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    We describe a convergent procedure for fitting the common factor analysis model 
to multivariate data whose variables may be nominal, ordinal or interval. Any 
mixture of measurement levels is permitted. There may be any pattern of missing 
data. As distinguished from previous work, the nonmetric relations (nominal or 
ordinal) are assumed on the raw observations (not on the correlations), and the model 
fitted is the common factor analysis model (not the principal components model) 
which isolates common from unique factor variation. The computational algorithm, 
based on the alternating least squares principle, is monotonically convergent and 
efficient. An illustrative example is presented.
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1. Introduction 

   One of the most significant contributions of Shepard's [1962] landmark paper on 
nonmetric multidimensional scaling has been its profound impact on a very broad range 

of psychometric methods: The fact is, simply, that many quantitative models (not 
necessarily just distance models) have the potential of being fitted to qualitative 

(nonmetric) data, while totally respecting the qualitative measurement characteristics 
of the data. Thus started the "nonmetrization" of models originally designed for 
metric data, resulting in the current proliferation of nonmetric procedures. 

   Various linear and nonlinear models have been successfully fit to nonmetric 

data, including the additive model, the regression model, the principal components 
model, and individual differences and other variants of the distance model [Kruskal, 

1965; Roskam, 1968; Young, 1972; Lingoes, 1973; Kruskal and Shepard, 1974; de 
Leeuw, Young and Takane, 1976; Young, de Leeuw and Takane, 1976a; Takane, 
Young and de Leeuw, 1977, 1978]. The most recent development, the alternating 

least squares (ALS) method, has established a general algorithmic construction scheme 
in which two steps, optimal model estimation and optimal data scaling, are performed 

independently [Young, de Leeuw & Takane, 1976b] ; i.e., model parameters are 
estimated by methods which are independent of the assumed measurement (scale) level 

of data, and the optimal data transformation may be obtained regardless of the 
specific model being fitted.



   Among the most popular psychometric models the common factor analysis model 
has proven to be one of the most difficult models to extend to nonmetric data. The 

difficulty is undoubtedly related to the fact that, given a set of observations, there is 
no way to identify the common factor space (or equivalently the unique factor space). 

Only the correlations between factors and observed variables (factor loadings) and the 
variance of unique factors can be determined. Consequently a least squares criterion is 

typically defined in terms of correlations, and not in terms of the observed data 
themselves. If, however, the prescribed ordinal or nominal relations are assumed on 

entities (the data) which are not the direct defining components of the least squares 
loss function (the correlations), the simple monotonic regression algorithm [Kruskal, 

1964] for ordinal variables or the least squares nominal transformation [de Leeuw, 
Young & Takane, 1976] for nominal variables does not apply. Thus, the optimal 

data transformations become difficult to obtain. 
   The history of "nonmetric factor analysis" suggests two ways out of this 

difficulty. Lingoes and Guttman [1967] proposed a "nonmetric factor analysis" in 

which monotonicity relations are assumed between the observed and predicted 
correlations. The proposal has one major disadvantage, as Kruskal and Shepard [1974] 

point out, in that the raw observations must be assumed to be measured at 
the interval level in order to calculate Pearsonian product moment correlation 
coefficients. It is not very satisfactory, then, to assume monotonicity on statistics 

derived on the basis of stronger measurement assumptions. One undesirable result is 
that invariance of the nonmetric procedure over admissible data transformations will 

not be obtained. An alternative approach has been taken by Roskam [1968], Young 

[1972] and Kruskal and Shepard [1974], who assumed monotonicity between raw data 
and their corresponding predictions, but employed the principal components model 
instead of the common factor model by discarding the idea of isolating common and 
unique factor variations. PRINCIPALS [Takane, Young and de Leeuw, 1978] is an 

extension of these methods to cover data measured at a variety of scale levels (any 
mixture of levels is permissible) using an alternating least squares approach. While 

nonmetric principal components analysis is interesting in its own sake, and certainly 
deserves serious attention, it is not "nonmetric factor analysis" as some have called it. 
Despite the unfortunate terminological confusion the principal components model is 
clearly distinct from the factor analysis model. We use the word "common" to 

emphasize the distinction. 

   In this paper we show that the common factor model can be fit to qualitative data 
while assuming the nonmetric relations are on the raw observations. McDonald, 

Ishizuka and Nishisato [1977] present a procedure which fits the common factor model 
to multicategory data. However, the present formulation provides a much more 

general framework. It permits the common factor model to be fit to multivariate 
data whose variables may be defined at a mixture of measurement levels. There is no 
restriction on the mixture of levels : Some variables may be binary, some nominal, 

others ordinal, some may even be interval. Any mix will do.



2. Method 

2.1 Preliminaries 

   We state the problem of fitting the common factor analysis model to nonmetric 
data as 

                          Y* =Y =FA'+U, (1) 

where Y* is an Nxn matrix of optimally scaled data, Y is an Nxn matrix of model 

estimates, F is an Nxy matrix of common factor scores, A is an nxy matrix of common 
factor loadings, U is an Nxn matrix of uniqueness variations, N is the sample size, n is 

the number of observed variables and r is the number of common factors. We assume 
the usual factor analytic assumptions, 

                                 U'1N = 0" , (1-a) 

                                F'1N = 0; , (1-b) 
                   F' U = yon, (1-c) 

and 

                      U' U/N = Dn (diagonal) (1-d) 

hold where 1 and 0 are vectors of ones and zeroes, respectively, of subscripted orders, 
and Dn is an nxn matrix of uniqueness variances. We make two additional assump
tions, 

                               F'F/N = I , (1-e) 
and 

                         A'A = D (diagonal) (1-f) 

for identification purposes. The "=" stands for the least squares fit in the sense 

defined below (Eq. (3) ). 
   It will be useful in the following development to represent each column vector of 

Y*, say y,* ()*=1, ..., n), using indicator matrix notation. Let an Nxn (nj is the 
number of distinct observations for variable j) indicator matrix be Gj, and an nj
component vector of the optimally scaled (quantified) observation categories be pj, then 

                         b*=G;p,, (j = 1,...,n). (2) 

The optimization criterion is stated as 

                         Q = tr(R*-R)2 (3) 

where R* is the matrix of correlations calculated from the optimally scaled data; 
i.e., 

                           R* = Y*'Y*/N (4) 

and k is the matrix of predicted correlations; i.e., 

                           R = AA'+Dn . (5) 

We optimize (3) (for a prescribed r) by alternately obtaining, first, the L.S. estimate of 
R (with the structure defined in (5)) for fixed R*, and, second , the L.S. estimate of R* 
(with the structure defined in (4) ) under the optional variablewise monotonicity 
restrictions on Y* for fixed k The procedure is an alternating least squares



algorithm, a class of algorithms which has been proven to be monotonically convergent 

[Zangwill, 1969] under mild regularity conditions, and which has been successfully 
used to fit a variety of linear and quadratic models to qualitative data [de Leeuw, 
Young & Takane, 1976; Young, de Leeuw & Takane, 1976; Takane , Young & de Leeuw, 
1977a, 1977b]. We call our procedure FACTALS (nonmetric common factor analysis 

by the alternating least squares method). 
   The critical notion to be observed in an ALS algorithm is that each phase of the 

iterative procedure obtains least squares estimates of a subset of the entire set of 

parameters, where the estimates are conditional upon the values of the parameters in 
the other subsets, and that the least squares estimates be derived from a single 

(common) optimization criterion. Within this general ALS framework we have 
considerable freedom as to the choice of the specific numerical methods to solve each 

of the conditional least squares problems. We now turn to these specific methods.

2.2 Model Estimation Phase 

   The least squares estimate of R (i.e., A and Dn) for fixed R* may be obtained by 
at least two conventional methods. One is Thomson's [1951] refactoring method and 

the other is the MINRES method proposed by Harman and Jones [1966]. It is inter
esting to note that both of these methods are themselves ALS procedures. It is clear 

that MINRES (with its specific optimization algorithm) is explicitly intended to 
optimize (3) with fixed R*. That Thomson's refactoring method is also an ALS 

procedure is less obvious, though this can be shown in a surprisingly simple way. 
   By differentiating (3) with respect to A and Dn and setting the results to zero we 

obtain 

                            (R*-AA'-D2) A = n0r , 
and 

              diag (R*-AA'-Dn) =non. 

Hence we have (by noting the identification restriction A'A=D) 

                       (R*-Dn) A = AD 
and 

                        Dn = diag (R*-AA') . 

The first equation is the eigen equation for obtaining the L.S. estimate of A for fixed 
Dn, and the second the L.S. estimate of Dn for fixed A. 

   We employ Thomson's refactoring method to obtain model estimates because of 
its simplicity. Its reportedly slow convergence can be accelerated in ways which 

will be suggested later.

2.3 Optimal Scaling Phase 

   The optimization of Q with respect to the data transformations is somewhat more 
involved since, as stated earlier, a simplified quadratic programming procedure such as 
Kruskal's monotonic regression algorithm cannot be applied for ordinal variables, and 

the least squares optimal quantification for nominal variables cannot be obtained by 

simply averaging model predictions whose corresponding observations fall in the same



categories. However, by noting that diag (R) =I ,, and by explicitly imposing the 
normalization restriction that diag (R*)=I,a, the problem of estimating R* for fixed R 

may be reduced to successive applciations of a more standard type of quadratic 

programming procedure. 
   Let 

                             rj = (rlj...y (j-1)j , y(j+1)j...ynj) 
and 

                           ri = (yli ... r(j-1) j , '"(j+1) j' .. rnj) 
then 

                                      n n 

                  Q = (rt-rj)' (ri-rj) _ E Qj , (6) 
                                 j=1 j=1 

where 

                       Qj = (r~ -rj)'(r, -rj) . (7) 
Define Yt as Y* with j' th column vector deleted, then rt may be written as 

                 r; = Y,'yj/N = Yl'Gjpj/N = Bjpj, 

where Bj=Y~'Gj/N. Note that the rank of Bj is at most nj-1, since we have Yt'1N= 
0n-1 so that Bjln;=On_1. The rank of Bj may be smaller than nj-1, but we assume here 

that rank (Bj)=nj-1. We assume further that nj (j=1, ..., n) does not exceed n. Q 
j is, unfortunately, a function not only of b* but also of Yt. Thus the optimal scaling 
phase consists of n sub-phases which optimize Q through sequential optimizations of 
Qj (j=1, ... , n), with the newly estimated pj promptly fed back into the optimization 
for the next variable. 

   In optimizing Qj with respect to pj (note that Qj is a quadratic function of pj) we 
have to take the following three restrictions on yt (and consequently on pj) into 
account: 

   1) Centering restriction 

                         b~1N = p'Djlnj = 0, (8) 
where Dj = G;Gj/N. 

   2) Normalization restriction 

                       bl~'yI/N = p'Djpj = 1 . (9) 

   3) Order (cone) restriction 

                            Hj pj z On; , (10) 
where the njxnj matrix Hj defines the ordinal relations on the elements of p1, as follows: 
If the elements of pj are arranged in the desired ascending order (Y1 is the smallest 
category, p2 the next smallest, etc.), then Hj has the following structure : 

                               -1 1 0 0 ... 0 0 
                               0 -1 1 0 ... 0 0 

                     Hi 0 0 -1 1 ... 0 0 

= 

                                 0 0 0 0 ... -1 1 

                             0 0 0 0 ... 0 1



   The centering restriction states that the optimally scaled data should have zero 
means, and the normalization restriction (in conjunction with the centering restric
tion) states that they should have unit variances. The third restriction is optional, 
being required only when the variable is ordinal. If the variable is nominal the 
order restriction is not necessary and the data estimation is greatly simplified. If the 
variable is numerical (defined at the interval level) then the optimal scaling phase is 
skipped entirely. 

   In terms of a quadratic programming procedure the normalization restriction 
creates a difficulty, since it is not linear (but quadratic) and the standard quadratic 

programming procedures are designed to optimize a quadratic function under linear 
constraints. However, several methods have been suggested to deal with quadratic 
constraints similar to the present case; in these methods the constraints are introduced 
into an objective function by way of Lagrangean multipliers, which can be solved for 
by either reducing it to a special type of an eigen-problem [Golub and Saunders, 1969] 
or by a descent type method such as the Newton-Raphson method [Browne, 1967; 
Cramer, 1974]. 

    The use of an iterative procedure to incorporate the normalization restriction 
would be formidable when the variable is ordinal since currently available quadratic 

programming procedures are iterative themselves. The eigen method would be very 
time consuming since the solution would have to be obtained on each iteration of a 

quadratic programming procedure, which in turn would have to be repeated for each 
ordinal variable on each ALS major iteration. 

    Fortunately we can reduce the normalization restriction to an essentially 
nonrestrictive form by a simple modification of the optimization criterion (3). 
Consider, for fixed R, 

                     Q* = tr[DS 1/2(C* -k) DS 1/2] 2 (11) 

where C*=Y*'Y*/N and DS=diag(C*) for unnormalized Y*. Note that Q* is 
equivalent to Q defined in (3) when the normalization restrictions happen to be met 

(i.e., if DS=In and C*==R*). Define Ds(J) to be a diagonal matrix of order n-1 with the 
j'th diagonal element dj of DS delected. Assume for the moment that Ds(j) =I, _1 (i.e., 
the normalization restrictions are satsified for the n-1 variables except for the j'th 
variable). The Q~ corresponding to Qj in (7) can be written as 

                  Q; = i (cI-i'j)'(c;-rj) 
                        = (r*-rj/d1/2)'(r~-r"j/,J 2) 

where c* is the j'th column vector of C* with j' th element deleted and rj=rj/d1.12. 
Hence we may temporarily regard dj as a fixed constant, obtain the unnormalized b* 

(which gives c~), and then normalize it to meet the noramlization restriction. The 
dependent variable rj should be adjusted by the same factor. The corresponding j'th 
row vector of R should also be adjusted accordingly to retain the symmetry of k. Note 
that the normalized bt would be the unconstrained estimate if in fact Pj were the



dependent variable. Note also that the above solution is subtly different from what we 
have originally intended, but nonetheless it is consistent with the ALS framework. 
Since we can always ensure that DS(j) =In _1 for any j and that DS=In throughout the 
model estimation phase, the model estimation can proceed as if we were optimizing (3). 

    Furthermore, as it. will be clear shortly, the centering restriction in the present 
case is also nonrestrictive. Since the nj xnj matrix Bj has rank of at most nj-1, the 
solution to (7) is not unique without additional restrictions. The centering restriction 

can be used to uniquely identify the solution. Again the solution can be obtained by 
first obtaining an unrestricted solution and then by adjusting it to meet the restriction. 

    What we have described so far suffices for nominal variables. However, if a 
variable is ordinal then we must impose the order restriction given in Equation 10 in 
addition to the centering and normalization restrictions given by Equations 8 and 9. 

Thus, we now turn to the ordinal (cone) restrictions for ordinal variables, which 

produce a quadratic programming problem. 
   There are various ways to solve a quadratic programming problem, that is, an 

optimization problem of a quadratic function under linear (inequality) constraints. 
These include the conventional complementary pivoting algorithm [Cottle and 
Danzig, 1968], and the manifold suboptimization methods [Stoer, 1971; Lawson and 

Hanson, 1974] among others. These methods are all iterative, but are assured of 
convergence to an exact solution in a finite number of steps. However, considering 

the particularly simple type of linear restrictions in the present case, we may take yet 
another approach to the quadratic programming problem. The matrix Hj, which 

defines the order relations among the elements of pj, assumes a special form in our case, 

which, together with the fact that the restrictions are a set of linear homogeneous 
inequalities (i.e., no constant terms exist), permits a reparametrization of pj into an 
easily manageable form. Suppose, for example, that there are only three distinct 

observation categories, and that their prescribed order is P,3,::! ,2ZP51 where p'= (p51, 

Ps2, p;3)• Then Hj will be of the form, 

                                -1 1 0 

                          Hi = 0 -1 1 

                          0 0 1 , 
and 

                                    p2; -Plj 
                             Hj pj = p3j  p2j 

                                p3; 

(Without loss of generality p3j may be assumed to be nonnegative.) Define the order 
restrictions 

                           qj=HjpjzO, (12) 

then we can write Qj as 

                      Qj = (Ejq;-r;)'(Ejq;-r;) (13) 

where Ej=BjH7 1. Note that the order restrictions on the elements of pj have been 
transformed into nonnegativity restrictions on the elements of qj. The important



consequence of this modification is that the constraints are now separable (i.e., imposed 
separately on each element of q1). A similar reparametrization technique has been 

used for INDISCAL, an indicator method of multidimensional scaling (de Leeuw, 
Takane and Young, in preparation). 

   It can be easily verified that Hj as defined above is always nonsingular for any 

order and has a regular inverse of the form, 

                                          -1 -1 1

                           H-1 = 0 -1 1 

                            0 0 1 , 

in case of the 3 X 3 matrix. Ej, however, is still rank deficient. We define B~ as f3j 
without the last column, which is all zeroes for Bj1,,j=0, and q1 as qj with the last 
element deleted. Then an unconstrained L.S. estimate of qj is given by (as is well 
known) 

A 

                        4'; = (B;'B;) -1 B~'rj . (14) 

If the elements of 4'~ as defined above are all nonnegative, q1 is also the constrained 
L. S. estimate under the nonnegativity restriction (3). If, on the other hand, any 

A elements of 4'~ are negative, we switch to the following elementwise estimation 

procedure. Suppose the k' th element of q' , namely q*k, is found to be negative. We 
set q*k=0, and see what effect this replacement would incur on other estimates. We 
estimate the k+ 1' st element of ci by 

                                      b) q+ bcj)bcj~ Qj(k+1) k+ 
j#                               i( 7 k+1 i Ii)I k+ ~ k+i (15) 

where b(i) is the i' th column vector of B~. If q~ (k+i) as defined in (15) is nonnegative, 
we pass on to the estimation of the next element. However, if it is negative , we set 

4~ (k+i) =0, and turn to the next element. We repeat this procedure until the elements 
of qt are all stabilized. (The rationale of this procedure for the quadratic programming 

problem has been established by Hildreth [1957], among others. In fact it is also a 
special case of an alternating least squares procedure.) After 4'* has converged, we 
obtain q~n and adjust q1 by restriction (8). 

   Finally we normalize 4't so that 
                                                        A A 

                         Q''(H7 1)' D H 'V = 1 , 

and adjust the length of r' j and the corresponding j' th row of R. 
    Once the optimal scaling of the j' th variable is obtained, we repeat the same 

procedure successively for all variables. We then check convergence, and if not 
converged go back to the model estimation phase. Note, however, that one sequential 
sweep through the optimal scaling of all variables will not completely minimize (3) or 

(11) for fixed R, since, as noted earlier, Qj optimized with respect to the j' th 
variable depends on all other n-1 variables. We could repeat the optimal scaling phase 
and iterate it until the absolute minimum of Q for fixed f? is obtained before going back 
to the model estimation phase. However, our experience with ALS procedures 
indicates that convergence is obtained more quickly by returning to the model estimation 

phase after one sweep of all variables.



2.4 Some acceleration techniques 

   Various acceleration techniques can be suggested for the phases and subphases of 

the iterative scheme presented above. 
    The refactoring procedure may be very slow in convergence and may be very 

time consuming; it has to solve the r dominant eigenvalues and vectors of the 

matrix R*-D; with slightly different Dn' s repeatedly. We recommend using the 
Clint and Jennings [1970] simultaneous power method since the successive eigenvectors 

are most often only slightly different and the set of eigenvectors from the previous 
iteration may be used as initial estimates of those on the next iteration. The method 

tends to give faster and faster convergence as iterations proceed since the change in Dm 

will typically diminish. 
   In addition to the use of a special eigen routine, a relaxation process has been 

introduced in the updating scheme of Dm to further accelerate convergence. In the 

relaxation process the new estimate of a parameter vector 9, is given by 

                      gyi+1> (1-a)O(t)+aOui+1) 

where the parenthesized superscript indicates an iteration number and is the 
estimate of 0 from the unrelaxed process. We set el i + 1) =e;i + 1) for the i+2' nd 

iteration. Ramsay [1975] has given an ingeneous method for choosing an appropriate 
value for a, and reports that the relaxation process significantly cuts down the number 

of iterations to convergence in the refactoring method.

3. Analysis of interest inventory data 

   We present just one example of FACTALS analysis with a real set of data. The 
original data were collected as part of a large scale vocational aptitude study conducted 
by Hidano, et. al. (1971). The data consist of subjects' responses to several hundred 
items from over 2000 subjects. Ten items in the interest domain, which have been 

found to have a two-common-factor structure from a preliminary analysis, were 
chosen for the purpose of the present study. The ten items are : 

   A. Building a ship (1) 
   B. Persuading people (2) 
    C. Reparing second hand cars (1) 

   D. Building bridges (1) 

   E. Discussing the recent world situation (2) 
    F. Participating in conferences (2) 
    G. Constructing new railways (1) 

   H. Reparing tools (1) 
    I. Reading articles on political matters (2) 

   J. Talking about politics (2) 

(The numbers in parentheses are designated factors: (1) mechanical interest, (2) 
political interests.) Subjects indicated the extent to which they are interested in 
doing things described in the items on five-point scales: 1. not at all interested, 2. not 
very much interested, 3. undecided, 4. slightly interested, and 5. very interested. 

   Hidano, et. al. applied the usual (metric) common factor analysis to the original



data assuming that preassigned category values (one to five) constitute interval scales. 
We, on the other hand, applied FACTALS to the selected sample of items assuming that 

categories of rating scales are merely ordinal. Preassigned category values and their 
squares were used as initial category values, and these two monotonically related data 

sets were analyzed under the interval and ordinal assumptions. 
   The derived factor loadings are plotted in Fig. 1. It can be clearly seen that the 

derived factor loading patterns are remarkably similar in all cases. Implications are 
twofold. First, FACTALS can obtain monotone-invariant results; solutions obtained 
from the two monotonically related data sets by FACTALS are virtually indistinguish

able (so much so that the two solutions are indicated as if they were a single solution 
in the figure). Thus, FACTALS satisfies the basic condition required of a nonmetric 

procedure. Second, although this particular example fails to indicate that the 
nonmetric analysis gives more sensible results than its metric counterpart, it provides 

a direct support for the metric assumption tacitly made by Hidano, et. al. in their 
analyses. If nonmetric solutions are not very much different from metric solutions, 

there seems to be no reason why we should apply more expensive nonmetric procedures.

Fig. 1 Plot of factor loagings: Interest Inventory data



However, it is not until we find the two solutions are essentially the same that we can 

justify the stronger measurement assumption. That we can empirically test the 
plauisbility of the metric assumption is one of the major advantages of nonmetric 

procedures.

4. Discussion 

   We have seen one use of FACTALS through the analysis of example data. 

Once by virtue of nonmetric analyses it is established that rating scales consist of 
equally spaced categories, we may apply the metric procedure with some confidence. 

Or we may in a shooting-in-the-dark manner find the nonmetric analysis by FACTALS 
uncover a truly meaningful data structure which would never be discovered otherwise, 
though, of course, we cannot expect this kind of luck to happen so frequently. 

    One cautionary remark is in order against routine applications of FACTALS, or 
more broadly against all kinds of routine applications of common factor analysis in 

general. The common factor analysis model is a falsifiable model, unlike the principal 
components model, imposing rather stringent assumptions on the data. Indeed as 

Guttman once noted, common factor analysis should not be applied off hand unless 
one has a reasonable degree of confidence about the plausibility of its assumptions. 
The common factor model is not a general data analytic model as has been predominantly 

used or rather abused, and as such it has been enjoying its popularity, but a very specific 
model of behavior as Spearman originally conceptualized it as a structural model of 

intelligence. A small Monte Carlo study has revealed that FACTALS is not very 
robust against violations of the linear local independence assumption (1-d). It 

seems necessary that we be very cautious about the plausibility of the model assump

tions when we wish to apply FACTALS and evaluate the empirical meaning of the 
results.
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