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This paper outlines a method, called TRANSLAG, for fitting categorical
time series by means of optimal scaling. The method paves the way to
the application of autoregressive models, predictable components analysis,
smoothing filters and other techniques to any mix of nominal, ordinal and
numerical data. The main technical problem is to ensure that different
lags of the same variable obtain identical data transformations. Two spe-
cial cases of TRANSLAG are treated in detail: the autoregressive model
and predictable components analysis. Other useful models are briefly in-
dicated.
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1. Introduction

A categorical time series consists of a succession of observations that
sort each time point into a finite number of categories. Examples of cate-
gorical time series in psychology are: sequential behavioral observations in
a laboratory setting, presence and absence of assumed therapeutic factors,
measures of sleeping stadia, moods and emotions, histories of life events, di-
ary data and so on. Applications and examples of (categorical) time series in
the social sciences can be found in Anderson (1963), Jones, Crowell and Ka-
puniai (1969), Glass, Wilson and Gottman (1975), Hibbs (1977), Kratochwill
(1978), Revenstorf, Hahlweg and Schindler (1978), Landis and Koch (1979),
Cook and Campbell (1979), MacCleary and Hay (1980), Gottman (1981),
Bohrer and Porges (1982), Visser (1982), Kazdin (1982), Gorsuch (1983),
Gregson (1983), Kroonenberg (1983), Levenson and Gottman (1983), Barlow
and Hersen (1984), Molenaar (1985, 1987), Immink (1986), Brunsdon and
Skinner (1987), Larsen (1987), Bijleveld (1989), Oud, van der Bercken and
Essers (1990), Von Eye (1990), Bijleveld and De Leeuw (1991) and Skinner
(1991).

Good introductions into classical techniques for analyzing time series are
Shumway (1988) and Chatfield (1989). The vast majority of these techniques
is based on linear models that apply to numerical data only. This paper stud-
les an extension of some of these models to categorical series. More specif-
ically, we deal with autoregressive models and with predictable components




2 FITTING CATEGORICAL TIME SERIES

analysis. These models apply to series with at least 50 time points, assume
equally spaced time intervals and only use sample information. The method,
called TRANSLAG is based on the OVERALS framework for polyset canoni-
cal correlation analysis of categorical data (¢f. Van der Burg, De Leeuw and
Verdegaal, 1988; Gifi, 1990). The insertion of lagged series makes it possible
to formulate many time series models as special cases of OVERALS. The main
technical problem we solve is the minimization of the loss under the additional
restriction that different lags of the same series are subject to the same data
transformation.

Section 2 introduces some notation, the TRANSLAG optimization problem
and its solution. Section 3 and 4 discuss two special cases in detail: Section 3
describes the autoregressive model and Section 4 deals with predictable com-
ponents analysis. Section 5 suggests additional ways to use TRANSLAG and
indicates some areas for future research.

2. Method

Suppose that m categorical series on n time points are coded into in-
dicator matrices G; (j = 1,...,m). Let k; be the number of categories of
series j, let D; = G;'G; be a diagonal matrix of marginal frequencies and let
s = Zj kj. Categories are quantified by postmultiplying G; by an initially
unknown vector of weights y;, so z; = G;y; produces a quantified series z;.
For ordinal and interval measurement levels, it is common practice to restrict
the sequence of y; values to be weakly monotonely increasing or to increment
with fixed steps. See Gifi (1990) for details. A concise form to write the

n X m matrix X = [21,...,zm] in terms of G; and y; can be obtained by
defining G = [G1y,...,G] and Y as a s X m matrix containing y1,..., ym as
its diagonal blocks. It follows that X = GY. Subscript t = 1,...,n is used
to index time and subscript j = 1,...,m is used to index series. In this way,

24 represents an m-vector of observations at time ¢ and z; denotes the entire
series j of length n. Both z; and z; are column vectors.

Time is introduced by means of the backshift matrix B, also used by
Bijleveld and de Leeuw (1991). The backshift matrix is functionally equivalent
to the backshift operator found in many books on time series and it is defined
as the n X n matrix

0 00 0 0
100 00
B=]010 6 0
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Premultiplying a series z results in the lagged series Bz. An l-lagged series
Bz contains element z;_; in its t-th row . Note how B handles end effects:
the first observation of Bz becomes zero and the final observation at time
t = n is shifted out. This treatment of end effects is consistent with the
standard methods to compute autocovariances, autocorrelations and so on.
Multiplying B by itself yields higher order backshift matrices. For example
By = BB defines a second order backshift matrix and can be used to generate
observations at ¢ — 2. The zero order backshift By is defined as the n x n
identity matrix and B’ is the forward shifting matrix. It is sometimes of
interest to obtain the difference Az; = z; — ;... The first difference can be
written as Az = (I— B)z, and the d-th difference is equal to A%z = (I—B)?z.

Suppose we define K > 2 sets of p linear combinations Z;,..., Zx as

L

Zy =) BiXAy,
1=0
Ly

Zk = Y BiX Ak,
1=0

where Lq,...,Lx > 0 are known lag numbers and where Z1,...,Zk are of

order n x p. The techniques discussed in this paper aim to find the minimum
of

K
o(Z; X; An,. .., Akr,) = Y SSQ(Z - Zi)
k=1

K Ly
=Y ssQ (z -y B,XAH),
k=1 =0

over Z, X and Ayy,...,Agr,. We call this the TRANSLAG problem and we
abbreviate the loss function as ¢(:). For particular choices of K and Ly the
function reduces to a number of interesting special cases. Additional flexibility
can be obtained by systematically restricting Ax;. For example, by setting the
entire j-th row of A to zero we exclude the I-th lag of the j-th series from
the k-th set. For the moment, we defer a more detailed discussion on how
these choices should be made and concentrate on the minimization of o(-).
In order to prevent the trivial solution o(-) = 0 with Z = 0 we normalize
the solution with 1'’Z = 0 and Z'Z = I,. We also require 1'’X = 0 and
dg X'X = I, where dg(A) stands for the diagonal matrix of the diagonal
elements of A. Postmultiplying Z and Z; by an arbitrary orthonormal matrix
does not change the loss, so ¢(-) is invariant under orthogonal rotation. In
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the sequel we assume that Z is oriented towards its principal axes. The first
dimension then corresponds to the best possible fit.

We minimize o(-) by an iterative algorithm that alternates over the three
parameter sets. Each of the steps lowers o(-) so alternating the steps converges
to a minimum. The steps are

a. minimization over Z for fixed Y and Ay by least squares
b. minimization over Ay; for fixed Z and Y by least squares
c. minimization over Y for fixed Z and Aj; by majorization

The unconstrained minimum of o(-) over Z is found by averaging, i.e.,

1 K L
Z = Z B X Ay

K
k=11=0

-—

Solving the two-sided Procrustes problem of finding the best fitting orthonor-
mal Z results in the desired constrained solution. A cheaper alternative (Gifi,
1990, p. 99) is Gram-Schmidt orthogonalization during the iterations, followed
by a final principal axes rotation after final convergence.

The minimum over Ajj,...,Axf, can be obtained as follows: Let Ug
denote a matrix that contains all included series of set k£ and let U,:' be
the Moore-Penrose inverse of Ux. The solution that minimizes o(-) over
A1y .-, ArL, I8 U,;"Z . This procedure can be executed for each set k =
1,..., K separately.

Minimizing ¢(-) over X = GY with G known, under side conditions
1’X = 0 and dg X'X = I is more complicated. The central problem is to find
the proper block-diagonal Y that holds the m vectors y; of category weights.
Vectors y; should satisfy the appropriate measurement level constraints as
well as the normalizations 1'D;y; = 0 and ¢} Djy; = 1 forallj=1,...,m. If
the latter conditions are met then 1’X = 0 and dg X'X = I will also be true.
Unfortunately, it is not possible to split the problem over the separate series
if we have lagged series in a single set. Also, we can not split the problem
over the separate sets since the same series may appear in more than one set
at the same time. The consequence of this is that alternating least squares
cannot be applied, and therefore we consider majorization. See Kiers (1990)
for references.

Let C; = BiG be a I-th order lagged version of G and let

Y=Y+ (Y -Y9)=Y+A
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where Y is some old solution satisfying all appropriate constraints. Writing
o(Y) for the loss as a function of Y only, and substituting Y = Y°+ A into
it, the loss can be written as

o(Y)=>,.85Q(Z -3, Ci(Y°+ A)An)
= 5,85Q((Z - X, Y Aw) - ) Cild Awy)

Define
Ly

P.=2Z- Z CiY °Api
=0

as the matrix of least squares residuals of the k-th set for Y?and let § = vec A.

Now
o(V) = o(Y) =25, tr PLT, CibAw)
+ 3 tr (5, CAAL)' (3, CiaAw)
=o(Y) =2 tr A'(, 35, ClPeAyy)
+8 (e A0 C) (AL Cn) 6
=o(Y%) — 26'u+ 8W6
where
K L
u = vec ZZC{P"‘%I
k=1 1=0
and
K Ly L
W= 35 Ao a) (S e 0.
k=1 =0 =0

Because §'Wé < a6 for any symmetric W if @ > A(W) the maximum
eigenvalue of W the loss is majorized by

o(Y) < a(Y?) — 26'u + ab’6.
If we substitute for § we find
b=vec (Y -Y%)=vecY —vec Y°=y—y¢°.

Let the update vector y* be given by y* = u/a. The problem of minimizing
the quantity —26'u + 6’6 over § becomes equivalent to minimizing

(y— 6’ +9) ' (vy— @ +9*)
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over y. This problem has the simple solution y = y° + y* for unrestricted y,
but if y is subject to constraints, which is generally the case, the solution is
also easy to find.

Since Y is block-diagonal with s(m — 1) elements equal to zero, the opti-
mal y will also contain s(m—1) zeroes. It follows that computing the complete
update vector y¥ is inefficient because only s values are actually needed to find
y. The remaining elements of y* are redundant and need not be computed.
Thus, instead of (y — (y° + y*))’ (y—(° + y*)) we can minimize

(v — (7 + 99)) (v — (35 + 9}))

over y; for each variable j = 1,...,m separately. The update vector y} is
given by
1 K Ly
yf = —Gj (Z > Bkaailj)’
k=11=0

where aj;; is the j-th row of Ay written as a column. The redundant elements
are ignored by this update. Solving the m subproblems under the appropriate
constraints will decrease the total loss o(-) over Y.

Since steps a., b. and c. all decrease the loss, iteration also decreases the
loss. We stop the algorithm of the loss difference becomes less than a treshold
of 0.0005. In many cases, this yields convergence in about 50-100 iterations.

3. Autoregressive models

The autoregressive model is very popular in time series analysis. The
model prescribes that the current score z; depends on a linear combination
of previous observations z;_1,2¢_3, ..., Z;— plus an error which incorporates
everything new in the series at time ¢ that is not explained by the past val-
ues. If the predictor lags z;_; are consecutive we obtain the well-known Box-
Jenkins AR(L) model (cf. Box and Jenkins, 1976). If only a particular lag
serves as a predictor, say z;_4 for quarterly series or z;_12 for monthly se-
ries, we arrive at a seasonal autoregressive model that can be used to portray
periodic phenomena.

The autoregressive problem is to predict a time series z; by a linear
combination of one or more lags z;; where [ = 1,...,L, i.e.

Ty =P1%4-1+ P2Li2+ -+ L2+ €

L
= Zd’l-’ﬂt—l + et
=1
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TABLE 1 )
Swedish Harvest Index (1749 - 1850). Source MacCleary and Hay (1980).

310 7 710 7 7 2 2 710 7 2 1 2 2 7 7 710
0o 7 1 2 7 7 2 710 710 2 2 2 2 7 2 710 9

710 9 7 9 9 9 7 7 2 2 2 7T 7 9 7 4 7 5 4

9 9 3 2 5 8 9 3 4 3 810 8 5 9 9 7 3 9 9

7 5 5 9 7 5 8 7T 4 8 7T 8 3 5 5 6 4 6 7 8

6 7

where we assume that E((El ¢1:ct_1)let) = 0. The model can be written in
matrix notation as

L
z= ZB;:L‘@ +e.

=1

Seasonal models can be specified by restricting some of the ¢’s to zero so
that the corresponding lags are excluded from the analysis. For categorical
data, the problem is to maximize the multiple correlation between z and the
predictor series Bjz over the weights and over the category quantifications y
in z = Gy. Formulated in TRANSLAG terms, we minimize the least squares
loss »

L
o(z;¢;a0,a1,...,a1) = SSQ(z,zao) + SSQ(z,E Biza;)

=1

over z, ¢ = Gy and ay, ..., ar under normalizations 1’2 = 1’z = 0 and 2’z =
z'z = 1, and possibly restrictions a; = 0 for some ! > 0. After convergence, the
regression weights ¢; can be found by applying standard projection techniques
to the optimally scaled data.

The question how many and which lags to include in the analysis can be
handled in more or less the same way as the iterative Box-Jenkins strategy
based on autocorrelations and partial autocorrelations (ACF’s and PACF’s).
There are two complications however. First, TRANSLAG does not require the
included lags to be contiguous as in the Box-Jenkins model. This has conse-
quences for the computation of the PACF, since the series that are partialled
out are not necessarily all lower order lags, so the standard way of computing
the PACF’s must be adapted. The second problem is more serious and has to
do with the effect of optimal scaling on the autocorrelation function. Because
ordinal and nominal transformations of the series will change the autocorrela-
tions of the series, the ACF’s may not be comparable across different models
that use different optimal transformations, and so the value of using these
ACF’s as an identification tool is questionable. Below we demonstrate that
the Box-Jenkins identification technique can still be used though, as long as
the most influential predictors are preserved.
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TABLE 2

Results of four ordinal autoregressive models.

lag AR(1) AR(2) AR(3) AR(4)

autocorrelations 1 .5038 .5016 .5022 .5015

2 .1661 .1509 1532 .1486

3 0050 -.0128 -.0114 -.0176

4 -0112 -.0133 -.0148 -.0127

5  .0192 .0072 .0073 .0070

regression weights 1 5041 .5691 5630  .5665
2 -.1344 -1077 -.1060

3 -.0433 -.0735

4 .0499

o 4960 .4851 .4835 4813

multiple 7 5040 5150 5164 .5187
modified Box-Pierce 24.89 20.67 2191 21.22

As an example we use the Swedish Harvest Index series listed in Mac-
Cleary and Hay (1980). The series consists of 102 time points and records the
annual Swedish grain harvest between 1749-1850 on a ten point scale. Mac-
Cleary and Hay argue that the data:-are measured on an ordinal scale (see
pp. 21 and 124), so standard Box-Jenkins techniques do not apply anymore.
The data are listed in Table 1. It is slightly different from the series listed in
MacCleary and Hay since we took the integer fraction of some entries that,
for some unclear reason, were not whole numbers.

We fitted four models to the series, the first-order through the fourth-
order autoregressive model under optimal monotone transformations of the
data. The results are summarized in Table 2. The columns of this table
correspond to each analysis. The first five autocorrelations of optimally scaled
series are very similar across all four analyses. This indicates that all models
show up with basically the same data transformation, which, as a matter of
fact, gives rise to a large tie-block in the middle categories. The regression
weight for the first-order term is largest in all solutions so the first order term
is the most important in predicting the series. Also, the loss value and the
multiple correlation do not decrease very much after lag 1 has been included.
The modified Box-Pierce statistic measures the amount of serial dependency
in the residual as expressed by the first 25 autocorrelations of the residual. For
numerical series, this statistic approximates a x? distribution with df = 25—1
under the nulmodel of no autodependence. None of the models leaves any
substantial autocorrelation in the residuals, so we conclude that a simple
AR(1) model is adequate here.

Now suppose that we remove all previous lags from the analysis so that
each model holds exactly one predictor lag. Table 2 contains the results of the
analyses for lags 1 to 4. The solution for lags 2, 3 and 4 do not fit very well.
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TABLE 3
Results of four ordinal exclusive lag models

lag lag 1 lag 2 lag 3 lag 4
autocorrelations 1 .5038 4870 3012 2276
2 .1661 1877 -.0796  -.0445
3 0050 0376 -.2113 -.0617
4 -0112 -0176 -.1007 -.2574
5 0192 0341 -.0617 -.1529
regression weights 1 .5041
2 .1882

3 -.2127
4 -.2575
o .4960 8121 .7881 .7426
multiple r .5040 1880 -.2120 -.2574
modified Box-Pierce 24.89 51.54 31.15 41.07

The autocorrelations for the lag 1 and 2 solutions are more or less similar,
but those for lags 3 and 4 are entirely different. This occurs because different
criteria are being optimized: the lag 2 analysis maximizes the second-order
autocorrelation, the third maximizes the third-order autocorrelation, and so
on. Thus, optimal transformations are not only data dependent, as is the
standard autocorrelation, but they are also model dependent.

The above analyses suggest that a good way to proceed is to work' in
a stepwise way. First, we select the most important lags, possibly based
on the ACF and PACF of the data treated at an interval level and fit a
model on them. Then by inspecting the autocorrelations of the residual less
informative lags may be dropped and more informative lags may be included,
and so on. Working this way, it is unlikely that abrupt changes will appear
in the transformation function since we preserve ‘good’ predictors.

4. Predictable components

Box and Tiao (1977) proposed a canonical analysis that extracts pre-
dictable components from multivariate time series. The first predictable com-
ponent is a linear combination of the original series that forecasts itself as well
as possible. Like PCA, the second component optimizes the same criterion,
but under the condition that it is orthogonal to the first. An obvious use
of the technique is to identify those components that can serve as smoothed
indicators of overall growth in, for example, the stock market. Alternatively,
the technique can be used as a dimension reduction device to bring out the
major time dependent characteristics of a multivariate data set.
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Let X of order n x m contain m quantitative measurements sampled at
n points of time. Suppose that 2; can be modelled by the multiple autore-
gressive process £y = ®12;_1 + P42+ -- -+ Przi_1 + e, where the P
are m X m matrices and where ¢; 1s an m-dimensional white noise process.
Box and Tiao (1977) show that this multivariate autoregressive process can
be reparametrized as a collection of m uncoupled univariate autoregressive
processes on some new series u;. The transforms works by finding linear com-
binations u; = Xa; for j = 1,..., m that are contemporaneously independent,
i.e. E(uju;jr) = 0 for j # j/, and that are ordered according to their respective
predictive powers. The predictability measure v; reflects how much the j-th
component can predict itself by a univariate L-th order autoregressive model
Ugj = freo1j + fohe—2j + ...+ frwi_L; + &5 = Uy + &, where fi are
scalar autoregressive weights. Let 6% = E(4?;) and let 07 = E(u?;) then the
predictability for u; is equal to y; = 67/0?, i.e. the proportion of variance
of u; explained by the systematic part ;. For the first predictable compo-
nent, the goal is to find the weight vector a; such that the linear combination
u#3 = Xay has maximum predictability 4;. Next, a second predictable com-
ponent, orthogonal to the first, can be identified, and so on. To see how this
problem can be solved using the TRANSLAG model we write all components

simulataneously as
L

U=) BUFR+E.
=1
Since U = X A we can rephrase this in terms of the observed data as

L L
XA=)Y BXAF+E= Z B XA+ E,
=1 =1

where A; = AF;. It is now easy to see that the problem of determining
maximum predictability is equivalent to finding the largest canonical cor-
relations between a set of the observed series X and a set of lagged series
[BX,ByX,...,BrX]. The relationship with CCA has been studied before
by Parzen and Newton (1980) and Velu, Reinsel and Wichern (1986). The
latter authors found that v; is equal to the squared canonical correlation. For
categorical data, the problem is now to minimize

L
o(Z; X; Ao, ..., AL) = SSQ(Z, X Ao) +SSQ(Z, Y _ BiX Ay),

=1

over Z,X = GY and Ao, ..., AL under constraints 1’2 =0,1'X =0,2'Z =1
and diag X'X = I. The predictable components are then equal to U =
X Ag. Since U approaches the orthogonal matrix Z the components are nearly
orthogonal.
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TABLE 4
Diary data (n = 131)

EPX I SFA EPX I SFA EPX I SFA
1 1 2111 31 45 2 111151 89 2 211 2 4 2
2 3 2111 11 46 211115 1 90 3 2 11 3 4 3
3 32111 21 47 21111 31 91 2 21113 3
4 3 2111 31 48 21111 51 92 2 2 3111 2
5 3 2111 21 49 3111132 23 3 211 2 2 2
6 4 2 21111 50 211 21 1 2 94 3 2 21 2 5 2
7 4 2111 5 1 51 3 2 2 21 2 1 95 2 211113
8 31 211 5 1 52 3 21 21 4 1 96 3 211 3 4 3
9 4 211111 53 3 21 2 2 5 2 97 2 2113 4 2
10 4 1111 2 1 54 2 21 21 2 3 98 2 21115 3
11 12 211 21 55 2 21 21 5 1 99 221113 2
12 1 2111 41 56 2 2111 3 1 100 2 2113 4 3
13 2 211112 57 2111 2 1 2 101 2 211313
14 2 2111 2 2 58 2 2111 31 102 3 211323
15 2 2 211 4 2 59 2 211111 103 3 2113 2 3
16 22111 2 2 60 2 2111 2 3 104 2 2113 2 3
7 3 2111 2 2 61 2 2111 21 105 3 2 11 3 2 3
18 3 2111 2 2 62 12111 2 2 106 2 2113 5 3
19 3 211 2 3 2 63 1221112 107 3 2 2 2 3 5 3
20 2 2 2111 2 64 2 2 211 4 3 108 3 2 221 31
21 2 211131 65 2 211111 109 3 21 2131
22 2 212111 66 3 2211 5 1 110 3 21 21 5 2
23 31121 2 2 67 1211111 111 4 212 313
24 211 21 2 2 68 2 2111 51 112 1 21 2 1 41
25 3 1121 2 2 69 2 211 3 4 3 113 121111 2
26 111 2 1 4 2 70 1 2211 2 3 114 2 2 211 4 1
27 11 11 2 1 2 71 12113 1 2 115 1 2111 86 2
28 2131113 72 2 2111 2 2 116 22112 5 3
29 211111 3 73 2 2 211 2 2 117 2111 2 4 2
30 3 2 21 2 5 2 74 2 2111 4 3 118 2 211 3 4 3
31 4 2 11 2 21 75 4 2 211 5 3 119 3 23131 3
32 2 2111 2 2 76 2 2113 1 2 120 2 21111 1
33 22111 2 3 77 2 2.1 11 3 2 121 2111 2 1 2
34 2 2111 21 78 3 22 21 1 3 122 2111 2 3 2
35 2 211131 79 2 21 2 2 2 2 123 121113 3
36 2 221133 80 3 21 2 2 2 2 124 11 211 35 2
37 2 2 212 2 2 81 3 21 2 3 3 3 125 21113 3 3
38 2 211 2 2 3 82 3 212 2 2 3 126 211112 1
39 1211 2 2 2 83 3 2 2 2 2 4 2 127 2211113
40 2211121 84 3 2113 2 3 128 2 2 21 2 2 2
41 2211111 85 3 2112 3 3 129 2 2113 5 3
42 2 2 211 1 2 86 4 2 3 1 2 1 3 130 3 2 112 5 2
43 1 2 11 1 11 87 2 2112 12 131 11 21 2 3 2
44 2131 2 5 3 88 2 2 213 1 2

As an example, let us consider the diary series in Table 4. The series
records a number of psychological and medical factors and some daily ac-
tivities of a woman in her mid-twenties for 131 consecutive days. The seven
series measure: E = Emotional State (1=down, 2=normal, 3=good, 4=active-
hysteric), P = Physical State (1=ill, 2=healthy), X = Sexual Activity (1=no,
2=some, 3=much), I = Indisposed (1=no, 2=yes), S = Smoking (1=none or
missing, 2=1-10 cig., 3=10+ cig.), F = Food (1=Italian, 2=Dutch, 3=Bread,
4=Snacks, 5=other) and A = Alcohol (1=none or missing, 2=1-3 beer/wine,
3=3+ beer/wine). The intent of the data collection was to examine what
factors might influence the occurrence of eruptive fever. Our major interest
concerns the problem whether anything can be predicted at all in these data.
We assume that the influence of an observation wears out in about five days
so we set L = 5.

The squared canonical correlations are respectively 0.74,0.58, 0.32, 0.26,
0.26, 0.22, and 0.16. The first two predictable components are plotted in
Figure 1. In order to interpret the components it is useful to look at the
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FIGURE 1
First and second predictable components of the Diary data

correlations between the predictable components and the series from which
they were constructed. There is a total of 6(lags) x 7(series) x 2(dimensions) =
84 correlations to look for. Table 5 reports these correlations. In addition
" to the correlations, it can be helpful to study the scaling of the individual
categories. A sensible way to do this is to plotY Ay, Y A; and so on.

The first component has a very strong periodic tendency corresponding
to a 28 day menstruation cycle. The correlation between the period series
and the component is 0.99. A second series that ‘loads’ on this component is
emotional state. The second component depends on a combination of physical
state, smoking and alcohol consumption, with physical state being the most
important contributor. It turns out that the dips in the second component ex-
actly match the periods of illness, while the peaks correspond to periods with
much drinking and smoking. The correlations for the higher lags diminish
for nearly all seven series. This not only indicates that first-order time rela-
tionships dominate higher order influences in the series themselves, but also
leads to the conclusion that there are few, if any, clear dynamic cross-variable
relationships between the series.

5. Discussion

This section discusses the performance of the algorithm and suggest ad-
ditional ways of using TRANSLAG.

Given the complexity of the computations the numerical stability of the
algorithm is remarkably stable. Even extremely tight convergence criteria
like 1E —~ 7 do not affect convergence, and so far we have not seen cases in
which the algorithm diverges. Like OVERALS, not much is known about the
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TABLE 5
Correlations between series and the predictable components 1 and 2.

Component 1 Component 2
lag E P X 1 S F A E P X I S F A
o 39 -.04 -10 99 -07 -.06 -.10 A6 .73 .03 .03 .71 -12 .45
1 35 -.05 -.09 .79 -.04 .04 -.01 A3 48 -10 .03 .37 -11 .35
2 .28 -.06 -.08 .57 -.02 .08 -.08 12 42 .00 .01 .28 .00 .37
3 21 -04 -09 35 .00 .13 -.05 A1 .25 -.06 .00 .27 .03 .24
4 11 -05 -.10 .14 .02 .08 .02 10 .17 01 .03 2 -.02 .28
5 11 -.10 -.10 -.07 .02 .00 .09 -04 .15 -13 .03 .19 .12 .33

occurrence of local minima in some of the more complicated cases. In our
limited experience, we got the impression that local minima do not constitute
a serious problem as long as tight convergence criteria are maintained. As the
present algorithm is rather slow more research will be needed to improve the
computational speed of the method.

We also do not know how stable the results are. It is well-known that
in the presence of autocorrelation least squares estimates remain unbiased,
but not are minimum variance. Moreover, multicollinearity in higher-order
autoregressive models may add to the variability of the estimates. Systematic
applications of randomization methods such as the jackknife or bootstrap may
shed light on the stability of the parameters.

TRANSLAG only handles complete data matrices. In principle, it is pos-
sible to allow for missing data according to the strategies outlined in Gifi, or
by using imputation methods. This is also a point of further research.

Besides autoregression and predictable components, there seem to be at
least three other applications of TRANSLAG. A first of these is smoothing
of categorical series. Suppose that we want to smooth z by the weighted
running mean smoother y, = Zf:—K Zy_rar, Where a_g,...,ax are given
filtering weights that determine the properties of the smoother. Some well-
known choices correspond to the running average filter, the Hanning filter,
the Spencer 15-point filter and the Gaussian kernel. Recent overviews of
such techniques are Goodall (1990) and Hastie and Tibshirani (1990). Using
TRANSLAG, it is not difficult to apply these filters to categorical series. If we
minimize

K
o(z;z) = Z SSQ(z — Bizag)
k==K

over z and z = Gy then
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is the filtered series. This technique seems especially useful to quantify uni-
variate series for with no additional information available, other than being
smooth.

Another possibility is intervention analysis (see Glass, Willson and Gott-
man, 1975). The goal of intervention analysis is to infer whether a specific
event has an effect on the level of the series. As an example, let z; denote a
target series and let z, be the series that codes the presence and absence of
the event. What we would like is to do is to use a common t-test conditional
on the level of 5. However, this procedure is questionable since z; is likely
to be autocorrelated. Therefore, the t-test is only used on the residuals after
an autoregressive model has been fitted on z;. In terms of TRANSLAG we
minimize

L
o(z;z1,%2;00,...,ar, ) = SSQ(z — z1a0) + SSQ(z — 28 — ZB;zla;)

=1

over the relevant parameters. The regression weights can be found—and sub-
sequently tested—by projecting z, on the predictor space after optimal trans-
forms have been obtained.

Finally, the most spectacular and far-reaching application is the analysis
of spatial data. In time series analysis, observations are linked in the direction
of time by means of the backshift matrix. Spatial dependency problems are
more complicated since observations may influence each other in several di-
rections simultaneously. Examples of spatial dependency occur in agriculture
where experiments plots have common borders, in the analysis of social net-
works and in the analysis of regional data. It is possible to code dependencies
among analysis units by means of an adjacency matrix, a more general form
of the backshift matrix. Note that the fact that B is a backshift matrix is not
used anywhere in Section 2 so the algorithm holds for any real n x n matrix
B. A systematic study of this largely unexplored but vast area could easily
fill up a thesis.
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