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Abstract

A new procedure is discussed which fits either the weighted
or simple Euclidian model to data which may (a) be defined at
either the nominal, ordinal, interval or ratio levels of measure-
ment; (b) have missing observations; (c) be symmetric or asymme-
tric; (4) be conditional or unconditional; (e) be replicated or

unreplicated; and (f) be continuous or discrete. Various special
cases of the procedure include the most commonly used multidimensional
scaling models, the familiar nonmetric multidimensional

scaling model, and several other previously undiscussed variants.

The procedure optimizes the fit of the model directly to
the data (not to scalar products determined from the data) by
an slternating least squares procedure which is convergent,
non-oscilatory, quick, and relatively free from local minimum
problems.

The procedure is evaluated via both monte carlo and empirical
data with the conclusion being that it is robust in the face of
measurement error, capable of recovering the true underlying
configuration in the monte carlo situation, and capable of ob-
taining structures equivalent to those obtained by other less
general procedures in the empirical situation.
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1.0 Purpose and motivation

One of the most vigorous areas of endeavor in recent multi-
dimensional scaling research concerns the representation of
individual differences, with the weighted Euclidian model
currently being the most widely used individual differences
model of the various ones which have been proposed. One of
the main attractions of this model undoubtedly relates to the
strict isolation of information common to all individuals from
information unique toveach individual. The idea of representing
communality among sets of observations by a single multidimensional
Euclidian space, while representing the uniqueness of each
individual by differential weights attached to the dimensions
of the space is an ingeneous idea particularly conducive to
simple and straightforward interpretation. Furthermore, the
fact that the dimensions of the space are unrotatable makes
the model even more attractive.

The weighted EFuclidian model is certainly not the most
general individual différences model proposed within the
multidimensional scaling framéwork (Tupker, 1972), nor is it
appropriate to all types of individual differences (McGee,

1968). Furthermore, the most successful implementation of the

model (Carroll and Chang, 1970) is severely limited in terms

of the types of data to which the model can be applied, particularly
in light of recent interest in nonmetric multidimensional scaling
(Kruskal, 1964).

It is the purpose of this paper to propose and evaluate a
new procedure for fitting the weighted Euclidian model to data

which are much less severely restricted than those appropriate
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to the Carroll-Chang procedure. Our procedure is appropriate

to data which may have missing observations, which may be defined
at the nominal, ordinal, interval or ratio measurement levels,
which may be discrete or continuous, and which may or may not

be asymmetric, conditional or replicated. Furthermore, our
procedure is able, without further complications, to fit the
simple unweighted Euclidian model. Thus several individual
differences models (Carroll and Chang (1970), McGee (1968), and
Young (1975)), as well as models not including individual differ-
ences notions (Kruskai, 1964; Torgerson, 1952), and other pre-
viously undiscussed variants can be realized within one common
framework.

The initiai proposal of the weighted Euclidian model and
the associated pfocedures for fitting the model to empirical
data were made by several people at about the same time (Horan,
1969; Bloxom, 1968; Carroll and Chang, 1970), with the most
successful procedure and the most complete proposal being that
of Carroll and Chang. Their INDSCAL (individual differences
scaling) procedure is formally an n-way generalization of Eckart
and Young's (1936) two-way canonical decomposition which Carroll
and Chang call the CANDECOMP procedure. This procedure is per-—
formed, after an initial conversion of observed dissimilarities
to product moments, by alternately obtaining least squares
estimates of the individual differences weights W (for fixed
estimates of the stimulus configuration X), and then obtaining
least squares estimates of X given W. This procedure belongs to
a class of numerical procedures termed alternating least squares

(ALS) procedures by de Leeuw, Young and Takane (1975a), which
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have the desireable property that they are necessarily convergent.
That is, it is never possible for an ALS procedure to obtain an
iteration which worsens the function it is designed to optimize.
On every iteration the function must be improved due to the
conditional least squares properties of each phase of an ALS
procedure. More will be said on this later.

The Carroll-Chang CANDECOMP procedure has two consequences
which are relevant to the present discussion: First, the mini-
mization criterion (called STRAIN, by Carroll) is defined in
terms of the product moﬁents computed from the raw data, not
in terms of the raw data themselves. Thus INDSCAL does not
optimize the fit between the weighted Euclidian model and the
data, strictly speaking, but rather the fit between a vector
product model and a transformation of the data. Second, due to
the operation which converts dissimilarities into scalar pro-
ducts (which involves additionm, etc.) the procedure is metric.

Bloxom (1968) proposed a gradient procedure to optimize
STRAIN which is also a metric procedure. ‘Unfortunately, due
to the nature of gradient procedures the convergence pro-
perties of the Carroll-Chang ALS-type procedure are lost. This
may account for the reported (Carroll and Chang, 1970) inferiority
of Bloxom's procedure in terms of speed of convergence relative
to the INDSCAL procedure. Perhaps for this reason Bloxom (1974)
proposed another procedure based on the equivalence of the problem
as posed in the STRAIN framework to the analysis of covariance
structures proposed by Jareskog (1970). The performance of this

proposal is yet to be investigated.
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Schgnemann (1972) presents an elegant algebraic solution
for the weighted Euclidian model. However, since the logic of
his developments is not oriented towards optimizing a well defined
quantity it cannot be applied to real data with expectation of
unqualified success, as Schonemann notes. This means that the
procedure has l1ittle practical significance to the data analyst.
His idea, however, has been extended by de Leeuw (1974) to obtain
a rational initial start to be used for more robust procedures
for fitting the weighted’Euclidian model. We will go into this
topic further in later portions of this paper.

A1l of the procedures discussed to this point place very
stringent requirements on the data. Specifically, they all re-
quire that the data be symmetric, have no missing observations,
be unreplicated and unconditional, and be defined at least at
the interval level of measurement. Seﬁeral procedures which
relax some or all of these restrictions have been proposed and
investigated, with varying degrees of success.

carroll and Chang's first nonmetric procedure, mentioned
briefly in their original paper (1970) and called NINDSCAL
(Eonmetric INDSCAL) is a two phase procedure which uses the
metric CANDECOMP procedure in the first phase (iteratively until
convergence) and Kruskal's (1964) least squares monotonic re-
gression in the second phase. These two phases are iteratively
applied. It 1is important to note that the first phase minimizes
STRAIN (which is defined on scalar products as discussed above),
whereas the second phase minimizes Kruskal's STRESS, which is
defined on the raw data. Since two different functions are in-

volved NINDSCAL has no assurance of convergence on a stable



point, and eventually either oscilates or diverges after a few
iterations. Furthermore, the procedure is very inefficient, and
of the several data restrictions noted relaxes only the measure-
ment level requirements.

For these reasons Carroll and Chang have recently (197k)
proposed another nonmetric procedure to minimize STRAIN which
uses an ALS method after initial estimates of W and X
are obtained by an improved CANDECOMP procedure. This approach,
which involves STRAIN ip all phases of each iteration, is the
first stable procedure for nonmetric multidimensional scaling
which involves the weighted Euclidian model, and has the highly
desirable consequence of relaxing all of the data restrictions
noted above. However, the procedure is within the STRAIN frame-
work, and thus does not directly optimize the fit between the
distance model and the raw data, but rather between the scalar
products computed from an optimal monotonic transformation of
the raw data and the scalar products computed from the coordinates.
Of the various procedures reviewed here this is, at least theo-
retically, the soundest, although its efficiency is yet to be
reported.

A third nonmetric procedure for fitting the weighted Eucli-
dian model has been tried by the second author of this parer.
This procedure uses a gradient technique to simultaneously improve
estimates of W and X by using the derivatives of the STRESS loss
function. While this procedure (a) uses one loss function
throughout the entire procedure, and (b) optimizes the fit to
the date directly, it has been found to be highly susceptible

to the exact nature of the starting point, with a careful choice
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of the initial orientation of X being required. Although this
difficulty could be remedied by using de Leeuw's (1974) initial
rotation procedure (as is done in the work to be reported here),
it appears to be the case that the procedure still suffers from
the use of the gradient procedure.

Finally, a gradient procedure has been proposed by Yates
(1972) for nonmetrically fitting the weighted Euclidian model
which is in neither the STRESS or STRAIN framework, but which
attempts to minimize the proportion of variance in the model
which is due to incorrectly ordered pairs of distances (rela-
tive to the order of the dissimilarities). This goal has been
adopted by several authors in the context of the unwveighted
Euclidian model (Guttman, 1969; de Leeuw, 1970; Johnson, 1973),
and has been fully discussed by de Leeuw (1975) and Young
(1975). While this procedure has the advantage of optimizing
a relationship defined directly in terms of the raw data and
subjects the data to none of the restrictions mentioned above,
it suffers from mixing together two different optimizing
functions, as shown by de Leeuw (1975) and discussed by Young
(1975).

In this paper we present a new nonmetric procedure for
fitting the weighted Euclidian model which a) ds in the STRESS
framework; b) uses the ALS approach; and c) removes all of the data

restrictions mentioned above.



2.0 The problem

The problem we solve in this paper is that of obtaining a
robust and efficient procedure for nonmetric individual diffe-
rences multidimensional scaling. In this section we discuss the
most important aspects of the problem, namely the individual
differences models, the types of data, and the optimization
criterion utilized in our work.

2.1 Individual differences models

As emphasized in the previous section we select the weighted

Euclidian model to represent individual differences. This model
is
t
2 2
= - >
(1) dijk ailwia(xja xka) > Wia—o ?

as is well known (the non-negativity restriction is optional).
However, as was briefly mentioned in the preceding section, we
also treat the (unweighted) Euclidian model within our framework.
This model is equivalent to Eq. (l) when all wia=l, and can salso
be viewed as an individual differences model in certain circum-
stances. We will discuss the full'vafiety'of models subsumed by
Eq. (1) in section 5.2 of the paper.

2.2 Types of data

Previous authors of multidimensional scaling papers (Shepard,
1962; Kruskal, 196k4; Guttman, 1968; Carroll & Chang, 1970) have
emphasized a dichotomy of measurement levels which they termed
metric and nonmetric. When placed in the context of Stevens' (1951)
measurement theory it is clear that these terms correspond to three
of the four measurement levels delineated by Stevens, namely ordi-

nal (nonmetric) and interval or ratio (metric). The developments

ay
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presented here, on the other hand, extend multidimensional scaling
to data defined at all four of Stevens' levels, including the
nominal level, Furthermore, we also distinguish

two types of measurement processes (discrete and continuous) and
three types of conditionality (unconditional, matrix-conditional,
and row-conditional).

The general nature of the problem faced by an analysis pro-
cedure explicitly designed for data having such a wide variety
of measurement characteristics is best viewed in the light shed
by Fisher's notion of optima1 scaling (Fisher, 1946). Fisher's
objective in proposing optimal scaling was to scale the observations
so that a) they would fit the model as well as possible in a least
squares sense; and b) the measurement characteristics of the ob-
servations would be strictly maintained. Fisher's optimal scaling
notion is one of the cornerstones of our own work.

Let us define the squared observations 0, the optimally scaled
squared observations D*, and the squared distances D. (The opti-
mally scaled squared observations are commonly referred to as
the disparities in the MDS context, and we sometimes refer to them
as the estimates since they are least squares estimates of the
squared distances). Each of these symbols represents a collection
of matrices. That is, 0 is a collection of all matrices O, for all
individuals i from whom we have obtained observations oijk about
stimulus pairs (j,k). Correspondingly, D* is the collection of
matrices Q: with elements d:;k’ and D is the collection of all
matrices D with elements dijk defined by Eq. (1).

With these definitions we can formally represent the optimal

scaling problem as a transformation problem, as follows. We wish
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to obtain a transformation £ of the raw observations which
generates the optimally scaled observations d:jk

(2) tlay ] = [dyy)

where the precise definition of £ is a function of the measure-
ment level, process and conditionality, and is such that a

least squares relationship exists between d:jk and dijk given that
the measurement characteristics are strictly maintained. 1In

the remainder of this section we discuss in detail the measure-
ment restrictions which must be maihtained. In a later section of
the paper we present the corresponding least squares methods for
obtaining the transformations.

To fully understand the several levels, process and con-
ditionality restrictions we must first introduce a concept which
is crucial to our work: It is our view that all observations are
categorical. That is, we view an observation variable as consisting
of observations which fall into a variety of categories, such that
all observations in a particular category are empirically equi-
valent. Furthermore, we take this '"categorical'" view regardless
of the variable's measurement level and regardless of the nature
of the process which generated the observations. Put most
simply, it is our view that the observational process delivers
observations which are categorical because of the finite precision
of the measurement and observation process, if for no other
reason. For example, if one 1s measuring temperature with an
ordinary thermometer (which is likely to generate interval
level observations reasonably assumed to reflect a continuous
process) it is doubtful whether the degrees are reported with

any more precision than whole degrees. Thus, the observation
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is categorical: there are a very large (indeed infinite) number
of uniquely different temperatures which would all be reported
as say, 40°. Thus, we say that the observation of 40° 1is
categorical.

As we will see, the three types of measurement restrictions
(level, and process conditionality restrictions) concern three
different aspects of the observation categories. The process
restrictions concern the relationships among all the observations
within a single category, the 1e§el restrictions concern the re-
lationships among alllthe observations between different cate-
gories, and the conditionality restrictions concern the possibility
of sets of categories. We will first take up the process restrictions,
then the level restrictions, and finally the conditionality
restrictions.

There are two types of process restrictions, one invoked when
we assume that the generating process is discrete, and the other
when we assume that it 1s continuous. One or the other assumption
must always be made. If we believe that the process is discrete
then all observations within a particular category should be re-
presented by the same real number after the transformation t has

been made. On the other hand, if we adopt the continuous assump-

tion then each of the observations within a particular category
should be represented by a real number selected from a closed
interval of real numbers. In the former case the discrete nature
of the process is reflected by the fact that we choose a single
(discrete) number to represent all observations in the category;

whereas in the latter case, the continuity of the process is
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reflected by the fact that we choose real numbers from a closed
(continuous) interval of real numbers. Formally, we define the

two restrictions as follows: the discrete restriction is

d -
(3) 1 (oijk~°mno)*(d¥jk - d;no)

where ~ indicates empirical equivalence (i.e., membership in the

same category) and where the superscript on td indicates the dis-

crete assumption. The continuous restriction is represented as

- - * + +
= < < =
, (dijk dmno-dijk—dijk dmno>
c

(4) 1" (Oijk~°mno)

- - + .+
(dijk-dmnof mnof ijk dmno)

+
11k and dijk are the lower and upper bounds of the interval

of real numbers. Note that one of the implications of empirical

where d

(categorical) equivalence is that the upper and lower boundaries
of all observations in a particular category are the same for all
the observations. Thus, the boundaries are more correctly
thought of as applying to the categories rather than the ob-
servations, but to denote this would involve a somewhat more
complicated notational system. Note also that for all obser-
vations in a particular category the corresponding rescaled
observations are required to fall in the interval but need

not be equal.

We now turn to the second set of restraints on the several
measurementtransformations £, the level restraints. With these
restraints we determine the nature of the allowable transformations
£ so that they correspond to the assumed level of measurement of
the observation variables. There are, of course, a variety of
different restraints which might be of interest, but we only

mention three here. With these three, we can satisfy the
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characteristics of Stevens' four measurement levels.

For nominal variables, we introduce no level restraints
as the characteristics of nominal variables are completely
specified by the previously mentioned process restraints.

For ordinal variables, we require, in addition to the pro-
cess restraints, that the real numbers assigned to observations
in different categories represent the order of the empirical ob-

servations:
() % (04 43<Opne) (dijk dnno)
where the superscrift on t° indicates the order restriction, and
where < indicates empirical order. Note that we require weak
order, i.e., the assigned numbers are permitted to be equal even
if the observations are not. The problem of what to do about
ties has already been handled by our previous discussion of the
process restrictions. If the variable is discrete~ordinal (tdo)
then tied observations remain tied after transformation, whereas
for continuous-ordinal (tco) variables tied observations may be
untied after transformation.

For quantitative (interval or ratio) variables, we require

that the real numbers assigned to the observations be linearly

related to the observations:

¥ * _
(6) p dijk = § +6loi %
(where 6°=0 for ratio variables). When necessary we denote the

interval transformation as ti and the ratio transformation as tr.
More generally, we may require that the assigned numbers be re-

lated to the observations by a polynomial of known degree:

P
1 * - q
(7 15 dijk qioﬁqoijk
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(where the summation starts at 1 for ratio variables). Note that
we still think of the observations as being categorical even if
the measurement level is quantitative, although this is not very
illuminating since each category will generally have only one ob-
servation (i.e., there are usually no ties). Thus the discrete-
continuous distinction is usually only of academic interest with
quantitative variables and will not be pursued further.

Finally, we turn to the third type of measurement restrictions,
those concerning the conditionality of the observations. As has
been emphasized by Coombs (1964) it may be that the measurement
characteristics of the observations are conditional on some aspect
of the experimental situation in such a way that some observations
cannot be meaningfully compared with other observations. For
example, if several subjects in a paired comparison similarity
experiment are required to judge the similarity of all pairs of
stimuli, it is usually the case that we are unwilling to say that
one subject's judgment of 7 (on a similarity scale of 1 through
9, let's say) can be said to represent more similarity than another
subject's judgment of 6. We just are not sure that the subjects
are using the response scale in identical ways. 1In fact, we are
pretty sure that they do not use the scale identically, so we say
that the measurements are conditional on the subject. More
generally, we refer to this type of conditionality as matrix-
conditionality, since all observations within a matrix are com-
parable, but not between matrices. It is also possible to have
row-conditional observations, as discussed by Coombs (1964, Ch.
17) and unconditional observations. (Note that Coombs' uncon-

ditional case corresponds with our matrix-conditional case).
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Formally, we state that the domain of the measurement trans-
formation £ is dependent on the type of conditionality. For un-
conditional data the domain is the entire set of observations and
the transformation is denoted . For matrix-conditional data the
domain is a single matrix of data and the transformation is denoted
ti. Finally, for row-conditional data the domain is a single row
of a single matrix, and the transformation 1is denoted tij' The
previous discussion of measurement level and process were im-
plicitly in terms of unconditional data, énd all of the definitions
of level and process ﬁust be modified appropriately, although we
do not explicate these modifications as they are lengthly and
obvious. Of course other patterns of conditionality are
possible, though unlikely. It may also sometimes be the case that
different measurement levels or processes may be associated with
conditionality. We do not go into these generalizations in this
paper, although they have been discussed by Young (1973) and
Kruskal, Young & Seery (1973).

2.3 Optimization criteria

Most of the ptocedures for fitting the weighted Euclidian
model which we discussed in the first section were in the STRAIN
framework. That is, they were designed to optimize a suitably

normalized version of the function
2 N
(8) Z°(X,W,P*) = I tr(P*-XW.X")'(P*-XW X')
—r=1=— 1=1 —i —i= —-i —i-

where P* is the collection of g; for i=1,...,N, where W, is

a diagonal matrix of weights for subject 1, and where g; 1s the

matrix of scalar products derived from subject i's dissimi-

larities under either metric or nonmetric assumptions.
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Equation (8), STRAIN, is a least squares criterion defined
between the scalar products derived from the data and the scalar
products derived from the model. Although the optimization of
STRAIN is very straight-forward when the date are metric, it 1is
rather complicated when they are nonmetric. Two fundamentally
different optimization procedures have been proposed. The more
satisfactory of these approaches, proposed by Carroll and Chang
(1974) assumes that the observed dissimilarities must be monotonic
with a set of values from which the scalar products g; are computed.
That is, it is required that

(9) tolo, 1 = [ay,, ],

d?jk
so that g; may be computed from 2? in a way which optimizes STRAIN.
While the measurement aspects of this approach are sound, the opti-
mization problem is very complex, and the efficiency and robustness
of the procedure is yet to be documented. The other, less satisfac-
tory approach, taken by Levinsohn and Young (197L4), involves compu-
ting 2 matrix of scalar products Ei directly from the raw observa-
tions at the outset of the analysis. The procedure then optimizes

STRAIN under the assumption that gi is nonmetric. That is, this

procedure requires that

(10) t°[pijk] [p?dk]

Certainly the measurement aspects of this approach are confusing since
the data must be assumed to be metric in order to derive the scalar
products which are themselves assumed to be nonmetric. It might be
pointed out, however, that this approach>is by far the simplest com-
putationally, and has the desirable property of requiring much less
storage than any of the other procedures discussed in this paper.

This procedure, then, is particularly suited to small computers.
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Due to the complexity of the first procedure, and to the mea-
surement characteristics of the second, we are inclined to adopt a
criterion which is more consistent with the STRESS framework. Put
more precisely, we define a least squares criterion on the squared

distances, namely

2 _ T2 2 (2
(11) ¢"(X,H,D*) = sz E (dijk dijk) ,

*2 * 2

where dijk is an element of Ri’ where dijk is defined by

Eq. (1) and where (11) is subject to suitable normalization
conditions. Since (1l1) is in the STRESS framework, but differs

due to being defined on squared distances dijk and squared estimates
%2 *

2
11k’ (note that dijk

the square of the least squares estimate of dijk) we refer to

d is the least squares estimate'of‘dijk,-not
the formula as SSTRESS. Hayashi (1974) and Obenchain (1971) have
developed multidimensional scaling procedures within the SSTRESS
framework, and Young {1972b) has discussed the index.
While SSTRESS and STRESS are not strictly equivalent, the

monotonic restriction

o, 2 *2

Clogyg) = [a55]

* .

defined on o% and d 2 is precisely equivalent to the monotonic

ijk ijk

*
restriction defined on oijk and dijk' While this precise
equivalence also follows with the nominal and ratio levels of
measurement, it does not follow with the interval level of measure-
%
ment, where a linear relationship between oijk and dijk implies a
*
nonlinear relationship between o2 and d ? . We will investigate
ijk ijk

this inconvenience more later omn, but suffice it to say here that
this difficulty can be surmounted, allowing us to state that the
measurement restrictions

*
(12) z[oijk] = [d ]

ijk

and
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2 %2
%13k ijk

are equivalent over the four measurement levels.

(12") o 1 = [d ]
We do not mean to imply that SSTRESS is in every way equi-
valent to STRESS, of course. One important difference is that
*
large values of dijk and dijk receive more emphasis with SSTRESS

than STRESS. A simple example will make this clear. Let's say

that we have the following two cases:

: %

(A) dijk=2 dijk=l
*

(B) dijk=5 dijk=§.

If we use STRESS the relative contribution of these discrepancies
is equal, but if we use SSTRESS we have a ratio of 3 to 11,
which is quite different from equality. This effect is more

marked when we compare the case

*
(c) dijk=5 dijk=4
with case (B). In case (C) we have squared discrepancies of 9 if

evaluated by (11). So even if we have the same dijk and the diff-
erence is equal when STRESS is used, the direction of the differ-
ence differentially contributes to SSTRESS. A simple algebraic

manipulation clarifies the point even further. Define

*
dijk = dije * C1yx

where eijk may be positive or negative. With STRESS the amount

*
that the discrepancy between dijk and dijk contributes is simply
2

eijk' However, with SSTRESS we have
2 2 .2 2 2,2
—dx* = -
[dijk dijk] [dijk (dijk+eijk) ]

2 2
el sxl®sgxt2dy 5]
so that not only the absolute magnitude of eijk but also the

sign of eijk (dijk is always non-negative) and the magnitude of
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d:,ij are related to the overall evaluation of fit. The relation
is not straightforward (though algebraically tractable) and not
entirely illuminating, since we cannot compare the absolute magni-
tude of fit because the normalization factors in the two formulas
may be different.

There is, of course, no a priori reason for choosing one or
the other of the two formulas. The important point is that the
adoption of the SSTRESS formula is perfectly compatible with the
measurement level restrictions mentioned above (just as is STRESS),
whereas the STRAIN formula is not. Our basic reason for choosing
SSTRESS over STRESS is, simply,Aalgorithmic convenience. As you
may have noticed, the individual differences weights W (Eq. 1) are
linear with respect to the squared distances, but not with respect
to the distances themselves. This greatly simplifies the es-
timation procedure since the least squares estimates of W can

be obtained by a series of elementary matrix operations when

SSTRESS is adopted as the optimization criterion.



-19-

3.0 The ALSCAL algorithm

In this section we present in detail an alternating least
squares algorithm for individual differences scaling (ALSCAL).

The alternating least squares (ALS) method is & general
approach to parameter estimation which involves subdividing the
parameters into several subsets, obtalning least squares estimates
for one of the parameter subsets under the assumption that all
remaining paraméters are in fact known cbnstants. The estimation
is then alternately repeated for first one subset and then another
until all subsets have been so estimated. This entire process is
then iterated until convergence (which is assured) is obtained.

With this general definition of ALS one can find its begin-
nings in the work of Yates (1933) and Horst (1941), and follow
its development through many researchers, culminating in the NILES/
NIPOLS work of Wold and associates (Wold and Lyttkens, 1969).
Generally ALS has been used in the metric situation where one is
concerned only with estimation of the model parameters. The
extension of ALS to the nonmetricrsituation in which the procedure
is used to estimate data parameters (i;e., to optimally scale the
data) as well as to estimate model parameters, was first made by
Torgerson in the initial configuration routine of the TORSCA
algorithm for nonmetric multidimensional scaling (Young & Torger-
son, 1967). Since then ALS has been used by Roskam (19695 in
the nonmetric principal components situation, Young (1972) for
initial values in the polynomial conjoint scaling situation,
de Leeuw (1975b) for the canonical analysis of categorical data,

de Leeuw, Young & Takane for nonmetric ANOVA (1975) and Young,
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de Leeuw & Takane for nonmetric multiple and canonical
regression (1975). The most recent nonmetric results directly
motivated the present work, which extends the ALS approach to
quadratic models.

The ALSCAL algorithm involves two major phases and two
minor phases. The first major phase involves obtaining the
least squares estimates of the optimally scaled observations
D¥* under the assumption that_the configuration X and the weights
W are constants. That is, we solve the conditional least squares
problem which minimizes SSTRESS (Eq. 11) under the condition

that X and W are not variables. Notationally, we indicate this

as MIN[¢2(2*|§,E)]. The second major phase involves two
D*
separate minimization subphases, the first‘solving the problem
2
(x|w,D*)].

MIN[$2(W|X,D*)] and the second the problem MIN[¢
W X

The two minor phases are initialization and termination phases.

The flow we have chosen is as follows:

0. Initialization Phase.

Compute the initial values of X and W directly from O
using a modification of Schonemann's algebralc solution.

1. Optimal Scaling Phase

1.1 Calculate the squared weighted Euclidian distances D
using X and W.

1.2 Normalize appropriately.

1.3 Obtain the optimally scaled (least squares estimated)
disparities D¥ from the normalized D, the observations
0, and the relevant measurement restrlctlons Use the
de Leeuw, Young & Takane method.
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2. Termination phase.

Determine whether the rate of improvement of SSTRESS is
sufficiently low to warrant termination. If so, print
results and stop. If not, go to the next step.

3. Model estimation phase.

3.1 Calculate the new least squares estimates of the
weights W from the 0ld X and the new D* (from step
1.3) by regression techniques.

3.2 Impose nonnegativity constraints on W, if necessary,
by an ALS technique developed here.

3.3 Calculate the new least squares estimate of the
configuration X from the new weights just calculated
in steps 3.1 and 3.2 and the D¥* computed in step 1.3,
by using Gill & Murray's modification of the Newton-
Raphson procedure.

3.4 Return to step 1.1 for another iteration.

Finally, a comment should be made about the ensuing
discussion, which is limited to the weighted Euclidian model
as applied to symmetric data with no missing elements. These
limitations are only made to simplify the discussion. The
unweighted Euclidian model mayvbe fit to the date by simply
skipping the weight estimation phase (ﬁhich implicitly fixes
the weights to unity). Asymmetric data may be easily handled
by changing summation ranges and matrix orders. Missing data
may be treated by excluding all missing elements from the
optimization criterion, with estimates of the missing data
being generated from the model parameters obtained at the

conclusion of the analysis.
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3.1 Initialization phase

The initialization procedure discussed in this section is
very similar to the work presented by Schonemann (1972) in
which he obtained an algebraic solution to Eq. (8) for the -
error-free ratio measurement level case.

Let us suppose that there are N scalar product matrices

31 (one for each of the N subjects i) of order n (there are n

stimuli) which satisfy

= ]
(13) P, = XWX

where the symbols are defined as in Eq. (8) (recall that Ei

is a diagonal matrix of weights for subject i, whereas W is a
rectangular matrix of weights for all subjects). The problem

is to recover X and W, from the P under the assumption that X

....i’

ijs of full column rank, and that the diagonal elements of Hi
are strictly positive for at least one subject. For any non-
singular diagonalnmatrix T of order t (there are t dimensions)

we have

(1) P, = X1(x w,rHHIX’ ,

and consequently we must make some restriction on the size of

the W, for identification purposes. Thus, we assume that

i
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is equal to the identity, implying that P =XX' (where P is the

average gi). Solutions to this particular equation are determined

up to a rotation. We select an arbitrary one of them, for
example by using t steps of a Cholesky process or by using the t

dominant eigenvalues and vectors of P =~ Call this arbitrary

solution Y. It follows that .

with K a rotation matrix. We also know that

-1
\ 1 =
'R XXX = Wy

should be diagonal for each i. It follows that we should select

our rotation K in such a way that

"1 [ ] "1 =
YRYIQDTR =W,

is diagonal for each i. (Note that K'K=KK'=I, and that 5_1=5').

(15) K'(X'Y)

Let

1 1

Y'P.Y(Y'Y) .

(16) c, = (X'Y) Y'R Y'Y

i
It is the case that any linear combination of the N matrices C,
(with different roots) can be used to find the rotation K. Assume
that such a linear combination e is possible. We then compute
the (unique) set of eigenvectors of
N

(17) c = z
& q=1

;84

to find K and compute W, from (15). Thus we have obtained the
configuration X, and the weights W. It follows from the assump-
tion we have made that the solution is unique (up to permutations »

of the dimensions). Note that the assumption that there is a

linear combination e is» essentially, equivalent to the assumption

that the weights for at least one subject 1 are all different.
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The preceding developments, which closely follow those
presented by Schénemann (1972) are only appropriate to error-
free data due to the relationship defined by Eq. (13). 1In the
fallible case in which the relationship is only approximately
true we need to make two choices. First, we need to define
2., and second we need to define e. The first problem is quite
easily solved by simply double centering the elements of each
date matrix O, with elements.oijk (and dividing by -2) to
obtain a matrix Ei of écalar products for each subject, and
then averaging over subjects to obtain g., which can be

decomposed into

(18) P =YY' |,

—
.

to obtain Y, the arbitrarily oriented configuration which best
reproduces the averaged scalar products. Note that a) if the
data are asymmetric we average over the triangular portions

of each matrix before double centering; b) if the data contain
- missing elements each element is estimated as being equal to
the subject's mean judgment; and c) that the conditionality of
the data is ignored.

The secdnd problem, that of defining the best orientation
of the configuration and the associated weights, is solved by
obtaining a rotation matrix K which simultaneously diagonalizes
the matrices 91 as much as possible. The method suggested by
de Leeuw & Pruzansky (1975) is used.

Since the procedure Jjust outlined assumes that the data

are metric, it is possibdble to obtain negative weights, espe-
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cially when the metric assumption is radically violated.
(Note that our definition of the weighted Euclidian model
includes the regquirement that all weights be non-negative).
When negative weights are observed we use the following
admittedly arbitrary procedure: We simply add the absolute
value of the largest negative weight to all weights, thus
ensuring that all weights are non-negative. We then
calculate the distances (Eq. 1) and disparities (as ex-
plained in the next seﬁtion), replace the raw data with

the disparities and repeat the procedure outlined above.

We are not certain of the theoretical consequences of this
procedure although in all cases we have tested the results
are satisfactory.

3.2 Optimal Sceling Phase

In the optimal scaling phase we wish to optimally
scale the squared observations O to obtain the disparities
D¥ which a) meet the selected measurement restrictions,
and b) are‘ieast sQuares estimates of the squared distances
D, given the measurement restrictions. We call this the
optimal scaling phase because it obtains a scaling of the
raw observations that is optimal in the Fisher (1946)
sense of optimal scaling: It maximizes the correlation
between observations and model while respecting the
measurement characteristics of the observations. In this
phase we assume that only the optimal scaling variables

D¥ are free to vary, with the stimulus configuration X and
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the subject weights W being held constant. Thus we solve

the conditional least squares problem MIN[¢2(Q*|§,E)].
D¥*

3.2.1 Compute distances

The first step in the optimal scaling phase is to
compute the gi from the current X and W by Eq. (1).

3.2.2 Normalize

The second step in the optimal scaling phase is to
normalize the model space. As has been discussed by Carroll
& Chang (1970) two of the three aspects of the optimization
problem represented by Egs. (1) and (11) (the data, the
wveights, and the configuration) must be normalized, with
the remaining aspect being left unnormalized. While the
choice is arbitrary, and the actual details of the normali-
zation are also arbitrary, we choose to continue the conven-
tions adopted by Carroll & Chang. Sepcifically, the configu-
ration is normalized so that the mean projection on each
dimension is zero.and the varianée of the projections on
each dimension is unity. However, whereas Carroll & Chang
normalize the data, we normalize the distances, which is
equivalent. Our reason for not normalizing the data is to
permit analysis of qualitative as well as quantitative date
(it is difficult to normalize qualitative data). It would
seem that the most compelling alternative would be to nor-
malize the optimally scaled data (which are quantitative),
however, the relationship between the optimally scaled data

D* and the distances D is such that the choice is completely
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arbitrary (Kruskal & Carroll, 1969; Young, 1972). Thus, the squared
distances are normalized so that their sum of squares (i.e., the sum
of each distance raised to the fourth power) is N[n(n-13)/27.

There is one additional normalization consideration, and that
is the conditionality of the data. If the data are unconditional
(all observations are comparable) then we normalize as stated.
However, if the data are conditional (either matrix or row conditional)
then we must normalize each subjJect's distances separately since
there is no way to cbmpare between subjects. Thus, in these cases
we normalize so that the sum of squares of the squared distances
equals n(n-1)/2 for each matrix. Note that the conditionality of
the data and the resulting difference in normalization has certain
implications for interpretating the weights. These implications
are discussed in section 5.1.

Either of the above normalizations permit the optimization of

the normalized loss function

Nn j—l )4
X,W,D¥) / T I I &,
nj k iJk

(20) 6'2(xX,W,D*%) = ¢°(

while actually‘opérating on the unnofmalized loss function (Eq. 11),
as has been discussed by de Leeuw, Young & Takane (1975). This
characteristic is very convenient, since we do not have to deal
directly with the normalized function (which is the ratio of two
biguadratic forms) whose partial derivatives are consideradbly
more complicated than those for the unnormalized function.

As was briefly mentioned in section 2.3, Hayashi (1974)
has proposed a multidimensional scaling procedure which is

within the SSTRESS framework. His proposal is not,
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however, to minimize an index precisely equivalent to our index
(Eq. 22), but rather one which divides the sum of squared diff-
erences by a factor proportional to the variance of the squared

distances. That is, Hayashi's method optimizes

(21) £2(x,w,p*) = 6%(X,H,D%) /

= M2
(&7 M;j
o™
~~
[N
N
I
(=%
[3%]
s
N

where Ez indicates the mean squared distance. (Hayashi's method is
actually restricted to non-individual differences models, so he

assumes that wia=l for all i and a, and that N=1). If we compare
Hayashi's function with our function (Eq. 20) we note that they

differ in a way which parallels the differenées between Kruskal's
STRESS formulas 1 and 2 (Kruskal & Carroll, 1969) which are normalized,
respectively, by the sum of squared distances and the variance

of the distances. Since our normalization is the sum of squares

of the squared distances, and Hayashi's is the variance of the

squared distances, it would be appropriate to refer to our formula

as SSTRESS formula 1, and Hayashi's as SSTRESS formula 2.

3.2.3 Optimal Scaling

The third and final step in the optimal scéling phase 1is to
actually perform the optimal scaling. For all of the various
restrictions the transformation can be defined as a linear

transformation of the squared distances. That is,

*2 2
(22) dijk = t(dijk),

where f now indicates a linear transformation paralleling the measure-

ment restrictions used to define t earlier. Furthermore, £ defines
*2
dijk

in a least squares sense. (For notational convenience we use the same

gso that SSTRESS (Eq. 11) is minimized for fixed values of W and X,

symbol £. However, there is a definite difference in the two usages of

t. Whereas t was used as a functional relationship between observations
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and disparities, it is used here as the transformatiom which

relates distances to disparities.)

We do not discuss the specific features of these transfor-
mations here since a detailed account is already presented in an
earlier paper (de Leeuw, Young & Takane, 1975b). Instead, we pre-
sent here a simplified characterization of £ using matrix nota-
tion, Since we are regressing dijk onto oijk in the least

squares sense under the various measurement restrictions mentioned

above, £ may be represented by a projection operator of the form

...12'

(23) t: E =2(2'2)
where Z is, in general,la matrix of vectors defining the space
onto which the vector of dijk is regressed.

For the ratio transformation ¥ Z is simply the vector 0
of squared observations. For the interval transformation ii Z
reduces to the ratio case after the appropriate additive constant
is estimated. 1In both these cases the least squares estimates
may be obtained by well-known regression techniques. 1In the
ordinal and nominal cases Z is defined as a matrix of dummy
variables indicating the distances which must be tied to satis-
fy the measurement restrictions. For the continuous-ordinal trans-
formation £°€° the'elementé to be tied involve order violations,
whereas for the discrete—ordinal transformation tdo the elements
to be tied also involve observations which are categorically equi-
valent. Kruskal's least squares monotonic transformation (1964)
defines £°° when the primary approach to ties 1is chosen, and de-
fines zd° when the secondary approach is used. For the discrete-
nominal case the matrix Z indicates that distances which corre-
spond to categorically equivalent observations are to be tied.
The obvious least squares estimates in this case simply involves

category means. Finally, for the continuous-nominal case the
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matrix Z indicates those distances which fall outside of the
desired interval. In this case the least squares estimates are

the interval boundaries for those distances which are in violation,
and the distances themselves for those which are not in vio-
lation. We usede Leeuw, Young & Takane's (1975a) pseudo-ordinal
procedure to determine the optimal boundaries.

Note that for some transformations Z is known before the
analysis is made, and in other cases it is not. Specifically, for
all discrete transformations except the discrete-ordinal trans-
formation Z is known é priori, and for the remainder Z is only
known after the analysis is made. Furthermore, in these cases Z
varies from iteration to iteration depending on the nature of
the distances.

The important thought at this point, however, is that for
all four measurement levels, and for both measurement processes,
we can represent the optimal scaling as a projection operator
of the form shown by Eq. (23). This means that if we define a
column vector d containing the Nn(n-1)/2 elements dijk and another
column vector d* containing the corresponding elements di;k,
then we can make the important observation that
(24) a* = Ed.

Furthermore, this equation, which is implicitly in terms of un-
conditional data, can be easily extended to conditional data. For
matrix-conditional data we define gi for each individual separately
and then construct a block-diagonal supermatrix Z with the gi's

on the diagonal. For row-conditional data we define Eij for

every row of every individual's data matrix and then construct

the block-diagonal supermatrix Z with these gij's on the diagonal.
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In both cases E remains defined as before, thus the projection
operator notion and Eq. (24) apply for all three types of con-
ditionality. Note that the various rows or matrices of conditional
data may be defined with any mixture of measurement characteristics,
as there is nothing requiring them to all be defined identically.
Also, any other pattern of conditionality is acceptable.

The chief importance of Eq. (24) is that we can now easily
express SSTRESS entirely in matrix notation, and entirely in
terms of the distances. If we define E = 1 - E, then SSTRESS
(Eq. 11) can be rewritfen as
(25) 02(X,u,D*) = d'Ed

In a parallel manner we can rewrite the normalized SSTRESS

formula as

]
[N
e
o
~
o
o

(26) ' 2 (X,¥,D*)
- ¢'E@a'a) Ea .

Note that in this form SSTRESS involves only the dis-

tances and not the disparities, a point which has been discussed

at length by Young (1975b).

The final issue to be raised in this section is the procedure
for estimating the additive constant when the data are defined at
the interval measurement level (a similar problem has been solved
by Messick & Abelson, 1956). The problem is as follows. Vhen
we assume that the observations are defined at the interval level
this means that
(27) ¥ = a(oijk) +b,
for some unknown constants a and b. If we were optimizing STRESS

then the estimation problem would be a simple regression problem
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involving the distances 4, and the observations o, . However,
ijk ijk

the situation is complicated by the fact that we are actually

optimizing SSTRESS. Instead of the simple linear relationship

sbove, we are actually faced with the gquadratic relationship

2 2 2 2
* =
(28) i (oijk) + 2ab(oijk) + b ,
which is clearly different from the simple regression problem of
2 2 . . . . . .
dijk to oijk’ the assumption implied in a linear relationship

between a2 and o? (unless b=0 as in the ratio case).
ijk iJk
While it is possible to directly solve Eq. (28), it is much

simpler to redefine the problem as

(29) a*2 = a + Blo

2
ijk ijk) + ¥(oyy)

for which we wish to obtain the best estimates of a, B, and v,

under the constraint that

2
(30) gS = hay .
We now introduce three definitions. First we define the
parameter vector X' = [a,B,y]. Second we define an N[n(n-1)/2]

by 3 matrix of second degree polynomials of the observations
(unities in column one, observations in column two, and squared
observations in column 3). We denote this matrix O (note that
this is not the same O as used in other sections of the paper).
Finally, we define a column vector 4 having the N[n(n—l)/2]
elements dfjk arranged in the same manner as the °; 3k in 0.

These definitions allow us to express SSTRESS in the interval
measurement situation as
(31) 82(x,110,a) = (a-0x)'(a-0x) + A(B%-Lay)
which we seek to minimize by solving for X and A (the Lagrangian

multiplier).
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The least squares estimate for the constrainted parameters is

"~

(32) x = (0'0) t0ra

To solve for the Lagrangian multiplier we define

91
-1
(33) (0'0) "g = Ja, ,
43
where g' = [-2y, B, -2a] is the derivatives of Eq. (30).

Then we must solve
(34) (B+ra,)? = W(a*da,) (y+hay) .

We select the best of the two solutions (i.e., the one which
minimizes SSTRESS) by e&aluating the set of 2 corresponding to each
root.

3.3 Termination phase.

The termination phase is extremely simple. We must only
determine the value of SSTRESS on the current iteration (Eq. 11)
and compare this value with the previously determined value.

If the amount of improvement is less than some arbitrary criterion,
then we terminate, if not we continue. The simplicity of this
phase is due to one of the chéracteristics of an ALS procedure,
namely thaf an ALS iteration never worsens the value of SSTRESS

(a proof of this characteristic may be found in de Leeuw, Young

& Takane, 1975).

3.4 Model estimation phase.

Whereas in the optimal scaling phase we solved the condi-

tional least squares problem MIN[¢2(Q*|§,K)], in the model
D*
estimation phase we solve two conditional least squares problems

successively. The first subphase solves the conditional least

squares problem MIN[¢2(ﬂ|§,Q*)], whereas the second subphase
\
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solves the problem MIN[¢2(§|H,Q*)]. In this section we discuss
X

both of these probleﬁs.

3.4.1 Compute weights

To estimate W we obtain the partial derivatives of Eg. (11)
with respect to the elements of W and set the derivatives to zero.
This system of homogeneous equations is then solved with respect
to W. To simplify the derivation we define an order n(n-1)/2
by t matrix Y, where the columns of Y contain all interpoint dis-
tances as projected onto each dimensionv(i.e., each element of

2

column & of Y is (x )°, the dimensionwise squared difference

- ia_xja
between stimuli i and j). We also define an order N by n(n-1)/2
matrix D*, whose rows contain the n(n-1)/2 optimally scaled obser-
vations for each individual, with the elements arranged to corres-
pond with Y. (This D* contains the same information as the D¥

used in earlier parts of this paper, but organized differently.

In this section we refer to this organization of the information

when we use the symbol D*). These definitions allow us to write
SSTRESS as

(35) $2(X,W,D*) = tr(D*-Wy')' (D*-Wy') ,

from which we see that the least squares estimates of W are

(36) W = D*y(y'y)"T.

3.4.2 Nonnegativity weight constraint

There is one difficulty using the regression approach Jjust
outlined for obtaining W: The non-negativity constraints placed
on the weights (Eq. 1) may be violated. Thus we now turn to a
discussion of a way to incorporate this constraint (or any other
linear inequality constraint) which is strictly within the ALS

framework.
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An observation basic to the procedure to be presented is that
the estimation process prosented in Eq. (36) is independent for each
individual. That is, the values estimated for the weights for one
individual do not effect the estimated values of the weights for
any other individual. This can be seen from the fact that SSTRESS
(Eq. 35) can be decomposed into a summation of separate components,
each of which is a function of only & single subject. Since the
weights for one subject are independent from those for the others
we can impose non-negativity on subjects with negative weights
without having to modify the weights for other subjects. Note,
however, that the weights for a given subject are not independent
from each other, which means that we cannot simply set & subject's
negative weights to zero and leave his positive weights unchanged.
If we dé this we destroy the least squares properties of the
weight estimates.

Our solution to this problem is as follows. First, we obtain
the unconstrained least squares estimates of W by Eq. (36). We
use these estimates for those subjJects with non-negative weight
vectors; For the other subjects we set one of the negétive weights
to zero (the constrained least squares estimate under the condition
that all the other weights are constant), and then, for another
weight, re-estimate its value under the assumption that all other
weights are constant. The conditional least squares estimate for
a single weight is
(37) LA (g_’i‘—biawibxb)'xa/(xéy_a) ,
where y ~is the a'th column of matrix Y (Eq. 35) which contains

squares of the interpoint distances as projected onto the a'th
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dimension. If this unconstrained conditional least squares estimate
is negative we set i+ to zero. We then repeat this process for
each dimension until all weights for the subject are non-negative.

3.4.3 Compute coordinates

The second subphase of the model estimation phase is to deter-
mine the stimulus coordinates X. This subphase is somewhat more
complicated than the weight estimetion subphase since the partial
derivatives of SSTRESS with respect to the elements of X are not
linear in the xja's. Rather, SSTRESS is quartic in the xja'é, s0
the derivatives are a system of cubic equations. There are several
ways of solving such a system. We first review some of the possi-
bilities, and then present the method we have adopted.

Perhaps the most elegant solution, at least from a theoretical
point of view, would be to analytically solve the system of m=n¥*t
simultaneous cubic equations for the m unknowns, as has been sug-
gested by Obenchain (1971). It is possible to do this by either
Fuclid's or Kronecker's elimination method (Bdcher, 1907) in which
the system of m simulfaneous polynomial equations is eventually
reduced fo a single polynomial equation in §ne unknown and m-1
linear simultaneous equations in m-1 unknowns. The problem is then
reduced to finding the numerical solutions to a simple polynomial
equation and, after substitution of the solution into the remaining
linear equations, finding the solution to a system of m-1 linear
equations (Wilf, 1960). The method is particularly favorable in
our situation since we have only to solve cubic equations, and
there is an analytic solution for a cubic equation with one unknown.
While this approach has theoretical beauty, it is impracticel due

to the number of equations in our case (as many as 500 or 600).
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The opposite extreme is to solve for only a single coordinate
X at a time, with a total of m such solutions on each iteration.
That is, we could use the analytic solution to a cubic egquation
with one unknown to obtain the conditional least Squares estimates
for a single coordinate under the assumption that all other coor-
dinates (and of course all the W and D*) are fixed. The bPrevious
estimate for this coordinate is then immediately replaced with
the new estimate. Note that‘after m such estimations we have
obtained new estimates for all of the coordinates, but that these
are not the same as those obtained by the simultaneous method
discussed in the Previous bparagraph, although the two bProcedures

will eventually converge on the same estimates. For any given

Of course we are not limited to only these two choices, and
it seems reasonable to assume that the quickest method lies some-
where in between the two extremes. That is, it may be best to
estimate & block of Xja's simultanéously, meking sure that the
number of coordinates being simultaneously estimated is not so
large that it slows down the entire brocess so much that it cancels
the benefits derived from simultaneous estimation.

Optimizing the efficiency of our algorithm is a difficult yet
¢rucial problem. After several trials and errors we have found &
method which appears to be more efficient than any other currently
available algorithm (some sketchy evidence on this point will be
Presented later). Ve apply a modified Newton-Raphson method to

obtain & new set of conditional least Squares estimates for all
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of the coordinates of a single point simultaneously, successively

solving for each point in turn. Thus we estimate xja (a=1,...,t)

simultaneously for a specific J and successively for each stimulus
3 (§=1,...,n). This is the same approach taken by Yates (1972).

The Newton-Raphson method is well known, of course, but our
application of it is unigue. We use it to obtain conditional least
squares estimates which solve the problem MIN[¢(£3|§k’E’2*)’ (3#x) 1.
Thus our approach is to place the Newton-Raphson method within the
ALS framework to solve‘a single quartic equation, again demonstrating
the flexibility of the ALS approach. The use of Newton-Raphson
in conjunction with ALS is particularly attrective in the present
context because the function being optimized is smooth and since
the evaluation of the function requires very few computations.

Thus the approech should be quick and robust, as indeed it is.

We actually use a recent modification of the Newton-Raphson
procedure developed by Gill & Murray (1972) which ensures the posi-
tive definiteness of the Hessian at the currgnt point, thus ensuring
that we are proceeding in a down hill direction. Since the Hessian
is always positive semi-definite at a minimum it is desirable to
ensure that it is so during the entire estimation process. If it
is not "sufficiently" so (in & complex sense discussed at length
by Gill & Murray) deliberately chosen values are added to the
diagonal to force it to be positive definite, thus avoiding
convergence to a maximum or to some other stationary point which
is not a minimum.

We now provide the first and second derivatives of SSTRESS

with respect to xja for fixed J and &=1,...,t. To simplify the
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derivation we note that

t
2 2 2 2
* - 3 * - -
(38) a¥se ~ %igx T Yix iwia(xja Xya)
t t t
= d?e - Iw, x2 + 2 Zw, X, X - Iw, x2
ijk ia " Ja ia" ja ka ia " ka
a a a
and we introduce several definitions. First we collect the terms

which do not involve xJa (the fixed terms) and define them to be

2 2
= * -
(39) hise © %k iwiaxka :

We organize these terms into a vector Ej which contains all hijk
for fixed j and for k#j (this vector has N(n-1) elements). We also
define a supermatrix G = [gl,ge], with N(n-1) rows and 2t columns.

The two submatrices are defined as follows:

Vii1¥11 o ot Vit
Vi1¥ge1 oo Yit¥kt

(ko) G, = -2 VogXpg o e WXy , k#j

L |
and
—Wllll" P wl't}l ]
(41) G, = : : ,
WN;LEL' .« e WN;.E'




N

L0~

where u 1is an n-1 component column vector of unities. We also
define & 2t component supervector gj consisting of a vector ii
of coordinates of stimulus J on ¢t dimensions, and a vector whose
elements are the squares of the elements in ij' Since 1t 1is
possible to exXpress the sqguared elements as the product of a
diagonal matrix and & vector, we further define éj tc be an order
t+ diagonal matrix with the coordinates of stimulus J on its

diagonal (do nct confuse this with the entire matrix of coordi-

nates denoted X). Then

X,
=J

(L2) a, =
J X

X,
—J

We can now define SSTERESS as

n
\ 2 !
(L3) ¢°(Xx,W,D¥) = L y(n.-co,)'(h,.-Ga,).
—= 2 ; -J =3 —J
1 . . . . - 2
(The = is present since the summation 1s over all N'ng elements
d?fk, whereas in previous definitions of SSTRESE the sumation was

over only the lower triangular portion of each matrix.)
The gradient vector (first derivatives of SSTRESS with respect

to ﬁj) can be expressed as

(bk) g = -1I,2X Ja'h, + [1,2X,]1G'Ga,
= [Gg'G, + 2X,G/} + G! { . G'G,.. »
{ | xj 16y Jlezxj + 2ch2\2xj]xj

- [go +
loyny + 2%;8,h, ]

The off-diagonal elements of the Hessian (matrix of second order
partial derivatives) are (for a#b)

(4s) h = [e!',2x et]cg'al Sy ]
b -a’ jg—g — — *
a a ja—a ijeb
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where e, is a vector with unity in the a'th position and Zeros

elsewhere. The a'th diagonal element of the Hessian is
Zq
= ' ' ' ' '
(46) Pea T IO Boplotny ¢ legs 2xyellete | 0
X, € »
Jja—a
=3
+lo', 2e'lo'e
X.x .
=J=3
We use the gradient and Hessian with Gill & Murray's (197Lk)
procedure for the Newton-Raphson method. With this procedure one
obtains the £'tn estimate of zj, which we denote ifﬁ), according to
-1
(47) L) o (8-1)  a(e-1) g (£-1)
where O is & stepsize determined to ensure that ¢2(£)<¢2(£-1),

~ ~

where H=H when H is positive definite, and where H=H+F for F g
diagonal matrix with positive diagonal values when H is not positive
definite. The matrix F is determined ac¢cording to Gill & Murray's
developments. While it is the case that SSTRESS must be evaluated
several times in determining the estimate of X, each point's coordi-
nate vector, it is a very simple and quick evaluation since the opti-
mal scaling Q*Vis fixed during the evaluation. Thus, we do not have
to perform this time consuming operation, which is one of the nice
features of the ALS approach. If we were using the more standard gra-
dient approach we would have to perform the optimal scaling for each
evaluation of SSTRESS, and the algorithm would be very slow. (This may
account for the inefficiency of Yates' (1972) procedure which performs
the optimal scaling after each point's coordinates are estimated. )
"Once we have minimized SSTRESS relative to a single point, we
repeat the procedure for another point, until a1l points have been

subjected to the process. This then defines the last step of a single
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iteration, and the entire process is repeated until convergence
is obtained. Note that once a point's coordinates have been
estimated the 0ld coordinates are immediately discarded and the
new estimates are inserted, before the next point's coordinates
are estimated. This prompt replacement is mandatory since each
suboptimization is not independent from the others.

There is one minor theoretical problem with the procedure
just proposed. The function being minimized (Eq. 43) is a quartic
equation; therefore its gradient (Eq. 44) is a cubic which may
have two minima. However, the procedure we have proposed converges
on one of the minima without ensuring that it is the optimal one.
While numerical analysis results indicate that we will most often
converge on the optimal minimum (especially if the two minima have
rather different function values), we will at least occasionally
converge on the non-optimal minimum. Alternative procedures could
be proposed which would circumvent the necessity of checking the
function at both minima, with one possible procedure being along
the line of the procedure proposed in section 3.2.3 for optimal
scaling with the interval level of measurement. Wé have not yet
investigated such a procedure, however, and are of the opinion
that the theoretical difficulty with the proposed procedure will
have little practical effect, an opinion supported by the results
presented in the next section. When we recall that the present part
of the estimation process is for the optimal location of a single
point, we see that there are many self-correcting opportunities
built into the overall estimation process. This may be the reason

that the difficulty has little practical effect.
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4.0 Examples

In this section we present examples of the use of ALSCAL to
demonstrate its efficacy. The first examples utilize the
weighted Euclidian model, and the last the unweighted model.

For the weighted model we first perform a small Monte Carlo

study which allows us to compare the structures obtained by
ALSCAL with the true structures which were used to generate

the artificial data. We further evaluate the performance of
ALSCAL in the weighted,Euclidién case by comparing the structures
obtained by ALSCAL with those obtained by INDSCAL when both are
used to analyze the same real (not artificial) data. For the
unweighted model we evaluate ALSCAL by comparing the structures
it obtains for sets of real data with those obtained by other
investigators using the standard MDS algorithms for applying

the unweighted model. Finally, we evaluate the ability of

ALSCAL to analyze nominal data by comparing the structure obtained
from a set of data which has been previously analyzed under

the assumption that the measurement level is ordinal. It is

not possible'to compére these results with other algorithms
designed to multidimensionally scale nominal data since no such
algorithms have been proposed previously.

We believe that the reader will conclude, from the evaluations
outlined in the previous paragraph, that ALSCAL is very robust
in all the situations for which it was designed.

4.1 Monte Carlo Study.

The general outline of the Monte Carlo study is as follows:
First, we generate an arbitrary '"true'" configuration and "true"

welghts, which together we call the '"true" structure. We then
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determine the dissimilarities by computing distances (according

to the weighted Euclidian distance formula) and introducing either
random or systematic error, or both. We then submit these
errorful dissimilarities to ALSCAL to obtain the '"derived"
structure (stimulus configuration and weights). Finally, we com-
pare the derived structure with the true structure in order to
evaluate how robust ALSCAL is to random and systematic error.

Actually, the purpose of the experiment is twofold: First,
it should be the case that analysis of dissimilarities which con-
tain no random error but which are systematically distorted mono-
tonically should, if we assume that the data are ordinal, produce
a derived structure which is identical to the true structure, no
matter how severely we distort the true distances. Furthermore
it is anticipated that if we analyze these same systematically
distorted distances while inappropriately assuming that the
data are interval, then a systematic bias should be found in the
derived structure. Of course, the degree of bias should be a
function of the degree of distortion.

The second purpose of the Monte Cario study is to determine
the robustness of ALSCAL in the face of random error. 1Ideally,
ALSCAL should be able to recover the true structure when there
is a moderate degree of random error no matter what measurement
assumptions we make about the data (at least when there is not
much systematic error). Note that this point relates not only
to the ALSCAL algorithm, but also to the weighted Euclidian
model itself. To the authors' knowledge there has been no Monte
Carlo study which evaluated the effect of error (either random

or systematic) on the recovery of the true structure, and which
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attempted to evaluate the goodness of recovery to such aspects of
the model as the number of points or subjects, the number of true
and recovered dimensions, the amount of error, etc. (Note that
Jones & Waddington, 1973) have investigated the effect of sub-
jects who use only a subset of the dimensions). Our study is
by no means a complete or exhaustive study of these variables.
Nonetheless, we believe that such a study needs to be done and
that ours may be viewed as a precursor to such comprehensive
studies.

We hypothesized the "true" structure shown in Tables 1l-a
and 1-b. We choose a small two-dimensional structure for ease
of presentation, with the actual numbers arbitrarily assigned.

We emphasize that our results are not independent of this
particular structure, particularly with respect to the number
of stimuli (which is rather small compared to most empirical
studies using this model), the number of subjects (which is
also on the small side), the number of dimensions, and the
actual structure. The configuration of stimuli is shown in
Figure 1 by the'black circular dofs (the lines connecting
the dots differentiate the true configuration from several other
configurations also presented in this figure). The "true" sub-
ject weights are shown by the black circular dots in Figure 2.
Note that these weights, which are equally spaced along a
straight line, indicate that the subjects are "moderately" hetero-
geneous in terms of their relative weighting of the dimensions,
a situation which, in our experience and in the experience of

Carroll (personal communication) is optimal for obtaining a robust

<]
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Table l-a

Hypothesized stimulus configuration

stimulus dimension I dimension II
1 1.37198 1.36082
2 0.77174 1.36082
3 0.77174 -1.49691
4 -1.02899 0.40824
5 -1.62923 -0.54433
6 -0.42874 -0.54433
7 0.17149 -0.54433
Table 1-b .

Hypothesized weight configuraticn

subject dimension I dimension II
1 0.40917 0.01805
2 0.36371 0.03610
3 0.31824 0.05415
4 0.27278 0.07220
5 0.22731 0.09025
6 0.18185 0.10831
7 0.13639 0.12636
8 0.09092 0.14441
9 0.04546 0.16246
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Figure 1. Monte Carlo study: Effects on the stimulus configuration

when the data are assumed to be ordinal.
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Figure 2. Monte Carlo study: Effects on the weight space when the

data are assumed ordinal (symbols as in Fig.
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and meaningful analysis with INDSCAL. Note also that subjects
generally attach relatively more importance to dimension I than
dimension TII.

Weighted Euclidian distances were calculated from these
stimulus coordinates and individual weights. While computing these
distances random error was introduced. It is debatable when and .
where the error component should be added (i.e., to the distances,
to the coordinates, or to the weights; before or after the
systematic monotonic distortion; etc.). We arbitrarily choose
to follow the procedure éf Young (1970) in which independent
random normal error is added to the stimulus coordinates, with

such error being generated anew for each pair of stimuli. Thus

dijk’ under the lth degree of error perturbation, is generated by
t
£) _ _ (£)y241/2
(48) 44k [aflwka(xia xja-'(zijka )Ya 7]

where zijka=zija-zika,.where zija~N(0,1) (i,3=1,...,7),(a=1,2) and

£2) .
where Yi.) 1s a parameter specifying the variability of the errors.
Note that difiz does not follow the noncentral chi-squares dis-
tribution (as it does in Young (1970)) since the variability is

2

different across dimensions (Ya

depends on dimensions and more-

over, dimensions are differentially weighted). Note also that

the same zijka's are used for different error levels. The values
of y(z) are shown in Table l-c. Since z,, and z are inde-
a ija ika
. (2) (L)
pendent, the variance of(zijka)Ya is 2(Ya ). Note that the -

stimulus configuration x,_ 's are standardized so that they have

ja
unit variances for both dimensions. We refer to the case when

£=1 as the error free case, f=2 as the moderate error case, and

£=3 as the large error case. (For £=3 the error variance is .720
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for dimension I and 1.816 for dimension II which is much larger
than used in most Monte Carlo studies).

Next we introduce systematic monotonic error by either
squaring the randomly perturbed éistances in equation (45), or
by raising these distances to the fourth power. Thus we have
three levels of systematic error: No distortion (the error per-
turbed distances themselves), moderate distortion (the squared
perturbed distances), and high distortion (the perturbed distances
raised to the fourth power).

Finally, these systematically and randomly distorted dis-
tances served as the dissimilarities input to ALSCAL for analysis.
The derived structures are displayed in Figures 1 (the stimulus
configuration) and 2 (the weights). First of all, the algorithm
perfectly recovered the true structure from the error-free
dissimilarities. The structure, which is indistinguishable from
the true structure, is presented in the figures as the black
circular dots. The structures resulting from the moderate and
high degrees of systematic (monotonic) distortion when there was
no random error in the data are also indistinguishable from the
true structure when the assumption is (correctly) made that
the data are measured at the ordinal level. Thus the dots in
Figures 1 and 2 represent four structures: The true structure
and the structures derived by ALSCAL for three levels of mono-
tonic distortion when there is no random error in the data and
when the data are assumed to be ordinal. We will discuss what

happens when these data are assumed to be metric in a moment.
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Figures 1 and 2 also display the structures derived by ALSCAL
when there is moderate random error (the triangles) and when there
is large random error (the squares). Note that there is, once
again, no discernible effect for systematic distortion when the
data are assumed to be ordinal, with all three levels producing
identical structures. The effect of random error shows up in these
figures in a very interesting and somewhat surprising way: As
the level of error increases the actual structure of the stimulus
configuration (as evidenéed by the interpoint distances) is
relatively unaffected, although the entire configuration is ro-
tated from the true orientation towards an orientation which is
more nearly like the principal components of the group space (i.e.,
the variance on the first dimension is increasing and that on the
second decreasing, a change which is reflected in the overall magni-
tude of the weights). This effect is most pronounced for the
highest amount of error. However, we refrain from definitive
comments at this stage of investigation, particularly considering

that the same 2z is added across different error levels.

ijka
The weights, on the other hand, simply show a nonsystematic
deterioration as the amount of error increases. Although the
relatively heavier weighting on dimension I is preserved, the
order of individual subjects along the dimensions of the weight
space is destroyed, let alone the ratio of an individual's weights
to each other. Note also that the weights on the second dimension
(which suffers from relatively more random error) tend toward
their mean as the error increases. These results appear to the
authors to be very provocative and worthy of systematic study.

However, since the main intent of this paper is not to perform

a systematic investigation, we will not dwell on the matter any
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further, although we will discuss a possible cause in the dis-
cussion section. Finally, let us emphasize that these results are
identical for all levels of systematic monotonic distortion

when the data are assumed to be ordinal, showing that the theore-
tical invariance of the results over monotonic distortion is also
an empirical invariance.

This is not to say that systematic monotonic distortion has
no effect when we (incorrectly) assume that the data are metric..
It does, as can be seen from Figures 3 and 4., These figures show
the effects of assuminglthat the data are ratio when there 1is
systematic monotonic distortion. The results are shown separately
for each level of random error since there is a substantial inter-
action between the effect of systematic and random error in
this case. Thus we have Figures 3a, 3b, and 3c for the stimulus
configurations obtained by ALSCAL for the three levels of random
error, and Figures 4a, 4b, and 4c for the corresponding subject
weights.

Figureé 3a and 4a present the results from data with no
random error. In these figures there are three points plotted
for each stimulus and individual, one for the "true" and '"no
distortion" configurations (which are identical), one for the
"moderate distortion" configuration and one for the "high dis-
tortion'" configuration. The effect of monotonic distortion of
the data is small (though obvious) upon the stimulus config-
uration (Figure 3a), the general configural relations among the
stimuli remaining intact (though modified). When we recall that

there was no effect of systematic monotonic distortion when the
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ordinal measurement assumption was made, and when we compare those
results with the present results, we see that appropriate measure-
ment assumptions can in fact improve the descriptive quality of
the weighted Euclidian model. Note that the effect of systematic
error on the configuration is random (there is no discernible
pattern of point displacement). There is, however, a systematic
effect of systematic error but it is now contained in the weight
space (Figure 4a). There seem to be two general tendencies. First,
as the distortioh increases the weights tend to show less variance
on dimension II; and sécond, as distortion increases the configura-
tion of weights becomes slightly concave upward (in contrast to
the true linear, equal spaced weight configuration). We find it
very difficult to rationalize these effects.

We now turn to the worst possible case, that involving systema-
tic monotonic error when the wrong measurement level is assumed
and when there is random error as well. The results are pre-
sented ;n Figures 3b and 3c (stimuli) and 4b and 4c (weights).
Each of these figures contains four plotting symbols for each
stimulus (or weight), one for the true value and one for the
observed values under the three levels of systematic error (the
"no distortion" and "true" values no longer coincide due to the
presence of random error). As opposed to previous results there
seems to be very little systematic effect of both kinds of error
combined together, except to say that increasing error yields
further deterioration of both stimulus and weights spaces. It
appears to be the case (though we may be stretching it a bit)
that the effects are more pronounced on dimension II than dimension

I. Specifically, the variance of a points' projection on
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dimension II is larger than on dimension I in Figures 3b and 3c
(and even perhaps in 3a), which indicates that a point 1s more
poorly determined on dimension TII than I. Correspondingly,
we see in the weight space that the variance of weights on dimen-
sion II decrease faster than for dimension I as error increases,
suggesting that our hypothetical subjects are becoming less
differentiated by dimension II more quickly than by dimension I.
This small, and admittedly very incomplete Monte Carlo study
tells us several important things. First, ALSCAL recovers a known
configuration when thefe is no error, for ordinal measurement
assumptions as well as interval. Second, ALSCAL is robust in the
face of monotonic transformations of ordinal data. Third, the
recovery of the structure of the stimulus configuration in the
face of large amounts of random error remains surprisingly accurate
when the appropriate (or weaker) measurement assumption is made.
Fourth, the weight structure is degraded by the presence of
random error. And fifth, the combination of monotonic and random
error is totally detrimental when the measurement level is
assumed to be ratio. |

4.2 Real data & the weighted model.

We now investigate the behavior of ALSCAL with real data
appropriate to the weighted Euclidian model. We choose data
which have been previously analyzed so that we can compare
our results with those already published. Specifically, we
employ data gathered by Jones & Young (1972) who successfully
employed the weighted model to describe the social structure
of a small, intact, and naturally occurring task-oriented group

(the staff, students, and faculty of a university based teaching
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and research laboratory). They used Carroll & Chang's INDSCAL
algorithm to obtain three dimensions which, with the help of
additional data and analysis, they interpreted as representing the
status, political persuasion, and professional (task) interests

of the members of the group. They were able to interpret detailed
characteristics of both the stimulus and weight spaces with

great success.

When we analyzed these data with ALSCAL under the assumption
that they were measurgd at'thé ordinal level we obtained a solu-
tion whose stimulus structure was essentially identical to that
obtained by Jones & Young (who used the ratio assumption). How-
ever, the ALSCAL weight structure was more homogeneous than the
one found by Jones & Young. When these data were reanalyzed under
the ratio assumption the stimulus configuration was essentially
unchanged, but the weights were more heterogeneous. In both
cases the weight structure was interpretable in a manner similar
to the Jones & Young interpretation, even though it was not
identical. Note that the weight homogeneity 1is at least partly
a function of measurement lével, but that we anticipate more
homogeneous weights thanvwith the INDSCAL method, as will be
discussed in section 5.1. Finally, we note that these analyses
assumed the data were matrix~conditional, which is, implicitly,
the assumption made by Jones & Young in their use of INDSCAL.
When the analysis is performed with the unconditional assump-
tion the results are quite different, and not easily inter-
pretable.

The second set of real data analyzed with the weighted

Euclidian model was collected by Jacobowitz (1975; Young, 1975).
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These data are particularly suited to our purposes since they are
row—conditional data, and since there have been no previously
developed algorithms for applying the individual differences model
to such data (although there are several algorithms for fitting
the simple Euclidian model to conditional data).

The stimuli forming the basis of these data are fifteen
names of body parts. Each subject was presented with a single
one of these fifteen stimuli and was asked to rank order the re-
maining fourteen stimuli in terms of their similarity to the
fifteenth (called the standard stimulus). Another stimulus was
then selected to be the standard and the process was repeated.

The subject was required to produce fifteen such conditional rank
orders, each a rank order of fourteen stimuli with regards to
their similarity to the fifteenth. (The study also involved three
other sets of stimuli...kinship terms, color terms, and have
verbs...which we do not cover).

There were fifteen subjects at each of four ages, the ages
being 6-year-olds, 8-year-olds, 1l0-year-olds and adults. In
6ur analysis we included only the youngest and oldest children
since if there are any reliable individual differences (which
Jacobowitz found by analyzing each age group separately with the
Euclidian model) they should most certainly appear between the
two most extreme age groups.

ALSCAL obtained three dimensions which were similar to those
obtained in Jacobowitz's previous analyses with the simple Euclid-
ian model (see Figures 5 and 6). Dimension I (vertical) is inter-
preted as face terms vs. 1limbs(both upper and lower) with "body"

in between. Dimension II (norizontal) contrasts upper limbs with
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lower limbs with face terms and "body" in between. Dimension

IITI (front-to-back) represents "body" vs. everything else (or

more precisely whole vs. parts hierarchy). In Figure 6 we present
the associated weight configurations in which the adults and .
children weights are indicated by different symbols. (zero

weight on all dimensions is at the lower back corner of the cube,
the further away from this corner, the heavier the weight.)

We observe a clear distinction between the two groups of subjects,
with the groups almost perfectly separated. Every child pufs

more weight on dimension II (horizontel) than each adult, whereas
adults are nearly always better represented by the combination

of dimensions I and III. In the light of the previous inter-
pretation this indicates that six-year children are relatively
homogeneous (they uniformly emphasize the second dimension)
whereas adults are more heterogeneous (they split between dimen-
sions I and III). No adults evaluate dimension II highly, but
three of them are inclined to emphasize dimension III rather

than I. We do not have any further evidence, however, concerning
which factors distinguish dimension III adults from dimension I
adults (who are in the majority). The clear distinction between
younger children and adults in their way of evaluating dimensions
of body parts seems very interesting and of empirical import.

4L.3 Real data and the unweighted model

The evidence supporting the robustness of ALSCAL in the un-

weighted case is clear and abundant. We have analyzed Funk et al.'s

ethnic data (1975), McGuire's size confusion date (Shepard, 1958,



Figure 5: Jacobowitz Body-parts data: Three-dimensional

stimulus space. ‘
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p. 511), Ekman's color data (1954, p. 468), Miller & Nicely's
sound data (1953), Peterson & Barney's vowel data (1952), Green
& Rao's breakfast menus data (1972), Hayashi's rice data (1974),
among others. In all cases the obtained stimulus configuration -
was virtually indistinguishable from the published results (even
though the published results were obtained by a variety of MDS
algorithms).

We do not present any of the above results in detail. In-
stead we present some of the results we obtained
under weaker measuremént assumptions than those made by the above
authors. Hayashi (1974) analyzed the dissimilarity of various
rice strains by his recently proposed MDS method which makes the
assumption that the dissimilarities are defined at the ordinal
level. We reanalyzed his data with ALSCAL under the assumption
that they are defined at only the nominal level, a particularly
weak assumption in this case since there are only four observa-
tion categories. Our results are in close agreement with Hayashi's
(see Figure 7), including the fact that the (nominal) observation
categories are ordered, at the conclusion of the analysis, in
the fashion assumed by Hayashi. We obtained these results from
(ordinally incorrect) initial category values which were generated
randomly, as well as from the (ordinally correct) values used by
Hayashi. Thus, we see that ALSCAL converges to the same solu-
tion independently of the initial category values, though, of
course, the number of iterations required to reach convergence
is larger for the random values.

Finally, we reanalyzed Ekman's color data using the nominal
measurement assumption, and collapsing the number of observation

categories to nine categories, by combining Ekman's categories.
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We analyzed the collapsed observation categories under both
ordinal and nominal assumptions and in both cases obtained es-
sentially +the same color circle as Ekman (see Figure 8 where
the numbers indicate color wavelength). This is in spite of
the fact that the data are similarities (not dissimilarities)
which means that the order of the assigned values to the obser-
vation categories is the reverse of the order of the desired
distances. In the case of the ordinal assumption the user
informs ALSCAL to compensate for the reversal, of course.
However, for the nominal assumption the initial category values,
being equal to the raw observations, are in the worst possible
order relative to the desired distances. They are worse than
randomly generated values. Even so, ALSCAL is able to overcome
this very poor initialization and obtain the desired configu-
ration (at the cost of & number of iterations). Finally, it
should be pointed out that the quantification of the category
values which was obtaihed was essentially the same for both
measurement assumptions, implying that the ordinal assumption
is appropriate.

For the unweighted Euclidian model we conclude that
a) ALSCAL reveals the same stimulus structure as other algo-
rithms; b) ALSCAL is able to obtain identical solutions under
the nominal measurement assumption as under the ordinal assump-
tion when the stronger assumption is appropriate; and c) the
obtained stimulus structure is uneffected by choice of initial

category values when the nominal assumption is used.
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Figure 8: Ekman's color data: Stimulus space (unweighted model)

with wavelength of each stimulus indicated in nanometers.
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5.0 Discussion

Having completed the presentation and evaluation of the model
and method, we now turn to a discussion of some related issues.

5.1 Interpretation of X and W

We do not dwell at length on the interpretation of X and W
since Carroll & Chang (1970) have already dome so. The interpre-~
tation of X is in every way identical to the earlier work (X
represents the stimuli as points in an unrotatable Euclidian
space with dimensions of unit length), but there are three sub-
tle differences in thé interpretation of W, although its general
nature is unchanged (W represents the subjects as vectors whose
direction indicates the relative importance of each dimension
to each subject).

The first difference in the interpretation of W is that
with unconditional data it is permissible to make direct inter-
subject weight comparisons, whereas for conditional data (of
either type) and for Carroll & Chang's proposal (which is tacitly
matrix-conditional) inter-subject comparisons can only be made
indirectly'via within-subject weight ratios (a point often over-
looked with the earlier procedure, by the way). For example, if
subject A has weights of .80 and .60 on the two dimensions of
a confliguration, and subject B has welghts of .40 and .60, then
for any type of data we may say that subject places 1.33=.80/.60
more weight on dimension one than he places on dimension two,
and that subject B places .67 as much weight on dimension one as
he does on two. Such within-subject comparisons are straight-
forward. However, with between-subject comparisons we must be

careful, as it is only for unconditional data that we can make
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the simple statement that subject A finds dimension one twice

as relevant as subject B does, and that they both find dimension
two to be equally relevant. For conditional data, on the other
hand, we must say that subject A emphasizes dimension one rela-
tive to two twice as heavily as subject B does (since 1.33/.67=2).
it is the case, however, for all types of data that the magni-
tude of the weights (the length of the weight vector, say) indi-
cate in a general way the degree to which the subject's data

are represented by the solution obtained by ALSCAL. We discuss
this topilic next.

The second difference is in the interpretation of the length
of the weight vectors. The general interpretation is the same for
both procedures, and that is that they loosely represent the
goodness of fit of the model to the data obtained from the in-
dividual subject. More specifically, for both procedures it can
be said that the length of the weight vector (sum of squared
weights) roughly represents the proportion of variance accounted
for in the subject's scalar products, but the difference is that
with the Carroll & Chang approach this "variance accounted for"
is being optimized, whereas in our procedure it 1s not. As was
noted by Carroll & Chang, the "yariance accounted for" notion is
only precisely true when the configuration is exactly orthonormal
(X'X=I). When the configuration is only approximately orthonormal,
as is the usual case, then this interpretation of the length
of the weight vector is only roughly true. Note carefully that
the weight vector length does not represent the proportion of
variance (or of anything else) accounted for in the subject's

judgments.
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The third difference in weight interpretation is in the
meaning of a vector of entirely zero weights. For the Carroll
& Chang situation zero weights for a subject means that the model
of his judgments consists of a scalar product matrix which is
entirely zero, whereas for our situation the subject would have
a distance matrix which was entirely zero. Now for the Carroll
& Chang approach the model's zero scalar products matrix is
being fit to a set of (pseudo)-scalar products (those computed
from the data) which have a zero mean, thus the mean of the two
matrices is the same.A However, for our approach the zero dis-
tance matrix is being fit to the optimally scaled observations
which do not have a zero mean, thus the means of the two matrices
are not the same. Therefore, for our approach a vector of zero
weights is going to contribute relatively more to the apparent
lack of fit than for the Carroll & Chang approach. 1In a practical
sense this means that zero (or nearly zero) weights are less
likely to occur with our approach, and that the weight structure
obtained with our approach may be similar to the weight Carroll
& Chang weights, but certainly not identical (except in certain
unlikely situations). In particular, we expect that our weights
should tend to be more nearly homogeneous than those obtained from
the Carroll & Chang procedure. This may account, in part, for
some of the results observed in the previous section, both in
the Monte Carlo study (where the weights became more homogen<ous
as the error increased) and in the analysis of the Jones & Young
(1970) data (where the weights were more homogeneous than in
the Carroll & Chang analysis, although the effect interacted with

the assumed measurement level and was least prevalent with the
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measurement level used by Carroll & Chang).

5.2 Individual Differences

As was briefly mentioned in the introductory section, there
are several different multidimensional scaling models realizable
within the ALSCAL framework. The models are obtained by combining
either the weighted or unweighted Euclidian model with one of the
three types of conditionality, and with either one or more than
one subject (several of the combinations are either impossible
or nonsensical). We discuss the meaningful models briefly in
this section.

While most of the models can be collectively referred to as
individual differences models, there are two distinct types of
non-individual differences models. One of these is the standard
unweighted Euclidian model applied to a single matrix of data
(i.e., when N=1). Clearly this is not an individual differences
model since there is but one individual. The other non-individual
differences model is obtained when one analyzes several matrices
of data with the unweighted Euclidian model under the assumption
that the data are unconditional. While it might appear that this

is an individual differences model (since there are several

matrices) the reasons that we view it as a non-individual diff-
erences model will become clear after the discussion of individual
differences in the next few paragraphs.

There are three psychologically distinct individual difference
models realizable within the ALSCAL framework. These models
correspond to whether we allow for individual differences only .
in the response process (i.e., response bias), only in the judg-
merial prccess (including perceptual and cognitive processes), or

in both the response and judgmental processes. It should be pretty
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clear by now that individual differences in judgmental processes
is reflected by the weights of the weighted Euclidian model, thus
we must choose this model if we are interested in allowing for
this type of individual differences (the Horan (1969) and Carroll
& Chang (1970) type of individual differences). It may not be

so clear, however, that by assuming the data are conditional we
are implicitly allowing for individual response bias differences,
the type allowed for by McGee's (1968) developments. Thus, if

the data are measured at the ordinal level each individual is allowed
to have his own uniqué monotonic response transformation, and if
the data are interval each individual has a unique linear response
transformation. Note that this type of individual differences
results from either type of conditionality, since for row-con-
ditional data each individual has a unique set of response trans-
formations, while for matrix-conditional data each has a single
unique transformation. However, if we make the assumption that
the data are unconditional, then we are assuming that all indi-
viduals have identical response biases, thus tacitly assuming

that there are no individual differences in this regard.

Thus, we can allow for two types of individual differences.
via either the model weights or the data conditionality. Obviously,
we can permit both types of individual differences to occur by
simply applying the weighted Euclidian model to conditional
data. But what happens if we apply the unweighted model to un-
conditional data? Then we have the second type of non-individual
differences model discussed above, one that allows for replicated
data, but assumes that the replications arise from subjects

with identical judgmental and response processes.
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5.3 Oblique axes and individual rotations

Several weighted models have been proposed which are more
general than the one discussed here. Among these are IDIOSCAL,
s model which allows for individuel differences in the orientation
of axes (Carroll & Chang, 1972), PARAFAC, a model which permits
individuals to have weighted oblique dimensions (Harshman, 1970),
and an extension of Tucker's three-mode factor analysis (Tucker,
1966, Levin, 1965) to multidimensional scaling (Tucker, 1972).
All of these models have.ﬁeen proposed in the scalar products
framework, thus they optimize the STRAIN index (Eq. 8) with the
definition of the weights matrix changed in different ways for
the different models.

As has been discussed by Carroll & Chang (1972), the distance
version of these models (as well as the models covered by our
previous developments) are all special cases of the following

distance model

t t
2 — -
(Lg) dijk = ail bil(xia'%ja)rkab(xibf*Jb)

or, in matrix notation,
2

where X is & row vector of coordinates for point i, and where

-

Ek is a square symmetric matrix of inter-dimension relations

for subject k. The relationship of this model to the one treated

by ALSCAL is that ALSCAL restricts Bk to be a diagonal matrix.
The other models mentioned at the beginning of this section

are obtained as follows: For Carroll & Cheng's model we decom-

pose R, so that
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= '
(51) B = LR

where U

X is orthogonal and W

" is diagonal, and where gk can be

interpreted as a subject's orthogonal rotation of the original
coordinates X to a new orientation, and where his weights Ek are
applied to the rotated configuration. Thus this model allows
for individual differences in the orientation of axes as well
as the types of individual differences discussed in the preceding
section. (Note‘that the orientation of X is not unique.)

For Harshman'é model we decompose Bk so that
(52) Ry = N CWy
where Ek is diagonal and C®is square symmetric with unit diagoneals,
C is interpreted as a matrix of cosines of angles between obligue

dimensions, and W. is a subject's weights on the obliquely trans-

k
formed dimensions. Thus this model allows for the same types of
individual differences as discussed in the previous section, but
makes the fundamentally different assumption that the axes which
are being weighted are oblique transformations of the stimulus
space X (whose orientation is uniguely determined). Note that
all subjects weight the same obligque dimensions.

For Tucker's model we decompose R so that
(53) By = %Oy Wy
where the matrices have the same nature as in Harshmen's model,
with the essential difference that each subject k has his own

obligue transformation (C as indicated by the subscript. Tlhus

k.,
Tucker permits a type of individual difference not covered by
the previous models, namely that each individual has his own

personal oblique transformation of the coordinate space, as well

as his own weighting of the dimensions of his space. (Note that
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the orientation of X is not unique here.) This decomposition of
Ek is the most general of those presented in this section,
including all of the models previously discussed in this paper.

ALSCAL can be easily extended to cover any of the models
treated in this section by modifying the weight estimation phase
(section 3.4.1). The modification is to redefine the matrix Y
so that all pairs of dimensions are present as well as all pairs
of points. Thus, if we define ¥ to be an order n{n-1)/2 by
t(t+1)/2 matrix with general element (xia—ij)z, and then apply
Eq. (36) we would obtain least squares estimates of the Bk’

which can then be decomposed in the deéired way.

5.4 Minkowski spaces

One of the limitations of the work presented here is that it
only encompasses Euclidian coordinate spaces and does not include
other Minkowski spaces. Such a generalization, which is very
simple with the standard gredient approach (Kruskal, 1964, Lingoes,
1973, Young, 1972), is annoyingly difficult in the ALS approach.

In fact, the extension is impossible within thevALS framework
unless we adopt & different optimization criterion. If we defined
LSTRESS on the £-power weighted Minkowski distences:

(54) at

z
- < < )Y <o
Y b'e | , W, <0, 1<f<ow,

t
= I W,
ia-
a:

| x
1 ia' Ja
so that £STRESS would become
J=-1
2 L L 2
(55) ¢°(X,w,D*) = £ I L (d°{3k'dijk) :
i J k
then with some rather minor modifications in section 3.4.3 we could
extend our developmenfs to other Minkowskil spaces. However, this

proposal is not entirely meaningful, especially when the value of

£ is at all large. It is interesting to note, though, that for



-65-

City Block space (£=1) £STRESS is identicel to STRESS. Thus it
would be both simple and meaningful to extend ALSCAL to include
City Block space. Such an extension would also be rather useful
since City Block space is. probably the most commonly used non-
Fuclidian coordinate space in applications of multidimensional
scaling to social science data. However, this extension might not
be robust due to the well known freguency of loceal minima in City
Block space.

5.5 Measurement

Within our framework one can obtain empirical information about
the measurement level of his raw data, at least within the context
set by the MDS model. All that has to be done is to anaelyze the date
several times, making different measurement level assumptions each
time. If two (or more) of these analyses yield precisely the same
results then the appropriate measurement level is the highest one
used for the several equivalent analyses. He can then conclude that
within the MDS situation the true measurement level is that highest
one, and that this is not simply an assumption of the appropriate
level, but an empirically determined level.

The reasoning behind these statements is as follows. If a set
of raw data is analyzed twice, and if the only difference in the two
sets of analysis options is the assumed measurement level, and if
the obtained results (X, W, D*, and SSTRESS) are identical for both
analyses, then the lower measurement level (which places relatively
weak restrictions on the optimal scaling) is yielding exactly the
same transformation as the higher measurement level (which enforces
stricter conditions). That is, if the two analyses involve nominal
and ordinal assumptions and yield identical results, then in the

nominal case the transformation actually satisfies the ordinal
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requirements. When this occurs it is appropriate to conclude that the
date are in fact measured at least at the higher of the two levels of
measurement when these data are analyzed with the chosen model.

Note that the view of measurement implied by the preceding state-
ments is not the common view. We do not adopt the commonly held posi-
tion that measurement level is a characteristic of data in vacuo. Rather,
it is our view that the measurement level of a particular set of data
is dependent on the interaction of that data with the model chosen to
describe the data. When a set of data is analyzed by some model, the
method of analysis necessifates assuming that certain types of data
transformations are permissible. These transformations, and the opera-
tions they entail, imply that a certain level of measuremgnt has been
assumed to exist in the data. If one can vary the types of allowable
transformations, and only perform operations on the data which are com-
mensurate with the transformations, then one can determine how well the
data "measure up", as it were, to the requirements of each measurement
level. This is the approach taken here. Note, however, that this can-
not be done outside of the context created by the chosen model, as
should be clear. It may be that a set of daté is-monotonically (but not
linearly) related to the distances of an MDS model but it would not Dbe
correct to conclude that they are ordinal for it may be the case that
they are linearly related to some other model.

It may appear to be the case that the argument is purely academic,
and that the situation will never arise in practice. After all, we are
requiring that the results of the several analyses De exactly equiva-
lent. However, the situation actually occurred in one of the examples
given above. TFor the Hayashi (1974) data the nominal and ordinal

results were precisely identical, allowing us to conclude that the
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raw date that we analyzed were at least ordinal in the MDS context.
We do believe, though, that our requirement of strict equivalence
is overly stringent, and we would prefer to develop a test to
indicate how well a particular set of date approximates a parti-

cular measurement level. We have not yet done this, however,.

Our view of measurement differs from the common view in one
more fundamental way. As was implied by the end of the previous
paragraph, we do not view measurement as being at one of a set
of discrete levels. Our view is that measufement level is a con-
tinuous, not discreteAnotion. While it is obviously the case that

only certain discrete points on the measurement level continuum

are axiomatizable, it is not our understanding that these are the
only measurement levels. The intermediate measurement levels
between the various axiomatizable points represent levels of
measurement which approximate, to a greater or lesser degree, the
next higher axiomatized level. Thus, if we analyzed a single set
of data under nominal, ordinal and interval assumptions, and we
discovered that the results were identical for the nominal and
ordinal cases, and "very simila:" in the interyal case, then we
would conclude that the measurement level of the data when analyzed
by the chosen model is somewhere between the ordinal and interval
points, and perhaps nearer the interval point. The most critical
feature of the analysis for deciding how nearly one approximates

a particular measurement level is to investigate the nature of the
optimal scaling D*. 1In the example just given, to conclude that
the results were "very similar" in the interval case, we would
have to go back to the ordinal case and determine how far the

optimally scaled data (D*) deviate from linearity. Formally, we



-68-

might obtain the Pearson correlation between D* and the set of
data 0, as a descriptive indication of deviation from linearity
(note that this 1is obtained for the ordinal level analysis for
which the Spearman rank order correlation between D* and O is
perfect). While this is an adequate descriptive device, clearly
we cannot use it for formally testing a measurement level hypo-
thesis, which is what we would most like to do.

This notion of a measurement continuum is involved in
another important aspect of our situation. It is commonly stated
that nonmetric procedures quantify qualitative data. Indeed, one
of the main reasons for the popularity of nonmetric procedures
is this magical conversion of measurement level. Strictly speaking,
such a conversion of measurement level only occurs, in our view,
when the quantitative model perfectly describes the qualitative
data. Thus in our situation it is necessary to obtain a zero SSTRESS
value in order to precisely quantify qualitative data, and the
degree to which SSTRESS is not zero indicates the degree to which
we were unable to quantify our data with the MDS model. Rephrased
in the terms used in the‘brgceeding paragraph, the SSTRESS value
indicates how far along the measurement level cbntinuuﬁ we héve
moved from the assumed measurement level towards the ratio measure-
ment level (which is the level of the MDS model). Perhaps a
more useful index of quantification would be the Pearson corre-
lation between the optimally transformed data D* and the dis-
tances D. Note that if the same set of data is analyzed under
several different measurement level assumptions, then the SSTRESS
(and quantification correlation) will be best for the weakest

assumption, indicating, as it should, that we have moved a longer
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way along the measurement continuum. However, this is not because
we have reached a higher degree of quantification, but because
we assumed a lower degree of qualification, as it were.

Finally, these two uses of the measurement continuum, and the
two descriptive correlation indices proposed, are perfectly com-
mensurate with each other. For the Hayashi (1974) data analyzed
in the previous section, a Spearman rank order correlation per-
formed between O and D* for the nominal analysis would be unity,
telling us that the &ata.are actually ordinal when analyzed by
the chosen model. The Pearson correlation between D* and D
would be the same for the two analyses (as is the SSTRESS) telling
us that no more quantification was possible under the nominal
assumption than under the ordinal assumption, implying that the
data are ordinal. Finally, the Pearson correlation between D¥
and D is not unity (nor is the SSTRESS zero), indicating that the
data are not perfectly consistent with the model, and therefore
that the model has not been able to perfectly quantify the data.
_Please keep in mind that we only use the correlations descriptively,
and that the main weakness of our proposal to use such indices
to investigate measurement level is that we have no formal methods
for deciding when a goodness of fit measure is significant.

5.6 Efficiency

The last topic we take up is the efficiency of ALSCAL, both
in terms of speed and memory requirements. The memory require-
ments of ALSCAL are most easily discussed, so we take them up
first. As compared with the metric INDSCAL, only about one-half

of the amount of data may be accommodated in the same amount
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of space. This follows from the fact that with a nonmetric pro-
gram one must store both the original data and the optimally
scaled data, whereas with a metric program one only needs to
store the data. Thus twice the core storage is required with a
metric program.. In most other regards ALSCAL and INDSCAL are
comparable in terms of storage requirements. Of course, the
storage requirements of ALSCAL are roughly comparable to those
for other nonmetric MDS programs, with the added storage for
subject weights being balanced by the lack of a gradient matrix.
Turning now to the speed of ALSCAL, we first discuss the
manner in which the speed is a function of various aspects of
the analysis situation. Note that there are four separate com-
putational sub-problems: a) solving for initial values; b) ob-
taining the optimal scaling transformations; c) computing the
weights; and d) determining the configuration. Of these four
problems all except the weight problem are adversely effected by
increasing the number of points. On the other hand, if the
number of subjects is increased both the optimal scaling and
weight phases will be slower. If we increase the number of
dimensions then all phases should be slower except the optimal
scaling which will be uneffected (except in the ordinal case
where increasing dimensionality will improve efficiency, due
to the likelihood that the order will be more nearly correct).
Finally, the ordinal measurement level should take noticeably
longer than any of the other levels, due to the sorting. In
Table 2 we present the times required to analyze the Jones &
Young (1972) data as a function of dimensionality and measurement

level. These times are CPU time only, with no I/0 time included.



dimensionality
1

2

Table 2

measurement level

nominal.
5.2/4
7.8/4

13.4/5

ordinal interval
22.1/4 6.4/4
16.7/4 8.2/4
21.6/5 11.7/4

ratio
6.0/4
6.4/3

11.9/4
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We have set the convergence criterion to a value of §=.001 where
8§ is the improvement in SSTRESS from one iteration to the next.
(Note we use ¢, that is, the square root of Eq. 1l1). We also
present the number of iterations to convergence.

Evaluating an algorithm!s speed relative to another algorithm is
a difficult problem, as has been stressed by Spence (1972) and
Lingoes & Roskam (1973). Here the main source of difficulty is the
fact that ALSCAL optimizes a different function than any of the
other routines, so it is difficult to ensure that the various
programs are obtaining équally precise solutions. We follow the
lead of Spence and simply use the default termination values
associated‘with each program. While this does not get around
the precision problem, it does at least correspond to the likely
state of affairs in the real world. 1In Table 3 we present the
CPU times required to analyze the Hayashi (1974) data in two
dimensions by ALSCAL, KYST and POLYCON (the latter were both
optimizing Kruskal's second STRESS formula whereas ALSCAL was .not,
which accounts for the larger st:ess value obtained from ALSCAL), and
the CPU times required to énalyze the Jones & Young (1972) data
in three dimensions by ALSCAL and INDSCAL. We also present the
value of Kruskal's first STRESS formula for comparison (note that
none of the programs optimized this formula but. perhaps STRESS 2
is closer to STRESS.1lthan SSTRESS 1). Finally, we have also pre-
sented the last improvement in the function being optimized as a
rough precision indicator. We believe it is fair to conclude
that ALSCAL is more efficient in terms of computation time than

other currently available programs.



Table 3

Program CPU Itera- STRESS STRESS Improve- Data
time tions 2 1 ment

ALSCAL 6.3 3 LUT6 .251 .0001 Hayashi
(nominal)

ALSCAL 5.7 6 476 .251 .0001 Heyashi
(ordinal

KYST 15.1 16 .kh29 .211 .0001 Hayashi

POLYCON 56.8 25 . 455 .225 .0001 Hayashi

ALSCAL 11.9 L - .302 .0003 Jones & Young
(ratio)

INDSCAL 63.4% 17 - - .0098 Jones & Young
(ratio)

aAnother run with a different random start took T73.5 CPU seconds.
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We must admit thet the relative speed of ALSCAL is & fortuitous
rather than an anticipated result. Perhaps the speed of ALSCAL is
related to a fact recently reported in the numerical analysis lit-
erature. Thefe is a class of algorithms, called nonlinear block
successive overrelaxation algorithms (Hageman & Porsching, 1975)
which are very closely related to ALS algorithms, and which are
currently quite popular among numerical analysts. These algorithms
are like an ALS procedure in that they divide the estimation problem
into a series of conditional estimation problems (successive blocks)
each of which has an analytic solution. These algorithms differ from
an ALS procedure in that they do not go precisely to the minimum in
each sub-problem, but over-step the minimum. The over-stepping 1is
referred to as overrelaxation. For these procedures it has been
found that they are the fastest when the several sub-problems involve
approximately the same number of parameters. This condition holds,
roughly, in ALSCAL. It has been found with these procedures that
overrelaxation improves the efficiency of the algorithm, thus we may
be able to further improve the efficiency of ALSCAL by this technique.
We have not yét tried this, however.

Finelly, it should be noted that the order in which the three
conditional minimization problems are solved is not very critical in
terms of the parameter values eventually obtained at convergence.

Nor indeed does it appear that the initialization procedure is very
critical in this regard, although other procedures may evidence more
fregquent incidents of local minima solutions (which are seldom, if
ever, obtained with the initislization used here). Furthermore, no
matter how frequently we solve one of the sub-problems relative to
another one (within reasonable limits, of courée) we eventually obtain

the same estimates. Thus, the ALS approach is somewhat arbitrary in
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these terms. However, it is the case that the speed of convergence
is heavily effected, and our particular choice of flow was strongly
related to this concern. From our experience Vith ALS procedures,
it seems that the most efficient procedure is the one in which each
sub-problem is solved the same number of times in an iteration.
Thus, it is usually more efficient to solve each sub-problem once
per iteration than to solve for X, say, three times and the other
aspects once. This experience 1s probably closely related to the
numerical analysis result reported in the previous paragraph.

6.0 Conclusions

We conclude that ALSCAL is the first viable algorithm for
nonmetric individual differences multidimensional scaling.

ALSCAL is robust. As has been shown, ALSCAL can recover the
true underlying structure in the Monte Carlo situation, at least
when the measurement assumptions are appropriate and when there is
not too much error introduced into the data. Furthermore, ALSCAL
obtains the same structure as that obtained by other algorithms in

.
those special cases for which algorithms have been previously deve-
loped.

ALSCAL is flexible. Most of the currently popular individual
differences models, and the widely used simple Euclidian model fall
within the ALSCAL framework, thus ALSCAL is flexible with regard to
the models which cén be fitted to the data. Furthermore ALSCAL is
flexible with regard to the data since essentially all of the

commonly discussed types of data (and some types not previously

discussed) fall within ALSCAL's province.
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ALSCAL is rapid. While there are difficulties associated
with evaluating the rapidity of one algorithm relative to another,
we tentatively conclude that ALSCAL is more rapid than previously
developed algorithms.

The viability of ALSCAL leads us to feel very encouraged about
the two keystones of our work, namely alternating least squares,
and optimal scaling. Our previous work (de Leeuw, Young & Takane,
1975; Young, de Leeuw & Takane, 1975) has shown that these two
keystones yield viable results with linear models, and the current
work extends this viability to quadratic models.

Note that the viability of our research is not bought without
cost. Perhaps the main cost is that a separate, highly specific
algorithm must be constructed for each class of models, thus elimi-
nating the possibility of developing one very general algorithm for
all situations. The very generael approach to algorithm construction
has been tried by one of the current authors (Young, 1973) with
mixed success, and it is our conclusion that it is more efficacious
to develop several "highly tuned" algorithms,as we have done here.

An indirect cost associated with our work is that the alter-
nating least squares approach to solving least squares problems,

namely dividing the problem into a series of simple sub-problems,

is only as simple as the simplest sub-problem. In our previous
work with linear models each of the subproblems was very simple.
However, with the current work one of the sub-problems, that of
obtaining the best coordinate values, was not very simple, and the
resulting algorithm is rather complex. Note that the derivation
of the solution to a sub-problem, which must be strictly least

squares, may sometimes be difficult, as was the case here.
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However, we believe that the costs of our approach are out-
weighed by the benefits. We are confident that the alternating
least squares and optimal scaling keystones will provide & viable
aepproach to other models in addition to the linear and quadratic
ones investigated so far. With this confidence we now turn to
the bilinear model and focus our research on the nonmetric prin-

cipal components situation.
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