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Canonical Correlation Analysis (CCA) is a data analysis method in which the
correlation between two sets (of linear combinations) of categorical variables is
maximized. CCA is discussed in geometrical and matrix-algebraic terms as an
introduction to a multi-set CCA with optimal scaling properties of category values.
Instead of using a rectangular (objects x variables)-data matrix, this technique operates

on the square Burt-matrix, which contains the whole of bivanate relations. Basics of
the underlying statistical theory are discussed. A real-life application 1s presented.

1. INTRODUCTION ‘
Canonical Analysis can be regarded as a generalization of regression theory and is found in

many disguises amongst multivariate analysis methods (cf. Gittens 1984). Canonical Correlation

© Analysis (CCA) is a CA method offering the product-momen{-ucorrclation as a measure of
resemblance between sets of categorical variables. This measure is derived from both the between
and within-set relations. Linear CCA was introduced in classical multivariate statistical analysis by
Hotelling (1936). The linearity of classical CCA refers to the fact that its results are invariant under
" linear transformations of the category values. In the years to follow, Classical CCA has become an
established multivariate statistical method for relating two sets of variables (e.g., Thomson 1947).
Multi-set extensions of CCA have been developed and succesfully applied during the last decades
(cf. Kettenring 1971). More recently, nonlinear generalisations of multi-set CCA have also been

introduced (Van der Burg et al. 1988).

2. LINEAR TWO-SETS CCA

The basic strategy of CCA can be described as finding an optimal linear combination, a
weighted sum, of the variables in each set, in such a way that the correlation between each set of
variables is maximized. A (n xm) data matrix H, with measurements of a number of objects or
persons i (i=1,...,n) on discretely-valued categorical variables j (j=1,..0shy.m) With rj(r=1,...,
kj) categories, is partitioned in & (k=1,2) sets of variables. The first (nxm;)-sized set of variables
will be denoted by a mj-dimensional vector hy=(hy by, the second (nxmy)-sized set by a
m;-dimensional vector hy=(hg s ligm2)- The space L spanned by the m=mj+m; variables, with
dimensionality s = (1,....p) where p< min.(mj,mz), can be partitioned in such a way that the

variables in each set span a corresponding linear subspace L, and L. The aim of CCA can be
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reformulated as finding directions in L.y and Ly, the canonical axes or canonical variates, which

are as similar as possible. We therefore need measure to indicate the ‘goodness-of-fit', The cosine
of the angle between the canonical variates., the canonical correlation, is used for this purpose.

Linear combinations of the variables in each set are thus formed by the canonical weights in the
(myxs) matrix A; and the (myxs) matrix Aj. Conceptually, the general CCA problem of relating

two sets of variables can thus be seen as finding weight matrices A and weighted columns
hja®y=hy1a%; +hyga’z + .+ hypatyyy (1a)
hya%=hy1a%; +hpra'yp + ... + hypay (1b)

which represent an orthogonal basis for the subspaces Lj and Ly of dimensionality s<p which

yield an optimal canonical correlation for each dimension.

Shifting the focus from a geometrical point-of-view to an interpretation CCA in matrix-algebraic
terms, boils down to finding maximally related axes in subspaces Ly and L, of the common space

L, by means of eigenvalue-eigenvector decomposition (Wilkinson 1965) of the partitioned
datamatrix H=(H;[Hj). Since the canonical correlation is invariant under linear scaling of h; we
will require that hj is centered with unit-variance (i.e., u'hj =0, hj‘hjzl; u denotes a unity-

vector). Solutions for the canonical weights can be found in such a way that the correlations
between the weighted combinations Hy Ay and A, are optimal. In terms of the sample-based

correlation matrix Ry o = Hy'Hy, the problem of finding the optimal set of canonical weights is

equivalent to solving the following canonical equations (Anderson 1958):

(R, 1R 2 (Ro2) T Ry g - A2} A=0, (2a)

(R 21 Ry 1 Ry 1)1 Ry 5 - A21] Ag=0, @2b)

where I denotes the identity matrix and A2 represents the first and largest eigenvalue of the
characteristic equations

| (Rl,l)'l Rl,Z (Rz’l)‘l RZ,I - ;\,2 I =0, o ('_’;a)
} (R2,2)'1 R2,1 (R]J)'I RI,Z - )\.2 I1=0. : (3b)

The largest eigenvalue, either of the product matrix (R ;1) 1R} 2(R22)" 1R 1 or of the matrix
(Ry2) 'Ry 1(Ry 1) IR, 2, is now equal to the highest squared canonical correlation in the first
dimension. The accompanying first pair of eigenvectors al; and als,of the n-orthonormal basis,

will yield the highest canonical correlation between all possible linear combinations of weighted
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variables within sets. Since the dimension-wise weight vectors a3 and ap are interchangeable, via
a;=[(R1 1) 1R 2%2)/A and 32=[(R2’ﬁ'1R2'1al]/l, only one characteristic equation needs to be
solved. The second pair of canonical variates (i.e., a2y and a2) are uncorrelated with the first

pair, etc. The non-paired canonical variates are also mutually uncorrelated between sets.

3. NONLINEAR CCA

A generalization of CCA to enable the incorporation of variables with less restrictive (nonlinear)
measurement levels, generally classified either as nominal or ordinal, dates back to Young et al.
(1976). A nonlinear version of two-sets CCA is also proposed by Van der Burg and De Lecuw
(1983), with an accompanying alternating least squares program CANALS, produCing CCA-
results which are invariant under certain nonlinear transformations of the variables. One must
however keep in mind that nonlinearily transformed variables do again defines a linear space L.
This type of optimal scaling (Young 1981) of category values, i.c. rescaled according to the
constraints of the respective measurement levels, leads to category values y; =t i (rj) referred to as
category quantifications (Gifi 1981). Incase of a nonrestricted nominal variable one can visualize
the set of possible values y; as a kj~d'1mensio‘nal space S j - The set of possible transformations of
an ordinal variable j defines a regression problem of the datavector h; ona polyhedral convex

cone KJ in the k;-space. Numerical (linear) variables define a regression on a one-dimensional

subset of Sj.

CCA now consists of two computational subproblems which are dependent upon each other

and can be solved by means of an algorithm which maximizes the canonical correlation, while
simqltaneously imposing the proper measurement restrictions on variables. Assume a (1 xk;)
binary indicator matrix Gj asa basis for each S;, with Gju=uand gy=11f b=k ; /=0 if
h;#k (cf. De Lecuw 1984). Thus each category defines a binary variable and each individual is
represented in only one category per variable. The indicator matrices of the variables j thus contain
k; independent columns and span an orthogonal basis for each variable. The expression ¢;=G; ¥;
defines a transformed variable (Gifi 1981). Unit-normalized vectors ¢; define a correlation matrix
R(Q)=R(q},.--4m), With elements rﬂ=qj'q1. An induced correlation based on the bivariate
matrix Cj can now be defined as R(q,..-.am)=Y;'Cj1y; with C;=G;'Gp 2 diagonal matrix
with univariate marginals Dj; and y/Djyi=1; u'D;y; =0.
Nonlinear two-sets CCA can now be rephrased as a technique which computes the optimally
scaled variables ¢;, and canonical variates QA maximizing an optimality-criterion function
Gp(R(QAL), or at least computes a stationary value of this function. In general, we are searching
for all stationary values of %(R(q Jserer Q) OD S

4. MULTI-SET NONLINEAR CCA

The generalization of nonlinear two-sets CCA to more than two sets k(k=1,...,K) is,
essentially, quite straightforward. Applying this extention to the generalized canonical solution in
terms of matrices Q=(Q...1Qk), results in a geometrical solution with eigenvectors in Ay
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‘bundling’ around a mean canonical variate, equal to the sum vector QA. The mean canocnical
variate thus contains the overall information of the canonical variates of each canonical solution
and forms a orthogonal basis for the common canonical space L, providing similar interpretations
with respect to canonical correlations between the various sets. In K-sets CCA the criteria 0, are
also based on the maximization or minimization of properties of the eigenvalues of the correlation
mairix R(QgAy). Using more than two sets provides us with opportunities to extend the possible

ways of computing CCA-solutions. The canonical correlations can now be generalized 1o

measures of relatedness, which are derived under various conditions and optimality criteria, each |

combination producing somewhat different results (cf. Kettenring 1971; Gifi, 1981; Van de Geer
1984; Meulman 1986). Van der Burg et al. (1988) introduce an alternating least squares multi-set
program OVERALS, as a particular generalisation of nonlinear two-sets CCA. ;

5. MULTI-SET NONLINEAR CCA BASED ON BIVARIATE CROSSTABLES
In some cases one might not have or want to analyze the usual (nxm) matrix H, but instead an
aggregated (mkxmk) Burt matrix C, with crosstables C it between all variables (Burt 1950). In the

sequel it will be shown that it is still possible to devise a technique which can perform a K-sets
nonlinear CCA based on C via R(QyAy) (De Leeuw 1983; Tijssen 1985).

It has been shown that a linear CCA-solution is computed on R. In case of a nonlinear CCA
based on C certain requirements must be fulfilled to obtain an optimal CCA-solution, because the
induced correlations are only optimal association measures in case of linear and homoscedastical
regression between variables. CCA-solutions based on R, given the bivariate relations in C,
which also handle nonlinear variables, thus need an optimal approximation of the linearity
property of correlations. Maximizing the largest eigenvalues of an R, induced from C via
category quantifications y, is such a method. The resulting R will now be as one-dimensional
(linear) as possible. Suppose we want to optimize a function of the correlation matrix R, written
as O(R). An example would be the largest eigenvalue of R, which leads to Multiple
Correspondence Analysis, or the sum of the p largest eigenvalues, which leads to Principal
Component Analysis. Compare De Leeuw (1986) for a more complete discussion of the
statistical concepts behind this data-analytic approach.

In the formalization of this approach, we use the fact that rﬂ =y'j Cﬂ y;.ify' iD i1Y; =1. The

stationary equations for this optimization problem are
z; 5(1)/6!‘]'[ le Y =7\.J Dj yj , (4)

where 6 denotes the derivative.
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If category values y; can be found such that the equality Cj ¥y =rj D;y; holds for all variables
j.thenthey;'s linearize the bivariate regressions. Hence the stationary equations are satisfied no
matter how the function ¢(R) is defined.

Studying a K-sets CCA-problem requires a partitioning of R according to the allocation of the

variables over the sets. Sucha division can be accomplished by creating a conveniently arranged
(mxm) binary matrix E, with elements ¢; = 1 if variables belong to the same set and €j; = 0,

otherwise. The Hadamard product (Styan, 1973) of E and R results in a (m*m) matrix - denoted
as EAR, with rjy = ¢;/"T;; if the corresponding variables belong to the same set. The nonlinear K-

sets CCA-problem is to maximize the sum of the first p eigenvalues-of the pair (R, E*R). This is
of the form &(R). In order to find the eigenvalues one has to solve the generalized eigenvalue

problem :
RAA2(EMR)A, ®)

with the (pxp) diagonal matrix with generalized A2-values. The result of this particular eigenvalue
problem will provide us with a common basis L for the sets based on eigenvectors A which are

now orthonormal with respect to the within-sets correlations, i.e. A'(EAR)A=L

In this paper we shall study a somewhat more general class of criteria ¢ which depend on R
through the generalized eigenvalues 22. One could also use the product of the generalized values,
for instance, or the sum of squares of their deviations from unity.
By applying the chain rule, it is well known that

SA2 /8y ={1-(AZ el ajcas ©

Combining Eq. (4) and Eq. (6) provides us with two (Zj ij Ej— kj- 3 matrices for cach pair of

variables:
le =2 5@)/87&25 (?\,23 Cj[ ajsays eﬂ), (7a)
Ujl = Zs 64)/8?&25 (le ajg a[S). ) (7b)

Hence T is based on the within-sets bivariate relations, whereas U is based on both the within and
between sets bivariate relations.

We can now define stationary equations as

Ty - Uy=0, \ ®
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which suggests an iteration schemne
y‘:y(”"’l):U"’ T y(ﬂ), (9)

with the superscript + denoting the Moore-Penrose inverse, in which alternations between
successive steps (n) and (n+1) will lead to category quantifications y* with (approximate)
linearizing properties. The quantifications are normalized in eath iteration step, thus inducing an
updated optimal correlation matrix R* in each step via

R*={r*y}=y*! Cjy*. — - - (10)

The resulting quantifications y* are thus an optimal function of the bivariate within-sets
structure in combination with the total bivariate structure. Categories with a relatively high
bivariate frequency will tend to have, on the whole, more similar quantifications.

i 2

The iteration process therefore in fact consists of two subprocesses. The inner-iterations [Eq.
(9)] produce optimal quantifications y* with linearizin g properties, which are used in the outer-
iteration steps [Egs. (5), (10)] to compute the corresponding R, The generalized eigenvalue-
eigenvector decomposition of (R* EAR*) subsequently computes the corresponding eigenvectors
A for the K-sets CCA solution. The elements of the Burt matrix are weighted with the
corresponding elements in A, creating updates of U and T, which provide a new update of y*.
These quantifications are then used to induce a new R*, etcetera ... until convergence is reached.
Assuming this iteration process leads to a stable value of the function ¢,(R), with a corresponding »
optimally linearized correlation matrix R*, one obtains optimal category quanifications in the
sense that they induce an optimally linear matrix R* ffom C, while incorporating the K-sets
structure in R*,

The (canonical) correlations between the various obtained quantifications are derived by
introducing two m-sized columns of the identity matrix for each variable; the vectors v and w with
a one in the position of the respective variable(s) in question. The covariances, variances and
correlations of the quantifications are now expressed as, respectively:

COva=A's (R*» (vw") A, 7 - , (11a)
Var,,=A’', (R"’\(vv'))}?(s.==Var,,\,W=X'J (R™(ww")) A, (11b)

Cor,=(diag. Var,)12 Cov,, (diag. Var, )12, (11c)
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With the appropriate filling of vectors v and w one can now compute for example: the canonical
correlations - with ones in v and w on the positions indicating the variables of the sets, implying
Z.»=AR*A=L In a similar fashion one can compute the correlations between a quantified
variable and the respective canonical variate (also referred to as canonical loadings), reflecting the
extent to which a variable contributes in the variate.

6. AN APPLICATION
6.1. INTRODUCTION
An example is given of a data-analytic situation in which the sheer magnitude of the matrix

2

(n=2666; m=77) matrix may warrant the use of a K-sets CCA method based on a smaller Burt-
matrix. The data stem from a survey carried out by the Educational Department and the
Educational Research Center of the University of Leiden to obtaina comparative inventarisation
of different aspects of, in order of increasing educational level, the following three groups of
elementary vocational educations: VBO/MLK, IBO and LBO (Van Putten 1987). The study
focussed on the assessment of characteristics of the IBO pupils. The Dutch acronym 'IBO’ refers
to a number of individualized elementary vocational educations, with the aim to provide a suitable
education for slow learners from the primary school or special educations, in the pupil age of 12-
16 years.

These pupils were subjected to a number of tests, in order to assess (1) cognitive capacities, (2)
reading abilities, and (3) arithmetic abilities. They also received (4) a questionnaire with items
concerning their attitude on some relevant socio-emotional aspects of the school/classroom-
situation, (5) two teachers were asked -independently- to rate the classroom behaviour of each
pupil , and (6) background information was obtained on the pupils by means of a parent/caretaker-
questionnaire. Each test/questionnaire contained categorical or categorized variables, with a grand
total of well over 400 categories.

6.2. DATA PRE-PROCESSING

Data-reduction was achieved by applying the non-metric Principal Component Analysis
program PRINCALS (Gifi, 1985) on the above mentioned groups of variables. The results
provided us with ‘condensed’ data in the form of the following independent and relatively clear-
cut defined components, on which each pupil obtained a score. These metricized pupil-
quantifications were divided into a number of categories (on the average, about 5 categories). In
the case of the variables from the groups (1)-(5) low-valued categories indicate the
positive/desirable side of the attribute, for instance a high degree of accuracy or no fear of failure,
whereas high category scores indicate the opposite qualification. The original survey variables
were reduced to the following (composite) variables :

1-Logical reasoning (LR) 2-Workpace (WP)
3-Accuracy (AC) 4-Verbal abilities (VA)
5-Technical reading (TR) 6-Mental arithmetic (MA)

7-Applied arithmetic (AA) 8-Involvement and interest (II)
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9-Problematic behaviour (PB) 10-Independence (IN)
11-Motivation (MO) 12-Relations with fellow-pupils (RP)
13-Fear of failure (FF)
The following background variables were selected for the CCA analysis:

14-Previous education (PRE) 15-Promotion previous year (PPY)
16-Sex (SEX) ' 17-Age (AGE)
18-Occupational family type (OFT) 19-Number of brothers/sisters (NBS)

20-Birth rank among brothers/sisters (BBS)

The above variables were placed in the following sets: (I) a cognitive set (variables 1-7), (II) a
socio-emotional set (variables 8-13), and (III) the background information (variables 14-20),
respectively.

The pupil scores in the cognitive and socio-emotional set were analyzed with a numerical
measurement level. The optimal (linear) properties of thege scores provides a plausible basis for
such a restriction in the category quantification. The remaining (background) variables are of a
more qualitative nature were analyzed with the nominal measurement level, with exception of the
pupil's age.

6.3. SOME CCA ANALYSIS RESULTS

The CCA analysis was done for 2 dimensions. The 'fit' of the analysis solution was equal to
1.034, with the eigenvalues .530 and .504 for the first and second dimension, respectively. Both
dimensions can thus be regarded as almost equally important and, on the whole, 'explaining'
about one half of the existing variance (the maximum fit is equal to 2). The highest canonical
correlations were found between the cognitive set and the set of background variables (with values
equal to 357 and .405 for the first and second dimension)

A general description of the relations between the separate variables, given the canonical
structure, can be givcn'on the basis of the configuration of the correlations between variables and
the mean canonical variate (see Fig. 1). Projecting the points on the axes reveals a structure, in
which the first dimension is determined by applied arithmetic (AA), previous education (PRE),
SEX and, to a lesser extent, by variables such as problematic behaviour (PB). The second
dimension is also largely determined by SEX and PRE, but now in.combination with technical
reading (TR), mental arithmetic (MA), verbal abilities (VA) and motivation (MO).

I S i S m«ééﬁm&%&hﬁik ‘. At

S b e




- Multi-Set Nonlinear Canonical Correlation Analysis via the Burt-Maltrix 265
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FIGURE 1
Correlations of variables with mean canonical variate.
First dimension - horizontal axis; second dimension-vertical axis

Further insight in the analysis results can be obtained by projecting the linear category
quantifications in the mean canonical space (see Fig. 2). These quantifications present an image of
the structure of relations on a category-level; for each variable the categories are located on the a
straight line through the origin. Both SEX-categories, the 'extreme’ categories of PRE and AGE
and the lowest- and highest valued category quantifications are shown for the cognitive and socio-
emotional variables. With respect to the latter, for example, the variable problematic behaviour
(PB) has a label PB+ for non-problematic behaviour and PB- for problematic behaviour. The
linear quantification of two (extreme) categories of SEX, PRE and AGE are shown connected
with a line.

As for the interpretation of these results, consider the perpendicular lines of AGE and PRE which
reveal a boy-girl distinction on the cognitive- and socio-emotional variables which is independent
of the previous educational level. However, differences between boys and girls are found in both
dimensions, for example: boys are -on the average- older then the girls; tend to have relatively
better marks on applied arithmetic-tests (AA+); show less fear of failure (FF+), more ind‘cpendcm
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behavior (IN+); less accuracy (AC-) and are found to have less classroom involvement and
interest (1I-).

2
| Ty AA- PRE-'Lbo’
|
i PB-

0 PB+

PRE-"Vbo/mlk'
-1 O-
MA-
-2 -1 0 1 2
FIGURE 2

Selected rank-one category quantifications.
First dimension-horizontal axis; second dimension - vertical axis

7. CONCLUSIONS

The presented technique based on a joint bivariate analysis seems a potentially fruitful approach
to nonlinear K-sets CCA in case of large matrices; when X;k; «n such an algorithm, should be

computationally more efficient, in terms of core-memory and CPU processing time. Some pilot
applications have indicated that the algorithm is indeed a relatively fast way of computing an - at
least locally - stable CCA solution. Although a theoretical proof of convergence is not available (so
far), empirical studies of the iteration process have shown that convergence was obtained in all
cases. The technique is an interesting alternative to a nonlinear K-sets CCA approach as in the
programme OVERALS, which is based on the (objects x variables) data matrix.
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