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Equivalence of marginal likelihood of the two-parameter normal ogive model in item re- 
sponse theory (IRT) and factor analysis of dichotomized variables (FA) was formally proved, The 
basic result on the dichotomous variables was extended to multicategory cases, both ordered and 
unordered categorical data. Pair comparison data arising from multiple-judgment sampling were 
discussed as a special case of the unordered categorical data. A taxonomy of data for the IRT and 
FA models was also attempted. 
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1. Introduction 

Repeated measures designs, broadly construed, are frequently employed in psycho- 
logical investigations. In these designs each of a group of subjects is repeatedly measured 
under a set of different conditions, thereby contributing more than one observation per 
data set. The conditions may represent different experimental manipulations, different 
occasions of measurement or different test items to which the subjects respond. There are 
various reasons for the popularity of the repeated measures designs in psychological 
research. In experimental-manipulative contexts complete randomization is often difficult 
to realize (particularly with human subjects), and an alternative approach based on 
matched samples is getting increasingly popular. In more observational settings, an in- 
terest may be in how the different measurement conditions (or variables) relate with each 
other in the population of subjects. When this latter interest is emphasized, the repeated 
measures data are simply called multivariate (profile) data in which each subject is 
characterized by a set of measurements taken under different conditions. 

Whatever the reason may be for their employment, however, the repeated measures 
designs present some methodological problem. The repeated measures data typically 
contain both within-subject and between-subject variations. Since these two kinds of 
variations behave differently, they should be separated and treated differently. The 
between-subject variation, in particular, gives rise to dependencies among observations. 
Subject parameters are often introduced in order to account for the dependencies. How- 
ever, this causes another problem. Since the number of parameters to be estimated in- 
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creases linearly with the number of observations in this case, the usual asymptotic proper- 
ties (BAN) of maximum likelihood (ML) or generalized least squares (GLS) estimators 
never hold (e.g., Andersen, 1980). The subject effect is therefore introduced as a random 
effect with prescribed distributional properties, and is subsequently marginalized out to 
obtain the marginal distribution of observations. This distribution is then used to estimate 
other parameters such as those related to the measurement conditions, the subject distri- 
bution, and so forth. The variables on which the subject distribution is defined are often 
called latent variables, or collectively, latent space. 

The marginalization of the subject parameters is straightforward, so far as both 
within-subject and between-subject effects are assumed to follow the multivariate normal 
distribution, and the observed data are continuous and multivariate normal. However, a 
complication arises when the data are categorical, presumed to have been obtained by 
discretizing continuous multivariate normal processes. For example, in mental test situ- 
ations subjects' responses may be recorded in ones (pass) and zeroes (fail), where the 
responses are considered functions of item difficulties and subject abilities assumed to 
follow the normal distribution. There have been two marginalization techniques in use for 
such situations. One technique is used in the marginal maximum likelihood (MML) 
estimation of item parameters in item response theory (IRT), originally proposed by Bock 
& Lieberman (1970), and subsequently generalized and improved by Book (1972), Bock 
and Aitkin (1981) and Thissen (1982). The other technique is used in the factor analysis of 
discretized variables (FA), an approach initiated by Christoffersson (1975) and later ex- 
panded by Muth6n (1978, 1983, 1984) and Muth6n and Christoffersson (1981). Although 
they differ in their tradition, IRT and FA cover similar types of categorical data, and thus 
one may suspect that there is a special relationship between the two approaches. Indeed 
they are formally equivalent, as has been alluded to recently by several authors (Bartholo- 
mew, 1983, 1985; Bock, 1984; Muth6n, 1983). In this paper we present a formal proof of 
the equivalence between the IRT and FA models for a variety of categorical data. 

We first discuss the dichotomous case (section 2). The basic result on the dichot- 
omous variables will be extended to the general ordered categorical case in section 3, and 
to the case of multiple-choice (unordered categorical) data in section 3, and to the case of 
multiple-choice (unordered categorical) data in section 4. In section 5, IRT formulations 
of the individual differences pair comparison models (Takane, 1985) are derived, which 
are equivalent to their original ACOVS (Analysis of Covariance Structures; J6reskog, 
1970) formulations of the same models. A taxonomy of the IRT models and the FA 
models are also attempted and presented in the final section. The two equivalent ap- 
proaches, IRT and FA, closely parallel Thurstone's two alternative formulations of his 
pair comparison model and the model of first choice. This is shown in the appendix. 

Throughout this paper a random variable is denoted by a symbol with a tilde on top, 
and a particular realization of the random variable by the same symbol without a tilde. 
Scalars are indicated by lowercase italics, vectors by boldface and matrices by uppercase 
italics. An uppercase letter will also be used for a region of integration, but it will be clear 
from the context when it is used for this purpose. 

2. The Dichotomous Case 

We first prove the equivalence for the dichotomous case. Although this is a special 
case of the general ordered categorical case, and also of the multiple-choice (unordered 
categorical) case, it deserves special attention because of its predominance in the item 
response theory. 

Let i '  = ( x 1 ,  - - . ,  x , )  be a random vector of response patterns to n dichotomous test 
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items, where each £iis defined as 

xi = ~ 1, if item i is successfully passed 

0, otherwise, 

for i = 1 . . . .  , n. Let fi be an m-component random vector of subject abilities (m _< n) with 
its density function denoted by g(u). fi is unobservable directly, but is assumed to follow 
the multivariate normal distribution with mean 0 and covariance I (identity matrix); that 
is, ~ ,-~ N(0, (I). The domain of fi (denoted by U) is the multidimensional region defined by 
the direct product of ( -  oo, oo). 

The two-parameter normal ogive model in IRT specifies the marginal probability of 
= x (Bock& Aitkin, 1981; Bock & Lieberman, 1970) as 

x) = fv  Pr(~ = x l u)9(u) du, (1) Pr(~ 

where Pr(~ = x lu) is the conditional probability of observing response pattern x given 
= u. Pr(~ = x [u) is further assumed to be 

Pr(R = x lu) = f i  (pi(u))~'(1 - p/(u)) 1-x' (2) 
i 

(local independence) with 

~lglt O + b 

pi(u) = J_ ~ q~(z) dz = ¢l,(a'u + b), (3) 

where q~ is the density function of the standard normal distribution and • the normal 
ogive function (i.e., the cumulative distribution function of the standard normal distri- 
bution). 

In factor analysis of dichotomized variables (Christoffersson, 1975), on the other 
hand, the marginal probability of response pattern x is specified as 

Pr(~, = x) = fR h(y) dy, (4) 

where R is the multidimensional region of integration (to be more explicitly specified 
below) and 

= c ~  + ~. (5) 

Model (5) is the usual common factor analysis model with C being the matrix of 
factor loadings, fi the vector of factor scores (which in the present case are the subject 
abilities) and ~ the random vector of uniqueness components. It is assumed that fi ,-~ N(0, 
I) as before, ~-,, N(0, Q2) where QZ is further assumed to be diagonal (linear local 
independence), and fi and ~ are independent of each other. It follows that 

,,~ N(O, CC' + Q2), (6) 

(marginal distribution of ~) and 

Y l u ~ N(Cu, Q2), (7) 

(conditional distribution of ~ given fi = u). The continuous random variables, ~, are 
dichotomized by 

1, if)7~ _> ri, 
£i 

0, if .9 i < r i ,  
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for i = 1, . . . ,  n, where r~ is the threshold parameter for variable i. Thus, R, the region of 
integration above, is the multidimensional parallelopiped defined by the direct product of 
intervals, Ri for variable i, such that Ri = (ri, ~ )  if xi = 1 and Ri = (-- oo, r~) if xi = 0. 

Now (1) including (2) and (3) is equivalent to (4) with ~ defined in (5). We first prove 
(4)---, (1). From (4) we have 

Pr ( i  --- x) = fR h(y) dy 

=foo,u (8) 

where f (~l  u) is the conditional density of ~ given fi = u. (Note that (8) is "completely" 
general in that no distributional assumptions are involved. Even the local independence 
assumption, so characteristic of the latent variable methods, is not required.) But because 
of (7) we have 

fR f(yIu) dy = N fR f~(y, lu) dy, 
i 

(~ri~fi(yi] )xi( fr~fi(yi, ,/~X-xl = ]7 u) d Y i  1 - u) d y i .  , (9) -F 

where 

f3',,'u' 
for i = 1 . . . . .  n. Here q2 is the i-th diagonal element of Q2. Equation (9) is equivalent to (3) 
by setting 

gl 
a i  = - -  ( 1 1 )  

qi 

and 

b~ -- rl (12) 
q~ 

f o r / =  1 . . . . .  n. 
The reverse ((1)---~ (4)) can be easily proved by simply tracing back the above process. 

It looks as if FA with ci, r i and qi( i  = 1 . . . . .  n)  had more parameters than IRT with only 
a i and b~(i = 1 . . . . .  n). However, when the data are dichotomous, the variance of )71 cannot 
be estimated due to the lack of relevant information in the data, and consequently q~ can 
be set to an arbitrary value. Thus, the effective number of parameters is identical in the 
two models. 

Lord and Novick (1968, Theorem 16.8.1, p. 374) state a sufficient condition for the 
two-parameter normal ogive model for unidimensional ability, which may be interpreted 
as a special case of,our general result presented above. More recently Bartholomew (1985) 
noted the relationship, (11) and (12). See also Muth6n (1979, Appendix) and Muth6n & 
Christoffersson (1979, p. 411). 

It is clear from the above discussion that IRT and FA are two alternative formu- 
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lations of a same model. Perhaps because of this Book (1984) now calls his IRT approach 
item factor analysis. The only crucial difference is where the marginalization is performed. 
In the IRT formulation dichotomization of ~ is done conditionally on u and then the 
marginalization is performed. In the FA tradition, the marginalization is undertaken on 
continuous ~, followed by the dichotomization. An advantage of the IRT formulation is 
that the dichotomization is relatively straightforward (it can be done separately for each 
)~ given u due to the local independence assumption). The probability of a full response 
pattern can be obtained by a multiple integral of dimensionality m, where m is the 
dimensionality of the latent space. However, this integration usually involves numerical 
integration, which may be quite time consuming. In the FA formulation the margin- 
alization is rather trivial, but the dichotomization is extremely difficult. It always involves 
integration of n correlated multivariate normal variables over n dimensional parallelo- 
piped, no matter what the dimensionality of the latent space is. Thus, most often only 
one-way and two-way marginal probabilities (i.e., Pr(Y~ = x~) and Pr(21 = x i and Yj = xi) ) 
can be evaluated. These considerations largely determine the choice of optimization cri- 
teria in the two approaches. Whereas the IRT formulation uses the maximum likelihood 
estimation based on the full joint probabilities of response patterns (Book & Aitkin, 1981; 
B o c k &  Lieberman, 1970), the FA approach typically uses a generalized least squares 
(GLS) estimation based on the first and second order marginal probabilities 
(Christoffersson, 1975; Muth6n, 1978). 

In closing of this section it might be noted that the logistic model proposed by 
Birnbaum (Lord & Novick, 1968) is often used to approximate the normal ogive model 
(3). The equivalence of marginal probabilities in IRT and FA holds approximately with 
the logistic model as well, but only to the extent that the logistic distribution provides a 
good approximation to the normal distribution. 

3. The Ordered Categorical Case 

So far we have discussed the relationship between IRT and FA for dichotomous 
data. An analogous relationship is expected to hold for general ordered categorical data, 
and indeed it can be shown that the marginal likelihood of the normal ogive model for 
graded scores (Samejima, 1969) is formally equivalent to factor analysis of ordered cate- 
gorical data recently proposed by Muth6n (i984). 

Let z~' = (x'l, --., x~) be a random vector of response patterns, where x'f, i-th subvec- 
tor of ~, is an n~-component vector, ~ = (~,1) . . . . .  ~(,,)) with itsj-th element defined by 

( 1, if response to item i falls in category j, 

xi¢/) = ~0, otherwise, 

for j = 1 . . . . .  n i and i = 1 . . . . .  n. We assume xiu):Xi(k) = 0, for j ¢ k and ~ '  xlt/) = 1. 
Note that in the special case of dichotomous variables we have x ,2 )=  2i and 2~t~)= 1 

- -  21 .  

The proof is rather straightforward following the line presented in the previous 
section for the dichotomous case. The factor analysis model (5) remains the same. Let R 
be the multivariate region defined as the direct product of intervals R t ( i  - -  1 . . . . .  n),  where 
R~ = (@~_ 1), r~¢/)) if 2~) = 1. (Note there is only one 2~o ) equal to unity for each i.) Here 
r~u. ) is the category boundary between the ( j -  1)-st and j-th successive categories. We 
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define r~(o~ = -- oo and rl~n~ ~ = 

f l i 

-_tiff i j 

i j 

~ .  Then (8) is still valid with this new definition of R, and 

dy~ 

b,Wj , (13) 

where a i = ci /qf  (the same as in (11)) and b~o ~ = - r i o ) / q i .  (b~(o) = ~ and bl(.) = - ~ . )  In 
the dichotomous case bi(o) = ~ ,  b,t)  = b~, and b,2 ) = - ~ ,  so that (13) indeed reduces to 
(9) with (10). 

The relationship between IRT and FA for ordered categorical data was first noted by 
de Leeuw (1983). The above proof generalizes his result to the multidimensional case. 

As in the dichotomous case the logistic function is often used (e.g., Cox, 1966; 
Samejima, 1969; and Takane, 1983a, with some minor modifications) in place of the 
normal ogive model in (13). Again, the approximate relationship holds between FA and 
the logistic IRT model for ordered categorical data to the extent that the logistic distri- 
bution provides a good approximation to (13). 

4. The Unordered Categorical Case 

The case of unordered categorical data is slightly more complicated. First of all there 
is no factor analysis approach ever proposed for this case, although there have been a 
couple of significant proposals in the IRT approach (which will be discussed briefly 
toward the end of this section), Secondly, an element of ~ should be supplied for each 
nominal category of each item. That is, ~' = (Y'I . . . . .  ~'~) where each ~'i = (Yi(i) . . . .  , $,,.,)) is 
an nt-component vector. The factor analysis model is now written as 

~¢ = m + Cfi + ~. (14) 

where m, the mean vector, and C are partitioned in the same way as is ~. That  is, 
t ! t m' = (m x . . . . .  m'.) where m~ = (rn.1) . . . . .  mi(.,)), and C' = (C 1 . . . . .  C'.) where Ci = (e.1) . . . . .  

e..0). Without loss of generality we may assume m'~ 1., = 0 and C~ 1.~ = 0 for each i, where 
1., is the nccomponent vector of ones. These restrictions remove indeterminacies of origin 
in m~ and Ci for each i. In the ordered categorical case there was only one 37~ for each item, 
and no comparison among 37~'s was involved. Consequently m could be set identically 
equal to a zero vector. The response pattern vector x has the identical form as that in the 
ordered categorical case. 

Let R~o ~ be the region such that Y~u) = max07.t) . . . . .  )7..o) and R~ = R~o if x~t~ = 1. 
Let R be the region defined by the direct product of R~. Then (8) is still valid with 

~e f(y]u) dy = 1~ fR f~(Y, lu) dy, 

(15) 

Note that in this case Riu) is not a parallelopiped, b u t  a cone .  However, it can be 
transformed into a rectangular region, using Lemma 2 in the appendix. 
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The  same transformation is very effective in showing that  when there are only two 
response categories, the unordered  categorical case reduces to the d ichotomous  case 
discussed earlier. Let  ~' = (zt . . . . .  ~n) where ~ = )7~tz) -- )7~m. Then  by Lemma 1 in the 
appendix,  

Pr(~ = x) = f~ h(y) dy 

= f~, h*(z) dz, (:6) 

where R* is a multidimensional parallelopiped defined by  the direct product  of  intervals, 
R * ( i  = 1 . . . .  , n ) ,  where R* = ( -  0% 0) if £,~) = 1 - £~ = 1 and R* = (0, o0) if x~(2) = x~ = 
1. Fur thermore ,  in (15) 

" 

(fO;O "~X([~'O ) l - x (  = , 

where 

Thus,  we obtain 

zilu "~ N((m,(2) -- m~(1)) + (eil2) -- ei(1))'u, q~1~ + q~2)). 

( h?(z, l u) dz~ = • ~ u .  r, (18) 
k qJ } 

by setting r i = m i o  ) - m i ( z )  = 2mt(1) , e~ = e(2 ) - e,1 ) = -2e~m and q2 = q,~)2 + q~2). 
When  the multivariate normal  variates to be integrated over R~ are mutual ly  inde- 

pendent  with homogeneous  variance, there is an excellent approximat ion  me thod  provid- 
ed by the multivariate logistic function (Bock, 1975). (Note  that  )7~o ~ t u, j = I . . . .  , n~, are 
mutual ly  independent,  but  their variances, 2 q~t0, are generally not  equal under  the usual 
factor analysis assumptions. Thus, we need a more  strict assumption of  2 qtG9 ---"- q2 for all j 
for this approximat ion  to be valid.) Namely,  

Pit/)(u) = Pr07it/) -- max07,m . . . . .  Yit.,)l u)) 

= exp (a,q)u + b~/~! (19) 
exp (ailk)u + bttk) ) 

k 
where * and b* aio~ io~ are approximately  propor t iona l  to e~o ) and mtt a, respectively. It  is 
interesting to note that (19) provides a mult idimensional  generalization of Bock's (1972) 
unidimensional  IRT model  for unordered  categorical data. It also generalizes Takane 's  
(1983b) multivariate logistic unfolding model,  which states 

exp(--  d2~(u)) (20) 
P~o~(u) = ~ 2 , exp(-- d~(k)(u)) 

k 

where d 2 so) = (vlo) -- u)(v~o ) -- u) is the squared euclidean distance between u and the point  
representing category j of item i, whose coordinates  are given by v~t n. If we int roduce a 
bias parameter ,  w~o ~, for category j of item i, and replace exp(-d~o~(u)) by wit o 
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exp(-d~]j)~.0, j = 1, . . . ,  n i, in (20), (20) will be identical to (19) with air/)= 2rio ) and 
b,j~ = In w,j) - vitj) v,jl. (u'u cancels out in the numerator and the denominator.) Model 
(20) is considered as a combination of Coombs' (1964) unfolding model for preference 
data and Luce's (1959) choice model. Alternatively it can be viewed as a probabilistic 
generalization of dual scaling (Nishisato, 1980), homogeneity analysis (Girl, 1981) or 
multiple correspondence analysis (Greenacre, 1984), which in turn is a special case of the 
unfolding model (Takane, 1980a; Heiser, 1981). It can be also regarded as a multiple- 
choice (as opposed to binary-choice) extension of Sch6nemann-Wang's (1972) individual 
difference preference model. Both Bock (1972) and Takane (1983b) proposed marginal 
maximum likelihood estimation methods for their models. 

5. Individual Differences Pair Comparison Models 

Takane (I985) recently extended the "factorial" model (Takane, I980b; Heiser & de 
Leeuw, 1981) and the wandering vector model (WVM; De Soete & Carroll, 1983) for pair 
comparison data to accommodate systematic individual differences in these models. He 
first introduced random vectors pertaining to the systematic individual differences (analo- 
gous to fi), and then marginalized them out to arrive at ACOVS (J6reskog, 1970) formu- 
lations of these models. This clearly belongs to the FA approach. However, equivalent 
IRT formulations are also possible. Pair comparison data can be viewed as a special case 
of unordered categorical data with only two response categories, where the two categories 
are two stimuli to be compared. (Either stimulus A is chosen or B is chosen.) As such, they 
can be also considered as a special type of dichotomous data. (A stimulus is chosen or not 
chosen.) Peculiarity~ of the pair comparison data stems from the fact that the response 
categories (stimuli) are not nested within items (trials). The same stimuli repeatedly appear 
in different combinations. 

Let ~.' = (~12, . . . ,  ~ . - t ) . )  be a random vector of choice patterns, where 

. ~ 1, if stimulus i is chosen over stimulus j,  

xi~ = ~ 0, otherwise, 

for i = 1 . . . . .  n - 1 and j = i + I . . . . .  n. (n is the number of stimuli). For the "factorial" 
model of pair comparisons, let 

~* = a ~  + ~* = A(~ + Cfi) + ~* (21) 

be the second order FA (or ACOVS) model, where ~ = m + ~ ,-~ N(m, Q2), A is the 
n(n - 1)/2 by n design matrix for pair comparisons, and ~* -,~ N(0, K 2) is the error random 
vector for pair comparison trials with K z diagonal. Matrix A takes the difference between 
~7 i and 37~ for every distinct combination of stimuli i and j. ~* represents within-subject 
variation. The reason for this additional error term (over and above ~ which is part of ~) is 
that in the multiple-judgment pair comparison situation, a same stimulus is presented 
more than once to a same subject, and consequently a new error term is required that 
accounts for within-subject, across-trial variation. We then have 

and 

~* ~ N(Am, A(CC" + Q2)A" + K2), 

$* I w ~ N ( a ( s  + Ca), K2), 

where w' = (s', u'), for the "factorial" model. 
In the WVM it is further assumed that m = Cv, where v is the mean of the wandering 
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vector, ~* = fi + v. We thus obtain the ACOVS formulation of the WVM as 

~'* = A(~ + C~*) + ~*. 

The marginal distribution of ~* is given by 

~* ... N(ACv, A(CC' + Q2)A' + K2). 

Similarly, the conditional distribution of ~* given w, where w' = (e', u*'), is given by 

~* [w ,.~ N(A(e + Cu*), K2). 

Let R denote the multidimensional region defined by the direct product of unidimen- 
sional intervals, Rij, which are either ( - ~ ,  0) or(0 ,  ~ )  depending on £tj = 0 or 1, 
respectively. Then (8) is still valid with y and u in (8) replaced by y* and w, respectively, in 
both factorial and WVM. In the present case 

;R f ( y * l w ) d y * =  I-l.. fR f°(Y~'W)dy~j 
l , J  /j 

(f0 fo ' 1 '  
= ~ f~,(y~lw) dy*j ~ 1 -  f0(y*lw) dy*) . (23) 

In the factorial model, we have 

co a r ~,(s+ 
fo fo(y~lw) dy* = ( k o C U ) ) ,  (24) 

whereas in the WVM, we have 

fo°°f~i(y. ]w) dy. = o(a~)(e + Cu')'~, k,j / (25) 

where a~; is the ij-th row vector of A and k~j the ij-th diagonal element of K:. Equation 
(23) along with (24) or (25) used in (8) provides the IRT formulation of the "factorial" 
model or the WVM. 

Both the ACOVS and the IRT formulations of these two models can be easily 
generalized into ordered categorical ratings of pair comparisons (Sjoberg, 1967), although 
this case will not be discussed any further in this paper. De Soete, Carroll & DeSarbo (in 
press) recently proposed the wandering ideal point model based on Coombs' unfolding 
model. The model is conceptually similar to the WVM, and is applied to the same kind of 
pair comparison data. The ACOVS and the IRT formulations of this model is possible 
using squared euclidean distances (Takane, 1985). In fact they reduce to'forms similar to 
those for the WVM, since the difference between two squared euclidean distances from a 
common ideal point reduces to a scalar product. 

Some attempt has been made to incorporate systematic individual differences into 
Thurstone's pair comparison model (Bock & Jones, 1968, p. 143-161). This attempt 
belongs to the ACOVS approach. However, it is confined to the simplest possible covari- 
ance structure, namely equal variances and covariances. This corresponds with K 2 = 0, 
CC'= d2rl 1' and QZ = d(1 - r ) l  in the "factorial" model, where d 2 and r are, respec- 
tively, the variance and correlation (assumed equal across stimuli). 

6. Discussion 

There are numerous instances of psychometric models involving subject parameters. 
This is because there are almost always some degree of individual differences in every 
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psychological phenomenon, and so far as one uses repeated-measures designs, one cannot 
get away from the problem of dealing with the systematic individual differences. This 
means that it is almost impossible to develop realistic models without incorporating 
individual differences components into the models (Takane, 1985). 

However, as argued in the introduction section, the subject parameters cause some 
difficulties in parameter estimation from a statistical viewpoint. Since they are incidental 
to the subjects, the number of parameters to be estimated generally increases with the 
number of observations, and consequently the asymptotic properties of ML or GLS 
estimators never hold. Marginalization of the subject parameters has been one of the 
major techniques to deal with the problem. (For other alternatives, see Basu, 1977.) This 
usually involves integrating out the subject parameters by assuming a population distri- 
bution on the subject parameters. Then the marginal probability of observed data is 
stated solely as a function of other (nonincidental) parameters related to, for example, 
stimuli, items, categories, and so forth. For a large sample the ML or GLS estimators 
(obtained through the marginal probability of the observed data) enjoy the usual asymp- 
totic properties (BAN) of these estimators, provided that the model is correct, including 
the distributional assumption made on the subject parameters. Latent structure analysis 
(LSA; Lazarsfeld & Henry, 1968) and factor analysis are two classical examples of the 
marginalization model. The marginalization is indeed an intrinsic part of these models. 
Essentially the same approach has been proposed from a Bayesian perspective (Akaike, 
1980) under the name "Bayesian modeling." Here the Bayesian predictive probability is 
maximized with respect to Bayesian hyperparameters (which correspond to our noninci- 
dental, fixed-effect parameters.) This approach was proposed to deal with a large number 
of model parameters (which are not necessarily the subject parameters) and to incorporate 
certain desirable properties into the parameters. 

Psychological mental testing situations are the ones in which individual differences 
are most pertinent. This in fact served as the basic motivation behind the IRT models 
developed for the mental testing situations. Curiously, however, it was not until 1970 
(Bock & Lieberman, 1970) that the marginal maximum likelihood (MML) estimation was 
proposed for the IRT models. This is quite a contrast to LSA and FA, which included the 
marginalization as part of the models. This probably reflects a difference in the initial 
interest of these approaches. Whereas in IRT each subject's score was of primary interest, 
in LSA and FA how observations (response patterns) distributed in the population of 
subjects was the focus of interest. However, the MML estimation proposed to deal with 
inconsistent estimators in IRT has brought the two approaches together. 

When the individual differences (in ability, attitude, preference, personality, etc.) are 
of interest, we may use estimates of structural (nonincidental) parameters obtained by 
MML to obtain EAP (expected aposteriori or the Bayes) or MAP (maximum aposteriori 
or the Bayes modal) estimators of the individual differences parameters (Boek & Aitkin, 
1981). This corresponds with the estimation of factor scores in FA. 

There are other models in psychometrics for which the marginalization may be 
useful. The unfolding model is designed to account for individual differences in preference. 
In this case coordinates of ideal points of subjects appear as incidental parameters. 
Perhaps Takane (1983a, 1983b) was the first to point out the necessity of treating the 
subject parameters as random effects, and to demonstrate the feasibility of MML in two 
specialized cases of the multidimensional unfolding model, drawing close relationships 
between his cases and the IRT test models. More recently Takane (1985) proposed the 
MML estimation for pair comparison models that take into account systematic individ- 
ual differences. (See section 5.) A similar formulation is also possible for the wandering 
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Table I. A taxonomy of data for the IRT and FA models 
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/]umber of Response Categories 

2 >2 
(Choice) (Categorical Rating) 

>2 

%) 

v 

z 

A. Dichotomous 

e.g., pass-fall test 
detection experiment 
Guttman scale 
Dick anv/n 

Rock & Lieberman (1970) 
Christoffersson (1975~ 

C. Binary choice 

e.~., Dalr comparison 
choice 
constant method 
pick any/n 

Schonemann & Wan~ (1972) 

E. Multiple choice 

e.g., multiple-choice 
questionnaire 

Rock (1972~ 
Takane ( 1983b ) 

r---- 

i 

B. Successive categories 

e.g., graded dichotomies 
(SameJima, 1969) 

Muthen (1983, 1984) 
Ta~ane (1983a) 

I D. P a i r  comparison rating 

e.g., successive 
categories method 
of pair comoarlsons 
(Sjoherg, 1967) 

Takane (1985 ) 

~ F. Stimulus rankin~ e.g., ranUed groups 
partial ranking 
(rank m/n) 
total rankln~ 

ideal point model recently proposed by De Soete, Carroll & DeSarbo (in press). Individ- 
ual difference multidimensional scaling (Carroll & Chang, 1970) is another potential area 
to which the MML estimation might be effectively applied. As has been demonstrated by 
Weinberg, Carroll and Cohen (1984), the usual asymptotic results are too optimistic in 
this case. In a Bayesian framework Ramsay (1982) has proposed the marginalization of 
subject-specific data transformation parameters in his maximum likelihood multidimen- 
sional scaling. 

The data and the models discussed in this paper are summarized in Table 1. The 
classification was made in terms of two criteria: (a) number of stimuli presented to the 
subject in each trial where the stimuli may be test items, categories (mostly unordered), et 
cetera, and (b) Number of response categories (usually ordered). There can be one, two, or 
more than two stimuli presented, which are either chosen (or not chosen), or rated (or 
ranked). Thus by combining the two criteria six data types emerge: (A) dichotomous; (B) 
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successive categories; (C) binary choice; (D) pair comparison rating; (E) multiple choice; 
and (F) stimulus ranking. For each data type some representative cases (or situations in 
which the specific type of data are typically obtained) are given along with references to 
models designed ~for~the particular type of data. Except for Sch/Snemann-Wang's (1972) 
model, the models ~cited are restricted to those having marginalization elements in the 
models. 

In the table an arrow indicates the data type at its tail is a generalization of the data 
type placed at the head of the arrow. For example, successive categories data (B) reduce 
to dichotomous data (A) when there are only two observation categories. Likewise multi- 
ple choice data (E) reduce to binary choice data (C) when there are only two alternatives 
to choose from. Models designed for more general types of data are usually applicable to 
more special types of data as well. When choice alternatives are nested within trials the 
binary choice data (C) are equivalent to the dichotomous data (A). This is because two 
unordered categories can be always arbitrarily ordered to obtain two ordered categories. 
(See also section 4.) 

In the table (A) and (B) are the data types usually referred to as ordered categorical 
data, and (C) and (E) unordered (or nominal) categorical data. This distinction closely 
parallels the analogous distinction in models, similar to Bock's (1975) distinction of 
threshold and extremal concepts. In the former stimuli are supposedly compared with 
thresholds (or category boundaries), while in the latter "stimuli" are compared against 
other "stimuli." Takane (1983a) has shown that pick any/n data can be conceptualized in 
either way. That is, in the first approach it is assumed that preference of a stimulus is 
compared against a threshold, while in the latter relative strengths of two possible re- 
sponses (pick or not pick) are compared against each other to determine if the stimulus is 
picked or not. 

Relatively little attention has been paid to the two remaining data types (D and F). 
No marginalization models have yet been proposed for stimulus ranking. However, some 
plausible models may be developed for this case, using Takane & Carroll's (1981) direc- 
tional ranking idea. This, however, is left to future investigations. 

In this paper we have shown the equivalence of two marginalization techniques used 
to obtain marginal probabilities of observed categorical data in two related areas, item 
response test theory.and factor analysis. Although useful exchanges of ideas and interplay 
between these two areas have already begun (e.g., Mislevy, in press), we hope this paper 
further facilitates this welcome trend. 

Appendix 

In this appendix we first give a couple of useful lemmas. We then show that two 
alternative formulations of the pair comparison model and the model of first choice by 
Thurstone (1927, 1945) closely parallel the two approaches (IRT and FA) we have dis- 
cussed in this paper. 

Lemma 1. Let t7 and 6 be two continuous random variables, each ranging from - oo 
to oo, with their joint density function denoted byf*(u, v). Then 

f°(f ) ;\, ) Pr(ti > v~ = f*(u,  v) dv du = u(u fvlv(vlu) dv du 
o 3  o o  - -  m ° °  

) (f: ) = f*(u,  v) du dv = ®gv(V) f v l  v( u ] v) du dv 
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~0 °° 
= h(w) d w  = P r ( f f  - 3 > 0) ,  

where w = u - v, and where gv and gv are marginal densities of  a and 3, respectively, and 
f v  I v and f v  I v are conditional densities of ff and 3, respectively, given v and u, respectively. 

A proof  of the above lemma is rather rudimentary, and will not be presented here. 
Note  that Lemma 1 does not require either fi or 3 to be normal. There are two important  
special cases to Lemma 1. 

Suppose 6 and 3 are independent. Then f*(u,  v) = gv(U) x Or(V). We Corollary 1. 
then have 

Corollary 2. 

where 

then 

f °av(u)Gv(u) Pr(6 > 0 = du, 

; 
oo O v 

Gv(u ) = (v) dv. 

Suppose ~ and 3 follow a bivariate normal distribution, namely, 

t_\mv/  ~suv sv / A  

Pr(fi > 0 = ¢(z) dz, 
q 

where • is the density function of the standard normal distribution, and q = (m u - my) / 
(Su + s v - 2suv) in. 

Both Corollaries 1 and 2 were used by Thurstone. Corollary 1 was used for predic- 
tion of first choice (Thurstone, 1945), and Corollary 2 is the well known law of compara-  
tive judgment  (Thurstone, 1927). Although Thurstone did not explicitly discuss the re- 
lationship of the two, Lemma 1 shows their equivalence when the conditions of both 
corollaries are simultaneously met. 

A generalization of Lemma 1 to the multiple-choice situation is rather straightfor- 
ward, which we state in Lemma 2. 

Lemma 2. Let g, 61, . . . ,  3, be continuous random variables, each ranging from - 
to o% with their joint density function denoted byf*(u ,  v 1 . . . . .  Vn). Then 

Pr(fi > 31 . . . . .  t~ > 3,) 

= f ? ~  I f f  " "  f ~  f*(u ,  vl, " ' ,  vn) dvl " "  dVn) du 

' f; ) . . . .  f ( v  1 . . . . .  v. lu) dr1 "'" dr .  du 
o o  o o  

. . . .  h(w, . . . . .  w.) dw 1 " "  dw . ,  
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where wi = u - v~(i = 1 . . . . .  n), and where 0 and f are the marginal density of t~ and the 
conditional density of t~ 1 . . . . .  t~, given u, respectively. 

Lemma 2 is often used as two alternative formulations of the model of first choice. 
With the additional assumption of multivariate normality Lemma 2 is sometimes used as 
a reduction formula for multivariate normal integrals with certain patterned covariance 
matrices (Johnson & Kotz, 1974, pp. 43-53). Lemma 2 also indicates that there are two 
ways to evaluate a probability like Pr(a > t~l, t7 < ~2), namely, 

;°f0  Pr(ti > vl, u < g2) -- h(wl,  w2) dwt dw2 

= f ( v l ,  v2lu ) dv t dv 2 du. 
oO 

The two ways of evaluating the probability of the above form correspond with the 
two ways of evaluating the marginal probability of a response pattern described in the 
main body of this paper, We will show this only for dichotomous data in the following. 
Generalizations of this argument to other situations are rather trivial. 

Let t? i be the random variable representing item difficulty of item i, where it is 
assumed that tTi ,.~ N(r i ,  q~), i = 1 . . . . .  n, independent of each other. Let tii = e~ii be the 
random vector of subject ability relevant to item i. As before, we assume fi ~ N(0, I). We 
further assume ti~ and t?~ are independent. In accordance with the pair comparison model 
we may assume xi = 1 when t~ i > ~ ,  and xi = 0 when fii < vl. Define ~i = )7 i - r~ where ~7~ 
is the ith variable (pertaining to i tem/) in the factor analysis model (5). Then, 

Pr ( i  = x) = fv: h*(w) dw, 

where w is the vector of w~'s and W is the multidimensional region defined by the direct 
product of W~, which is obtained by downshifting R i by r i (i.e., W i = ( -  co, 0) if xi = 0 and 
W~ = (0, oo) if xi = 1). This is equivalent to (4). The difference formulation in Lemma 1 
thus corresponds with the FA approach. 

If, on the other hand, we use the conditional formulation in Lemma 1, we have 

Pr( i  : x ) =  ft:, g*(u ' , ( fv  f ( v )  d v ) d u *  

where u* and v are vectors of u~ and v~, respectively, and where 

x '  _ 

which is equivalent to (9) with (10). This corresponds with the IRT approach. 
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