer-
Verlag, New York.

Venkatesh V, Podoshen JS, Urbaniak K, Wallin JJ (2015). “Eschewing Community: Black
Metal.” Journal of Community & Applied Social Psychology, 25(1), 66–81. doi:10.1002/
casp.2197.

https://CRAN.R-project.org/package=labdsv
https://doi.org/10.1002/sta4.70086
https://doi.org/10.1002/sta4.70086
https://CRAN.R-project.org/package=smacofx
https://CRAN.R-project.org/package=smacofx
https://CRAN.R-project.org/package=cops
https://doi.org/10.1080/10618600.2020.1869027
https://doi.org/10.1080/10618600.2020.1869027
https://doi.org/10.1007/s11222-022-10197-w
https://doi.org/10.3390/psych5020020
https://doi.org/10.3390/psych5020020
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1007/BF02293745
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1007/s00357-020-09373-2
https://doi.org/10.1002/casp.2197
https://doi.org/10.1002/casp.2197

Journal of Statistical Software 43

Vera JF, Mair P (2019). “SEMDS: An R Package for Structural Equation Multidimensional
Scaling.” Structural Equation Modeling: A Multidisciplinary Journal, 26(5), 803–818. doi:
10.1080/10705511.2018.1561292.

Zielman B (2022). asymmetry: Multidimensional Scaling of Asymmetric Proximities. R pack-
age version 2.0.4, URL https://CRAN.R-project.org/package=asymmetry.

Affiliation:
Thomas Rusch
Competence Center for Empirical Research Methods
WU (Wirtschaftsuniversität Wien)
Welthandelsplatz 1, D5
1020 Wien, Austria
E-mail: Thomas.Rusch@wu.ac.at

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

https://doi.org/10.1080/10705511.2018.1561292
https://doi.org/10.1080/10705511.2018.1561292
https://CRAN.R-project.org/package=asymmetry
mailto:Thomas.Rusch@wu.ac.at
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction
	Multidimensional scaling
	Implicit transformations: Metric and non-metric MDS
	Input dissimilarities

	Design principles of package functionality
	Multidimensional scaling methods in smacofx
	Sammon mapping
	Elastic scaling
	ALSCAL
	MULTISCALE
	Power-Stress MDS
	R-Stress MDS
	Local MDS
	Box-Cox MDS
	Curvilinear component analysis and curvilinear distance analysis
	Extended curvilinear (power) component and distance analysis
	Wrappers for external MDS functions

	Post-fit infrastructure
	Plotting
	Uncertainty quantification
	Exploring and mitigating local minima

	Worked example
	Conclusion

