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Non-linear canonical correlation+

Eeke van der Burg and Jan de Leeuw

Non-linear canonical correlation analysis is a method for canonical correlation analysis with op
scaling features. The method fits many kinds of discrete data. The different parameters are sols
an alternating least squares way and the corresponding program is called CANALS. An applica
CANALS is discussed and also a study of the stability of the scaling results.

1. Introduction: linear canonical correlation analysis

In classical multivariate analysis canonical correlation is a well-known methoc
relating two sets of variables to each other. It was Hotelling who in 1936 intr
this type of analysis. Since then a number of scientists have written about car
correlation. Amongst others Thomson (1940. 1947), Bartlett (1948), Anderson
Hooper (1959), Horst (1961). Meridith (1964), Norman (1965). Mukherjee (196
Stewart & Love (1968), Weiss (1972), Thorndike & Weiss (1973) and Barcikow
Stevens (1975). A good overview can be found in Buchanan (1979). In practic
guestions about the relations between two sets of variables are very common.
is a rather frequent use of canonical correlation analysis (CCA) in econometric
instance Waugh (1942). Tinter (1946), Finneyv (1956) and Adelman el al. (1969
psychological research CCA is not very common although there are some appl
(e.g. Wood & Erskine, 1976). Weiss (1972) gives some references for applicatio
research on counselling psychologyv. Later on in this article we treat an examp
political science. We examine the relation between party preferences and opini
several issues among members of the Dutch Parliament.

When applying canonical correlation analysis, we consider two sets of varial
Let us denote the first set by a n x m; matrix H; and the second set by a n x;
matrix H,. The columns of H; and H, represent variables and the rows objects
individuals. A variable or data vector consists of n observations. The variables o
first set and second set both span a linear subspace, L; and L, respectively. Ca
correlation analvsis looks for common directions in the two subspaces. If L, an
have a subspace in common. we have a case of perfect fit. If L; and L, have n
in common. CCA looks for directions in Ly and L, which are as similar as poss
this case the fit is imperfect. and we need a measure for the goodness-of-fit. N
the correlation hetween the corresponding directions is used for this purpose. "
correlation is called the canonical correlation and the directions are called the
canonical variates. The canonical variates are one-dimensional subspaces of L,
and will be denoted by H;a; and H, a,. The vectors a; and a, are called weig
vectors or canonical weights. a; consists of m; elements and a, of m, elements.
finding the best linear combinations in L; and L,, we may look for the second
linear combinations. and so on p times. We therefore talk about weight matric

tThe present article ix an expanded and revised version of a paper presented at the European !

of the Psvchometric Society in Groningen (The Netherlands) in June 1980.
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(e.g. Wood & Erskine. 1976). Weiss (1972) gives some references for applications
research on counselling psychology. Later on in this article we treat an example -
political science. We examine the relation between party preferences and opinion
several issues among members of the Dutch Parliament.

When applying canonical correlation analyvsis, we consider two sets of variable
Let us denote the first set by a n xm, matrix H; and the second set by a n x m,
matrix H,. The columns of H; and H, represent variables and the rows objects or
individuals. A variable or data vector consists of n observations. The variables of t]
first set and second set both span a linear subspace. Ly and L, respectively. Cano
correlation analysis looks for common directions in the two subspaces. If L, and L
have a subspace in common. we have a case of perfect fit. If L, and L, have notl
in common. CCA looks for directions in L; and L, which are as similar as.possibl
this case the fit is imperfect. and we need a measure for the goodness-of-fit. Norn
the correlation between the corresponding directions is used for this purpose. Thi
correlation is called the canonical correlation and the directions are called the
canonical variates. The canonical variates are one-dimensional subspaces of L; an:
and will be denoted by H, a, and H, a,. The vectors a,; and a, are called weight
vectors or canonical weights. a; consists of m, elements and a, of m, elements. Af
finding the best linear combinations in L; and L,. we may look for the second be
linear combinations. and so on p times. We therefore talk about weight matrices
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of the Psychometric Society in Groningen (The Netherlands) in June 1980.
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an alternating least squares way and the corresponding program is called CANALS. An application of
CANALS is discussed and also a study of the stability of the scaling results.

1. Introduction: linear canonical correlation analysis

In classical multivariate analysis canonical correlation is a well-known method of
relating two sets of variables to each other. It was Hotelling who in 1936 introduced
this type of analysis. Since then a number of scientists have written about canonical
correlation. Amongst others Thomson (1940. 1947), Bartlett (1948), Anderson (1958),
Hooper (1959), Horst (1961), Meridith (1964), Norman (1965), Mukherjee (1966),
Stewart & Love (1968), Weiss (1972), Thorndike & Weiss (1973) and Barcikowski &
Stevens (1975). A good overview can be found in Buchanan (1979). In practice
questions about the relations between two sets of variables are very common. There
is a rather frequent use of canonical correlation analysis (CCA) in econometrics, for
instance Waugh (1942), Tinter (1946), Finney (1956) and Adelman ef al. (1969). In
psychological research CCA is not very common although there are some apphcatlon&
(e.g. Wood & Erskine. 1976). Weiss (]94 ) gives some references for applications in
research on counselling psychology. Later on in this article we treat an example from
political science. We examine the relation between party preferences and opinions on
several issues among members of the Dutch Parliament.

When applying canonical correlation analvsis, we consider two sets of variables.
Let us denote the first set by a 7 x m, matrix H; and the second set by a n xm,
matrix H,. The columns of H, and H, represent variables and the rows objects or
individuals. A variable or data vector consists of n observations. The variables of the
first set and second set both span a linear subspace. Ly and L, respectively. Canonical
correlation analysis looks for common directions in the two subspaces. If L, and L,
have a subspace in common. we have a case of perfect fit. If L, and L, have nothing
m common. CCA looks for directions in L; and L, which are as similar as possible. In
this case the fit is imperfect. and we need a measure for the goodness-of-fit. Normally
the correlation between the corresponding directions is used for this purpose. This
correlation is called the canonical correlation and the directions are called the
canonical variates. The canonical variates are one-dimensional subspaces of L; and L,
and will be denoted by H, a, and H,a,. The vectors a, and a, are called weight
vectors or canonical weights. a; consists of m elements and a, of m, elements. After
finding the best linear combinations in L; and L,. we may look for the second best
linear combinations. and so on p times. We therefore talk about weight matrices

T The present article is an expanded and revised version of a paper presented at the European Meeting
of the Psychometric Society in Groningen (The Netherlands) in June 1980.
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Figure 1. Schematic representation of canonical correlation analysis.

A (m, x p) and A,(m, X p). Schematically canonical correlation analysis can be
represented as in Fig. 1 (van der Geer, 1971).

Usually only those linear combinations are chosen which form an orthogonal basis
for L, or L,. Thus the canonical correlation problem is:

Find weight matrices A; and A, in such a way that the columns of H; A, and
H, A, are as similar as possible and so that H; A, and H, A, form orthogonal
bases. '
Starting from standardized variables and using a least squares formulation, the
canonical correlation problem is:

minimize (SSQH, A;—H,A,))/np over A, and A,
while A'H/H A, =nl,
A,HyH, A, =nl,
h/h;=n, j=1..m
h/e=0
Least squares formulation of canonical correlation analysis
The expression (SSQ(H; A, —H, A,))/np is called the loss function or stress and is

abbreviated as o(H, A); SSQ(X) is the sum of squares of the elements of X and e is a
vector with n ones.

2. CANALS: non-linear canonical correlation analysis

The canonical correlation analysis discussed so far can be viewed as linear CCA.
Linear refers to the fact that the CCA results are invariant under linear
transformations of the data. We would now like to introduce non-linear canonical
correlation analysis, a method realized in the program CANALS (de Leeuw, 1973;
van der Burg & de Leeuw, 1978). Non-linear C'CA is canonical correlation analysis
with results invariant under certain non-linear transformations of the data. More
specifically we define non-linear CCA as a method that looks for weight matrices A,
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and A,, exactly like classical CCA, but at the same time looks for an optimal scaling
of the data. The data consist of variables that can take only a finite number of
values, the category scores. In non-linear CCA the category scores of each variable are
rescaled in such a way that the rescaled variables belong to a space of ‘permitted
transformations’ (the optimal scaling space). The rescaled values of the category
scores, the category quantifications, are optimal in the sense that they optimize the
canonical correlations, and we can therefore speak of optimally scaled variables.

The type of non-linear transformations permitted is determined by the assumed
measurement level of each variable, which can be discrete nominal, ordinal or
numerical. Discrete means that we consider the original category scores as coming
from a domain of discrete values, instead of a continuous interval. Thus we can
speak as well of category numbers instead of category scores.

A discrete measurement level implies that observations from one category remain in
the same category under rescaling, or putting it in another way, observations with
the same category number get the same category quantification. If h; is an original
data vector consisting of n observations, q; is a rescaled data vector consisting of n
observations and ~ is the relation ‘in the same category’, the discrete character of a
variable is formulated in terms of the following restrictions:

hij~hy = qi=aqy (k=1 nj=1,..m).

The nominal measurement level imposed on a variable does not immply any further
restrictions for that variable.

The ordinal measurement level implies also that the order of the original category
numbers should be maintained. If < is the empirical order relation of the data vector
h;, the following restriction holds:

hij<hkj = uSqy (Lhk=1l..nj=1 .. m).

The numerical measurement level implies that only linear transformations of the
data vectors are permitted:

gij = Cihy+k;, (i=1..nj=1._.m; ¢;. k; constants).

For a more detailed treatment of the different measurement levels see Young et al.
(1976) and Gifi (1980, 1981).

We denote the optimal scaling space. defined by the original data vector h;. for
each variable by C(h;) (j = 1,...,m). In the following least squares formulation of the
non-linear canonical correlation problem, the vectors 4;.....4q, are parameters, in
contrast with the formulation of the classical CCA, where hy,....h, were the data. We
use the names (original) data vectors or variables for the h;. and the names rescaled
data vectors or optimally scaled variables for the q;. The term variable is used in a
double meaning, in concrete sense as a data vector h;. and in abstract sense as a
characteristic on which objects can have a score (category number). Thus for each
variable j=1.....m the CANALS program rescales the variables or data vectors h;
into optimally scaled variables q;.

Collecting the first m,; vectors q;. - Qm, In the columns of Q; and the last m,
vectors qy,, 4 1..... q,, in the columns of Q,. and using the same notation as in section 1
for the loss or stress, namely:

c(Q A) = (SSQ(Q, A, —-Q:A,))/np.
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the least squares formulation of non-linear CCA is then:

minimize ¢(Q.A) over A, A, and q;.....qy
hile AQ.) A, =L
while 1,Q1'Q1 1 " ? orthogonalit}' restrictions
A)'Q,Q.4, = izI.j -
q;/'q; = n.
qgie=0, j=1..m
q;€Ch)).

Least squares formulation of non-linear canonical correlation analysis

3. The ALS-algorithm and its subproblems

The loss function o(Q. A), as defined in the preceding section, has two major types of
parameters: the weight matrices A and A,, called model parameters, emanating from
the canonical correlation problem, and the matrices Q, and Q,, called scaling
parameters. because they represent the scaling part of the non-linear CCA. The non-
linear canonical correlation problem can be solved in many ways. We prefer an
alternating least squares (ALS) method. Characteristic of ALS-methods is that they
solve least squares problems iteratively by splitting up the complete set of parameters
into ‘nice’ subsets and solving subproblems for subsets of parameters at a time
(holding the other parameters fixed at their present value).

This treatment of non-linear CCA agrees with the treatment of additive structure
analysis (ADDALS) of de Leeuw et al. (1976), regression analysis
(MORALS/CORALS) of Young et al. (1976), principal components analysis
(HOMALS and PRINCALS) of de Leeuw & van Rijckevorsel (1980) and three way
PCA (TUCKALS) of Kroonenberg & de Leeuw (1980). In this series canonical
correlation analysis with m sets (OVERALS), canonical discriminant analysis
(CRIMINALR), partial canonical correlation analysis (PARTALS) and path analysis
(PATHALS) will follow (Gifi, 1980, 1981).

3.1. Defining the sequence of subproblems

As a result of the large number of parameters in the non-linear canonical correlation
problem, there is much freedom in the choice of the subsets and the order of solving the
subproblems. At a global level, a natural way of partitioning the parameters is into
subsets A;, A,, Q, and Q,. But there are several ways of alternating:

1ALA, ol A, A, 1 A,
2Q,Q; 2 Q, 2 Q,
3 ALA, 3 A,
4 Q; 4 Q,

Young ef al. (1976) use the first and second method. They do not realize that the
orthogonality constraints on one set are violated as soon as one of the columns of Q,
or Q, is updated. Because the q; has to lie in the optimal scaling space C'(h;), the
orthogonality restriction on the set to which the q; belongs cannot be kept during
iteration. Young et al. solve this by reorthogonalizing the corresponding canonical
variates, each time Q, or Q, is updated. But this is against the rules of alternating
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least squares methods. So their MORALS/CORALS algorithm is incorrect and §
consequently divergence may occur. Their algorithm is a proper ALS-method only in
the case of one variable in one of the sets.

We choose the third method for the CANALS program. As we want to use the
same solutions for the scaling parameters as Young et al. use, we meet the same
difficulty of violating the orthogonality constraints. To overcome this difficulty we
modify the algorithm in such a way that we still have a non-linear generalization of
CCA, but not the one suggested in Section 2. The modification we make is minimizing
the loss function under only one orthogonality restriction. The advantage of this
modified algorithm is that the solutions for the parameters are easy to compute. The
CANALS formulation of non-linear CCA is the following:

minimize o(Q.A) over A; A, and q, ..., q,
while AVQ QA =nlor AyQ,Q A, =l

9,'q; ="
qj,e=0, j—_-].,.,.,m ;
q;€ C(h;).

CANALS formulation of non-linear CC A

We now have to prove that the CANALS problem formulated above is a real
generalization of the linear CCA problem formulated in Section 1. Furthermore we
have to show that it does not matter which orthogonality restriction is kept for the
solutions of the canonical weights. We will state this in a theorem in the next section.

3.2, Generalizing linear ('(' 4

To prove that the CANALS problem is a real generalization of linear CCA as
formulated in Section I means that we have to show that we get equivalent results
for the weight matrices whether we solve the linear CCA problem or the CANALS
problem. Define two matrices as equivalent if they differ only by a diagonal or
orthogonal transformation. The difference between the CANALS problem(s) and the
linear CCA problem is in the number of orthogonality constraints. so the following
theorem proves the generalization.

Theorem

Minimization of 6(Q. A) over A; and A, with

AVQ QA =xT and A,Q,Q,A, =l (1)
minimization of ¢(Q. A) over A; and A, with A,’Q,'Q, A, = »L (2)
minimization of g(Q. A) over A; and A, with A,'Q,'Q, A, = »l. (3)

all give equivalent results for A and A,.

Proof

We suppose for convenience that the columns of Q; and Q, are linearly independent.
The proof can easily be generalized to the case in which we do not make this
assumption. Solving problem (1) for A; and A, is a standard canonical correlation
problem (see. for instance. van de Geer, 1971). The parameters A; and A, can be
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expressed in terms of the eigenvectors of the matrix:

T= (QLIQU_%Q{Qz(Qz/Qz)_%‘
Suppose the truncated singular value decomposition of this matrix is (Stewart, 1973):

AW . s o « Sre.r celeces .
T=ZAW. - g4 e 7 ,c7§ 0{%(«6? 55 caet CCmcrter] /ﬁ\ff
with Z a m, x p matrix and W a m, x p matrix. both witii"orthonormal columns, and
with A a p x p diagonal matrix containing the 7 largest eigenvalues. Then the loss
function is minimal for the following values of A} and A:

A = 0@ Q) 7 = O
A= Q) Q) FW. = 7

A
We have added a superscript to A; and A, to show that we have solved problem (1).
The solution of problem (2) is seen by reformulating the sum of squares:
SSQ(QL A1 “‘Qz A:)
= mintr(nI—24,Q,' Q) T(Q» Q,)* A, +A(Qy Q,)%(Q, Q)" A,).

This expression is minimized over A,, unrestricted, for

A7 =(QQ) FTQ/Q) A,

For A, the same results hold as for (1). Thus: p
5 , N .m.‘ lg y { UX"L ' __)[ ;" p "/)—/J . " /ZZ
Al =nQ,/Q) " Z Ten s g ciak X e fedh cJeif e

A22 = \//“(Q21Q2)—%WAA

The solution of problem (3) is analogous to that of problem (2): -,
A0 = V(Q'Q) FZA, et i@ Vs PR Naay A S Vi 4,7%
A =nQyQy) W,

We see that A,' and A,! are equivalent to A;? and A,? and also to A;> and A;>.
Note that we find different results for the minimum stress. By substituting the
results for A, and A, we get:

2 2

min stress = 2—— Z A, (1),
Ps=1
1 & .

minstress = 1 —— ) A2 (2 and 3).
ps:1

3.3. The difference between the various generalizations
Let us denote the three generalizations of linear CCA by:

(1) the original non-linear CCA problem (Section 2),
(2) the CANALS formulation with the first restriction,
(3) the CANALS formulation with the second restriction.

In the preceding section we minimized the loss function over the canonical weights;
substitution of the various solutions gives a stress (as a function of the scaling
parameters Q) for every problem. By substituting the canonical weights the imposed
orthogonality restrictions are automatically satisfied. This means that the problem
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left after eliminating the weights is minimizing the stress ¢(Q) over Q, while the
columns of @ are standardized and belong to the optimal scaling space, conditions
which are the same for all three problems. As we saw in the preceding section. the
stress values (minimized over weights) are:

2 &,
0-1<Q) = 2‘5321 fogs
7,(Q) =1 lzp:)z
2 - LT s

Ps=1

P
U3(Q) = l_l Z )'52‘

Ps=1
We see that ¢, = 05, which means that both the CANALS problems are the same
after eliminating the canonical weights, and thus give the same results for Q. We also
see that o, #0,, which means in general that ¢, and ¢, have different minima and
also that these minima occur for different values of Q. An exception is the case that
the number of dimensions equals one (p = 1). Thus if p>1 the solutions for the
scaling parameters of (1) are different from those of (2) and (3). In the previous
section we found that the solutions for the canonical weights of the three problems
are equivalent, but as the solutions for the scaling parameters of the original non-
linear CCA problem and the CANALS problem(s) are different, the solutions of (1)
and (2) are not comparable any more. However, the two CANALS solutions are
comparable: the solutions for the scaling parameters are identical and the solutions
for the canonical weights are equivalent.

3.4. Switching from one condition to the other

As stated in Section 3.1, we use the third sequence of parameter subsets for the ALS-
method of the CANALS program. We could choose one orthogonality restriction and
minimize the loss function over the parameter subsets consecutively. But it is
difficult to solve for parameter subsets which are also restricted by an orthogonality
constraint. So the trick in the CANALS program is that we minimize the loss
function over the parameters of one set, while keeping the orthogonality restriction
on the other set. The following scheme gives the order of solving the parameters and
the corresponding restriction. Remember that, when we solve for say A;. the other
parameters A,, Q, and Q, are fixed.

1 A; with A,"Q,"Q, A, = nl,

2 Q, with A,’Q,Q, A, = nl,

3 A, with A,7Q,"Q, A, = nl,

4 Q, with A,Q,"Q, A, = =nL
We switch from one orthogonality restriction to the other during the iteration
process. We do this by transforming the canonical weights in such a way that the

other condition holds without changing the stress value. This can be done using the
transformation matrix § which satisfies

A,Q,Q A, =n8Y
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if the first restriction holds. or using the matrix R which satisfies
A,'Q, QA = RR
£ the second condition holds. Here all the parameters A and Q are fixed. Every
symmetric matrix can be <plit into a product of two regular matrices. In the
CANALS program we use a Choleski decomposition (Stewart. 1973). If
AQ, Q. A =1 and AyQyQ.A.= 1S’

A

the matrices
A7 =A,8 and A, = A8
are the transformed weights which give the same stress and the other condition.
because:
SSSQQ A, —QyAy) = tr (S8 + nI—2A,"Q,"Q; Ay) =55Q(Q; 4,4 T-Q,4A,7)
and »

A,7Q QA7 = S 1HA,Q,Q; Azisvl)/ = nL

3.5. Satisfying both conditions

Since a solution. asymmetric in the weights, is somewhat difficult to interpret it is
natural to transform the solution for the canonical weights to values which satisfy
both conditions. We saw in Section 3.2 that the CANALS problem under the second
restriction has solutions for A (and fixed Q) which equal:

AT =UnQ,Q) 2.
A, = V/”(Qz/ Q)" : W'A*_f';

The diagonal transformation A~ ! of the second weight mairix ensures that both
conditions hold. By this transformation the stress value will change to a value

2 2 EP: .
stresg = 2—— A

Ps=1 °
which is the stress of the original non-linear CCA problem. This does not mean that
the solutions we found are the solutions of the original problem. This is true for the
canonical weights only when the scaling parameters are fixed. We showed in Section
3 3 that the CANALS solutions are not comparable with the solutions of the original
non-linear CCA problem and the above transformation does not really change the
solutions. but merely changes the scale of the canonical weights of the second set.

4. The solution of the subproblems

As a result of the alternating least squares method. the parameter subsets are not
uniquely notated by A, A,. Q; and Q,. We need an extra index to mark the update
number. We use a superscript for this purpose. If we use a zero index for the initial

‘
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values, the order in computing the CANALS parameters is:

Do A s
Alo, AZO, Qlo_’ on F “/ / 7 (\?‘/& C*\!/:
| /
Al AR .
2 Q1k+1

7

-3 A13k+2,A23k+1 ;\\
4 A,3k+2
5 Q2k+1 ) f :
6 A1M§k+3eA23k+3- 2
T k=k+1

stop ¢
a2 g 30 2
In the fo]lovs:ing sections we discuss the solutioﬁﬁfgor the different barameters, while
holding the other parameters constant. We leave al] the update numbers and mark

the newly computed value of the parameters with a + sign to show that we are
dealing with a new update.

-

no

i

4.1 Model parameters or canonical weights

The standard solution for the mode] parameters invol
pseudo-inverse of the matrix Q; or Q,. Again we pref
approximation. For the weights of the first set thig 1s:
. . >

A" =A +0E, ) (

\m‘_»/fmﬁcﬂ g

ves the computation of the
er an alternating least Squares

with

I for element (J.s). o e '
0 for all other elements. =1 Mg =l ),

s

The parameter 6 js found by substituting A, *
differentiating the Joss over g

0 = q,(Q, A —Q,A,) /0. (J=T1..mg:s=1. L)

Q, A, —-Q, A;), is the sth column of matrix (@, A, ~Q,A,). The matrix A, can be
approximated several times before the next parameter subset is calculated. For A7
an analogous procedure can be used. In this case we have:

in the loss function and by

Shyty

{b

hé‘\;{

4
24

i
1h

. 0 =q,Q, A—Q A /. (J=my+1. . ms=1 )
2; +.2. Scaling paraneters

Tt

=

Till now we denoted the subsets for t}
short notation for the subsets q,

313

1€ scaling parameters as Q; and Q.. but this ix a
AAAAA Qm, and q,, ;. ....q,. In the CANALS program
we solve for the optimal valyes of the parameters q;- while holding A A, and

i--- Q1.9 1.....q, at a fixed valye. De Leeuw (1977) proved that o

ptimizing the
loss function over normalized g e C'(hy) can be solved by optimizing the loss function
over unnormalized q;€('(h;). and standardizing afterwards. It je possible to divide the
solution for scaling parameters into even more steps. To show this the stregs must be
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rewritten. Denote a row of matrix A; or A, by a;.

/ mi
SSQQ A QA = SSQ( q;a/—Q; A2+kZ1 A a’k’>
N k;]
Q< ' l g i s
=S8Q| q,a; — = Q,A,— > q.a/ )a;a; |+constant
j % ’;;}

=SSQ(g a; —q;a;)+constant
with

1

’

J %

‘_]jz

mi
(Qz A, Z A a‘k,> a;.
e
For q;€ ('(hj) the stress can further split into:
SSQ(q;a —q;8;) = 3 a,(SSQ(q,;—§,) +S8Q(q;— 1)),
with q; a vector of n elements. consisting of the mean quantifications of g; over
categories. l.e. element i of q; equals the mean of all ‘those elements of q; which
correspond to the same category number as the ith element. We can now see the
steps in solving for q; (j = 1.....my). The first step consists of computing ;. which
corresponds to minimization of the stress over q; unrestricted. The second step is the
sealing step and consists of computing:

(@) §; the vector of category means of the vector g;. This corresponds to the discrete
restrictions on the variable.
(b) q; the regression of vector §; on h;, the original variable. This corresponds to the

measurement level restrictions of each variable. The type of regression depends
on the assumed variable type.

The nominal regression is unrestricted, thus §; = q; (Fig. 2 left).

The ordinal regression is monotone because of the order restrictions imposed on the
variable. Thus q; is a monotone transformation of h; determined by q; (Fig. 2 centre).
The numerical regression is linear: q; is a linear transformation of h; determined by
q; (Fig. 2 right).

As the vector §; which should be regressed, can take only k; different values
(k; = number of categories of variable j), the regression of 4, on h; can be a weighted
regression of a vector consisting of the k; category means of q; on the vector of the k;
different category numbers of h;. The weights in the regression correspond to the
frequencies of each category. Figure 2 shows the three types of scaling. The figures
are made as if all the frequencies were one for all categories.

The third step in computing the scaling parameters consists of standardizing vector
q, to unit variance and mean zero. This gives the new update q;". the optimally
sealed rariable.

For vector q; in the second set the steps are analogous. The roles of Q, and Q, are
interchanged, as for A; and A,.

Theoretically there are many ways of treating missing observations (Gifi, 1981). In
the CANALS program we choose multiple categories for missing observations so that
every missing score gets its own quantification. The first and last steps in solving for
scaling parameters include missing scores. Consequently the quantification of a
missing category is optimal in the sense that it minimizes the stress value. The
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Figure 2. Different types of scaling. (0} category means (§;). x regressed category means (q,)

second step excludes missing scores. Another way of treating missing observations is
to use single categories for missing scores for each variable, or to delete missing
scores from the stress. For technical reasons the last two approaches are not
implemented in the CANALS program. The single approach can be simulated by
making a single category for missing observations for each variable and by treating
this variable as nominal with one extra category. The multiple approach has the
advantage that it is a very comprehensible and interpretable way of treating missing
observations. However the multiple approach also has a disad vantage, as there may
arise many unigue patterns in the data. The program will make as perfect a fit as
possible by placing a unique object far away and by placing all the other objects
close together. One should always be cautious when a perfect fit occurs as it may be
a degenerate solution as exemplified in the following section.

This completes our introduction to non-linear canonical correlation analysis. We
have seen that there are many ways of choosing an alternating least squares method.
We discussed the choice realized in the CANALS program. as well as estimation
methods for the different parameters. In the next section we deal with an application
of CANALS and compare non-linear CCA with linear CCA. Finally the stability of
the scaling results of this application is studied.

5. Application of CANALS: party preferences and issues in the Dutch Parliament

We use political data from a Parliament Survey to illustrate the CANALS progran.
Before describing the data we introduce the Dutch political system by quoting the
following passages from Daalder & Rusk (1972, pp. 143-144).

The Netherlands. like many other European states has a parliamentary svstem. The cabinet as the
chief politicai executive organ has no independent electoral mandate. but must be formed on the
basis of the strength of the parliamentary parties, As no single party in the Netherlands has come
even near the majority for over half a century. this has meant coalition building among numerous
groups. Secondly. an extreme form of national proportional representation does away with any
direct electoral link hetween individual members of parliament and individual constituencies.
Voters choose from a large number of rival parties each of which carries on separate national
campaigns. Seats are apportioned to parties on the basis of their national percentage of the valid
votes. Within parties. candidates are elected largely according to their predetermined rank-order
on the party Jist.

Both the need to sustain cabinets and the absence of direct ties with distinet groups of voters
make a party loom large in the perception and behaviour of individual legislators.

The Dutch case seems to offer an example of a political system in which parties have potentially
a very high control over the behaviour and perceptions of individual legislators. The dependence
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of nomination and renomination on internal party processes could give central party organs a
strong weapon with which to discipline deviant behaviour. The electorate gives a mandate to a
party. not to individual members of the parliament: deflant members cannot bring their case to
individual constituents but must satisfy themselves with such hearing as they can get within the
party or leave.

5.1, Description of the dala

In 1972 the members of the Dutch Parliament (MPs) were interviewed. Among other
things. the MPs gave their opinions on a number of issues and their preference votes
for the political parties. The issues concerned development aid, abortion, law and
order. income differences. worker participation. taxation and defence. The opinions
were measured on a nine-point scale of which the lowest and the highest category
were described (Table 1). The party preferences were recorded in a table of rank

Table 1. The issues and the meanings of the lowest and the highest category

L DEVELOPMENT AID

the government should spend more money (... (9) the government should spend less money
on aid to developing countries on aid to developing countries
2 ABORTION
the government should prohibit (hy oo (9) a woman has the right to decide for
abortion completely herself about abortion
3 LAW AND ORDER
the government takes too strong action 1y ....... {9) the government should take stronger
against public disturbances action against public disturbances
4 INCOME DIFFEREXNCES
income differences should remain as (ry ....... {9) income differences should become
they are much less
5 PARTICIPATION
only management should decide (y....... (9) workers must also have participation
important matters in industry in decisions important for industry
6 TAXATION
taxes should be increased for general (....... (9) taxes should be decreased so that people
welfare can decide for themselves how to spend

their money

the government should insist on (y....... {9) the government should insist on
shrinking the Western armies maintaining strong Western armies

orders. The scores in this table tell us the rank order each member of the parliament
gave to the different parties (2 = highest preference, 15 = lowest preference). The
lowest score (2) was always used for the MP’s own party. For our illustration we only
consider the preferences for the four largest parties, which are:

PvdA—Ilabour party (socialists) (39)

ARP —Anti Revolutionary Party (christian democrats) (13)

KVP —catholic party (christian democrats) (35)

VVD —liberal” party, referred to as conservatives (16)

The figure in parentheses is the number of MPs. The other parties in 1972 were:

CHU —Christian Historical Union (christian democrats) (10)
D’'66 —democrats 66 (liberals) (11)
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66 Eeke van der Burg and Jan de Leeuw

DS70 —democrats 77 (conservative social democrats) (7)
PSP —pacifistic socialists (2)
PPR —radical party (defiant MPs of the KVP) (2)

GPV —conservative calvinistic party (2)
SGP  —conservative calvinistic party (2)
BP  —farmers party (0)

DJ  —conservative ‘one man’ party (1)

NMP —merchants party (1)
CPN —communist party (0)

In total 141 members of parliament, out of 150, were interviewed. The communists
and farmers refused. As far as we know, the party preferences and the opinions have
always been analysed separately (see, for instance, van de Geer & de Man, 1974;
Daalder & van de Geer, 1977). We wonder whether the opinions of members of
parliament, who have, for example, a sympathy for the PvdA, really differ from
those of MPs with a sympathy for the VVD, and furthermore which issues can be
associated with any such difference. So we use the opinions on the issues and the
preferences for the four largest parties for a non-linear canonical correlation analysis.
Furthermore we also want to know what advantage we will get from a non-linear
analysis rather thair a linear one. We therefore analysed the data with the discrete
ordinal and numerical scaling options.

5.2. Canonical correlations and canonical loadings

Before analysing the data three individuals were removed because they had too many
missing scores, leaving 138 members. A two dimensional CANALS analysis with
ordinal discrete restrictions shows a canonical correlation of 1-00 in the first
dimension. In Section 4.3 we noted that a perfect fit can mean that we are dealing
with a unique pattern in the data. This analysis shows a correlation of —1-00 between
the (rescaled) variable law and order” and the first canonical variate of both sets.
and also between the (rescaled) preference for the PvdA and the first canonical
variates. whilst the other variables correlate badly. We therefore expect one or more
MPs to have a unique score pattern on ‘law and order’ and preference for the PvdA.
There is one person with a missing observation for ‘law and order’ and a very high
and unique preference for the PvdA. When we remove this MP from the data the
relation disappears. The following analyses concern the remaining 137 MPs,

The canonical correlations of a two dimensional CANALS analysis with discrete
ordinal restrictions and one with discrete numerical restrictions are given in Table 2.

Table 2. Canonical correlations

Dim. 1 Dim.?2

Ordinal 0-921 0916
Nunterical (833 0726

We see that for both the ordinal and the numerical analysis, the data fit rather well.
As we prefer to look at plots instead of numbers, we plotted the optimally scaled
variables in the canonical spaces spanned by the canonical variates of each set. The
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correlations between the optimally scaled variables and the canonical variates, the
canonical loadings. are standard output of the CANALS program. As the optimally
<caled variables and the canonical variates are standardized, the canonical loadings
correspond to the projections of the optimally scaled variables on the canonical
variates. We do not give the figures for the canonical spaces here. Because the
canonical correlations of both the ordinal and numerical solution are rather high the
canonical loadings of the first set are very similar to the canonical loadings of the
second set. Therefore we averaged the canonical variates over the sets so as to get
one figure for the two sets together and computed the correlations between the
optimally scaled variables and the mean canonical variates. These correlations, also
called component londings analogous to principal components analysis, can be
computed from the canonical loadings: when multiplied by /[(1 +4)/2], the canonical
loadings of the optimally scaled variables and canonical variates of the same set give
the component loadings of this set. For the first dimension 4 is 4, and for the second
dimension 4 is 4, (see Table 2). As we also standardized the mean canonical variates
the component loadings correspond”to the projections of the optimally scaled
variables in the mean canonical space (Fig. 3). The horizontal axis is the first mean
canonical variate and the vertical axis is the second mean canonical variate. We see
in Fig. 3 that "income differences” and ‘participation” are the most important issues
after which ‘taxation’, ‘defence’ and ‘law and order” follow. ‘Abortion” and
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‘development aid’ seem to be less important. The vectors point in the direction of a
high score; for the issues the meaning can be found in Table 1. The preference vectors
point in the direction of antipathy. The preferences for the socialists (PvdA),
conservatives (VVD) and the protestant christian democrats (ARP) discriminate
most with regard to the more important issues. The preference for the catholics
(KVP) looks less important, but lies most in the direction of the issue ‘abortion’. The
vectors can be extended to the other side (with the complementary meaning). If we
do this for the ARP-preference we see that ‘income differences much less’ goes
together with a ‘great sympathy for the protestant christian democrats’. If an MP is
pro liberal abortion, it is not clear whether he or she has a preference for the
socialists or the conservatives. Knowing that an MP has a great sympathy for the
protestant christian democrats does not give an unequivocal idea of the MPs opinion
on the issue ‘defence’. Both MPs pro and con ‘maintaining strong Western armies’
apparently have sympathy for the ARP. The preference for the protestant christian
democrats lies between the preference for the socialists and the conservatives. They
get sympathy from left and right.

The plot of the component loadings of the numerical solution (Fig. 4) shows that
all issues and preferences are equally important. Only ‘development aid’ seems of
minor importance. Again we see the triangle with angle points socialists,
conservatives and“christian democrats, but now the structure is more clear, as if the
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numerical scaling options compel the MPs to make the contrasts more extreme. But
in fact the contrasts we find in the numerical solution are the same as in the ordinal
solution. although more pronounced.

We ignored the canonical weights in the above, preferring to examine the canonical
or component loadings for instability of the weights arising from multicollinearity of
the data. This instability also happens in multiple regression and linear CCA (see, for
instance. Gnanadesikan, 1977, p. 22). The weights are used only for computing the
canonical variates. In examining the correspondence between the optimally scaled
variables and the canonical variates the canonical loadings suffice (Mulaik, 1972, p.
422).

5.3 The mean canonical scores

The mean canonical scores are the coordinates of each individual on the mean
canonical variates. We plotted all MPs labelled by their party membership in the
mean canonical spaces. Figure 5 is the plot of the ordinal solution and Fig. 6 of the
numerical solution. We also depieted the rescaled variables as lines in the plots. The
projections of the individual points on these lines approximately represent the
individual opinions on the issues and the individual preferences. In Fig. 5 we sece that
the variable ‘income differences’ more or less separates the conservatives and
democrats 70 from the rest of the members; the first group scores negative on
“income differences’ and the rest positive. Some D'66-members are negative too. The
issue ‘abortion’ separates the denominational parties (KVP, ARP, CHU, GPV, SGP)
from the socialists (PvdA, PSP, PPR) and the liberals (D'66). The issue :
‘participation’ divides the christian democrats (KVP, ARP, CHU) just like the issue
- “taxation’ does. The large spread of the conservatives (VVD) in the direction of the

variable ‘abortion’ says that the conservatives differ very much in their opinion g
about abortion. In 1972 two-thirds of the MPs of the VVD had a liberal opinion
about abortion and one-third wanted to prohibit abortion more or less. This seems
rather peculiar for a conservative party. But the VVD was originally a liberal party.
Traditionally many VVD members are pro liberal abortion. In Fig. 5 we left four
MPs of the VVD out of the plot. They have such an extreme opinion on abortion and
such a great antipathy for the ARP and KVP that they lie completely isolated in the
left-hand lower corner. Had they been included the plot would have been so
compressed that the labels would have been unreadable. The mean canonical scores
of the four outliers are: (—4-112, —3:104), (—3-251, —1948), (—3-645, —3-924) and
(—4-143, —0-934). With regard to the preferences the MPs of the denominational
parties (PVP, ARP, CHU, GPV, SGP) are mostly divided in their preference for the
PvdA and the conservatives are divided in their preference for the KVP and ARP.
Most of the spread for the socialists (PvdA, PSP, PPR) is also in the direction of the
preference for the KVP and ARP. So both conservatives and socialists are divided in
their opinion about the social democrats, but both are substantially less positive than
the christian democrats themselves.

Figure 6 contains the mean canonical scores of the numerical solution. In both Fig.
5 and Fig. 6, the middle part of the plot is rather empty. When we investigated the
canonical loadings we found that, especially for the preferences, the MPs only used
the extreme rank orders. They either had a great sympathy or a great antipathy for
the four largest parties. Therefore the middle part. of the mean canonical space of
both the numerical and ordinal solution is rather empty.

The most obvious difference of Fig. 6 from the previous plot is the fact that the
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70 = DS70. PS = PSP. PR = PPR. GP = GPV. 8G = SGP. DJ). The lines through the origin are the
directions of the optimally scaled variables. The parallel lines demonstrate the position of the category
numbers of the preference for the VVD.

MPs are more regularly spread over Fig. 6. In an ordinal analysis the scores get a
chance to grow close or extreme, which is not possible in a numerical analysis. So in
an ordinal solution clustering and ‘extremism’ can be stronger than in a numerical
solution of the same data. But the plot of the component loadings of the numerical
solution was clearer than that of the ordinal solution. This is because in the
numerical analysis the direction is the most important way to differentiate between
the different MPs. In essence we find the same configuration in Fig. 5 as in Fig. 6,
but especially on the item ‘abortion” and the preference for the KVP and ARP the

conservatives are not so divided. The christian democratic MPs still think differently

P




Non-linear canonical correlation 71

DUTCH PARLIAMENT 1872

g, £ 1AST MEAN CRNONICAL YRRIATE
2.57  -g,26  -}.98  -1.85 1.3 .12 018 0,43 .80 1,11 141 1,72 2. @
o | N
w vE -
- =
o, =3
2] 'E -
E E
” |
T 1
= ! -
24 .
5 X AR ]
3 d KV
o
R
2% VAR gy ’
H IKY gy
o AR t
Zn \ RfR
B N oy A P
RIS ' =
R "R 4 Ky PR o
0ER 3 ﬁ"’]gs s cH R“ KV a KY \\Q?\i \?Q‘“\ R
3 A5, Sy, \KY fi PR
05,? o A, 1 - n“ﬁ_ =
-~ QCUUN L1y s GF gy KV 70 s
S| ANTIppT = & { -
et ATHr 50~ KV -7 L9 e
5 Fg, - - | [ oo
A Prog T =~.cH_ N - ‘B :
1
e < £5
et . \' == eaenst 18X o
PA 2
] P SIS
3 n PR~ BA ,
3 oecrerss 1902 b R - :
vols -2 1\58 T~ - L STwegpy, B
5 guet e (1 ~Tf PA T
- - A I
7 ¢ 0 AP 20 1 B&PreA Top -
\“W“ TS 70 ' \ 66 PA o ,:an STRWIG £
g Geve 7 A Y ¥ en TPAPE 5
T N‘(‘\'L\ ,?g?\ﬁ £ & A\ oo pa PR pp pB%s PA g -g
1
L~ ‘C\*\ YO e & 70 \ \ pa PR b
2 e M 85 PA @
<4 « v0 \ P SXs]
oy i PR =2
G vD 70 ) \ L
- C\Q\p Vb \ \ =
2
P vo YO 66 \ .5
VD e ==
& “Q
2 Y0 18] 6 le z
+ vD va 8 s .2
Vo [ 23
" l= -
z v0 ‘E <
bs = D
2 =
8 66 m
b h .
i W I T W WA I RTINS R AU 0.19 CRNUIE'I‘%HL vé'?g[zmr 2.0
1

Figure 6. The MPs projected in the mean canonical space (numerical solution). The individuals are
labelled by their party membership. The lines are the directions of the optimally scaled variables.

about ‘law and order’,

‘defence’ and the prefereﬁce for the PvdA, but now also about

‘taxation’, ‘income differences’, ‘participation’ and the preference for the VVD. The

christian democrats take a middle position between conser

vatives and socialists,

except

for matters concerning religion. The conservativ

es and socia

lists are clearly

political opponents.

Because there is no rescaling in the numeri

cal case, we find the

MPs in the configuration where w

e think they ought to be according to the general

opinion. The nice thing about the ordin
MPs much clearer because of the rescali

al solution is that it makes the position of the
ng of the variables. In the following section

we discuss the transformations of the variables.
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5.4. The category quantifications
To get an impression of the transformations of the variables, we give a plot of the
original category numbers against the category quantifications (Fig. 7). The points
are connected to show the monotone transformation of each variable (see Section
4.2). For the issue ‘development aid” we see for instance that the MPs who agree with
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an increase in development aid are not distinguishable from MPs who have a neutral
opinion about it. Scores 1 to 5 are quantified in nearly the same way. We also see
that the MPs who want to spend much less money on aid to developing countries are
not differentiated either. because scores 6 to 8 are also quantified in nearly the same
way. The essence of the scoring is not in being pro or con, but in being neutral/pro or
con. The ideas of the christian democrats are not very near to those of the
conservatives. although they used the middle of the scale, but are very near to the
ideas of the socialists. We could not have concluded this from the numerical solution.
Regarding the issue ‘income differences’ we see that all high scores are quantified in
the same way, which means that there is no differentiation in wanting to decrease
income differences. It does not give information whether one has a score 4 or 9 on
this issue. The opinion of the christian democrats (KVP, ARP. CHU) and the
socialists (PvdA, PSP. PPR) is opposed to the opinion of the conservatives (VVD,
DS70). In contrast with the high scores. there is a great differentiation in the low
scores of the issue income differences’. The extent to which a conservative MP wants
to keep the income differences as they are, determines his or her place in Fig. 5.
From Fig. 6 we know that the christian democratic MPs score mostly in the middle
on nearly all variables. but the ‘real political colour’ is revealed by a non-linear
treatment of the data. We give one more example of this phenomenon. If we look at
the category quantifications of the preference for the VVD (Fig. 7 and Table 3) we
see in fact a four step transformation. The real difference is between (2), (3, 4), (5 to
11) and (12 to 15). Lines perpendicular to the preference vector of the VVD are
depicted on the correct positions in Fig. 5. These positions agree with the
transformed value of the original category numbers on the corresponding vector.
Table 3 shows the coordinates of these positions obtained by multiplying the
category quantifications with the component loadings.

Table 3. Preference for VVD, category
quantifications, component loadings, and
category coordinates. Ordinal solution

Category (omponent (Coordinates in mean
quantifications loadings canonical space

2 —2514 —2-220 ~0-160

3 —1-252 —1-110 —0-080

4 —1-057 0-883 0064 —0933 —0-067

5 0433 0-382 0-028

6 0433 0-382 0-028

7 0-433 0-382 0028

8 0-433 0-382 0-028

9 0-433 0-382 0-028

10 0433 0-382 0-028

11 0-433 0-382 0-028

12 1-:091 0-963 0-069

15 1095 0-964 0-070

We find that all nuances from sympathy (5) to dislike (11) are gone. From Fig. 6
we should have concluded that the christian democrats are really more positive about
the VVD than the socialists, but from Fig. 5 we can see that this is hardly true. So
we get more information out of the data if we consider the fact that the scores are
only rank orders.
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For all the category quantifications in Fig. 7 we could draw lines perpendicular to
the vectors to illustrate how the category quantifications correspond to the positions
of the MPs in the mean canonical space. But we leave this as an exercise for the
reader. Without having the exact numbers, the lines can be constructed by
combining Figs 3 and 7.

5.5. Conclusion of the CANALS analyses

In both analyses we find the two contrasts that are basic in Dutch polities: Teft—
right’ and ‘denominational-non-denominational’. The left-right contrast corresponds
more or less to the different opinions on taxation, participation, income differences,
law and order and defence, and is associated with the preferences for the VVD and
the PvdA. The denominational-non-denominational contrast corresponds to the
different opinions on abortion and the preferences for the KVP and ARP. In the
ordinal analysis of the data we find in essence the same configurations as in the
numerical analysis, but the numerical solution only confirms the common sense ideas
about the different parties. The ordinal solution shows political nuances that were
rather unclear. The conservatives (VVD, DS70) are further away from the christian
democrats (KVP, ARP, CHU) than the socialists (PvdA, PSP, PPR) are. The

i
)'1,1‘\!t

; conservatives are very divided in their opinion about abortion. The preference of the
s christian democrats for the VVD equals the preference of the socialists for the VVD.
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There exists a real difference in opinion on development aid between the
conservatives on one side and the christian democrats on the other side. There is no
difference in opinion between socialists and christian democrats on this subject. The
ordinal scaling of the data reveals the nuances. although both numerical and ordinal
solutions show the main tendencies. In both analyses, we can say that the issues and
the preferences are predictable from each other rather well. The ordinal solution is
the better one. but we knew that beforehand. because more freedom will always lead
to a better fit.

6. Bootstrap: investigating stability of results

To investigate the stability of the CANALS results we did a bootstrap study on the
data of the Dutch Parliament. The bootstrap technique (Efron, 1979) is related to
the more familiar jackknife technique (Miller, 1974). Both techniques. based on the
idea that the data are a sample from an unknown population, are used to examine
the stability of results. For this purpose the bootstrap technique employs random
samples with replacement from the original data. The size of the bootstrap samples is
equal to the size of the original sample. which is the total number of objects. The
hootstrap technique repeats the analysis method applied to the original data on the
bootstrap samples, so that we get replications of all the original results. The
replications are used to estimate confidence intervals and bias of the corresponding
results from the original analysis (Gifi, 1981).

6.1. Stability of the CANALS scaling of the Dutch Parliament data

We have seen in Section 5.4 that the ordinal CANALS analysis gives us the
transformations of the variables (Fig. 7). The bootstrap technique examines the
stability of the scaling results from the ordinal CANALS analysis of the
Parliamentaryv data. We do not start from a sample, but from the population. if you
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like to call it that. Therefore the relation between the original data and the bootstrap
samples is straightforward. The nearer the bootstrap mean of a certain category
quantification is to the original value of the ordinal analysis, the better. The smaller
the variance of this quantification, the better.

We took 30 samples of size 137, with replacement, from the data of the Dutch
Parliament. On all these samples we did a CANALS analysis with ordinal
restrictions. From all the quantifications for each category we computed the mean,
the range and the rariance. The range corresponds to the 95 per cent confidence
intervals. that is the intervals in which 95 per cent of the quantifications lies. Figure
8 shows the range of all category quantifications (vertical lines), the bootstrap means
(x) and the values of the original analysis (o) for both the issues (Fig. 8a) and the
preferences (Fig. 8b). All plots are on the same scale. Tt can be seen that the range of
the category quantifications is generally much larger at the lower or the higher
category numbers than at the middle ones. Furthermore some variables spread
obviously less in the category quantifications than other variables.

For instance, the preference for the VVD or the issue ‘defence’ are both very
stable. Very stable is used only relatively. in comparison with the other variables, not
absolutely. The shape of the curves. whether linear, convex or concave seems
generally speaking stable. although some categories have a large range. As might be
expected. the frequencies of the different categories have a great influence on the
range of the category quantifications. The variance of each category quantification is
Jow for the higher frequencies above two or three and is comparatively large for the
lower frequencies. This means that the badly filled categories, which are the top and
bottom ones, have a large chance of getting a very high or low quantification and
that we should not take this quantification too seriously. The instability is almost
completely caused by the low frequency of the corresponding category. Because the
variance does not always go along with the range, we checked this by plotting the
two against each other. The figure. not given here, forms a nearly straight line of 45
degrees with one outlier. Category 9 of the issue ‘taxation’ has frequency one, but
has a very small range too.

One further thing to investigate is the position of the bootstrap mean relative to
the original category quantification of the ordinal analysis. We therefore plot the
bootstrap means connected for each variable, as done before with the category
quantifications of Fig. 7. Figure 9 shows the means and the original category
quantifications in one plot. Firstly we see that the bootstrap means (dotted lines) are
also monotonically increasing. This is because the mean of several monotonically
increasing lines is still monotonically increasing. Secondly we see that the sharp
angles in the original curves are flattened in the bootstrap curves. In fact the
bootstrap transformations are more linear than the original transformations of the
ordinal analysis. For the issue ‘participation’ we find a real difference in the lower
categories. The ties in the ordinal solution are apparently not very stable, which may
be due to the low frequencies of categories 2 and 3, namely two. These are
conservative calvinistic MPs and one MP of the VVD who have strong objections to
worker participation. The transformations of several variables seem wonderfully
stable. Even the tie of 6 and 7 of the issue ‘development aid’ is still there in the
bootstrap means. The original value of this tie block is somewhat higher than the
bootstrap value, but the main shape of the transformation still exists. As mentioned
before, the concave or convex shape is preserved in all cases. For instance, in the case
of preference for the ARP, the curve stays low till score 8 and then suddenly rises.
There is no real difference between having sympathy for the ARP and having a little
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Figure 8(h). The range of the category uantifications (vertical lines). the bootstrap means (x ) and the
original values (o) for the preferences.

aversion, at least not in combination with the issues. The real difference lies between
the people with great antipathy and the rest.

6.2. Conclusion of the bootstrap study

The bootstrap on the category quantifications of the Dutch Parliament shows that
the basic shape of the transformations is stable. Tt also reveals that the
quantifications of the categories with low frequencies are very sensitive under random
selection of the individuals. We found that using the 95 per cent confidence intervals
gives a good impression of the stability of the transformations of the variables. The
bootstrap means are a nice tool for comparing the original values of the parameters
with the bootstrap values.

The quantifications of the lowest or the highest category for nearly all variables
are unstable due to low frequencies. The categories between the extremes are more
stable. The issue ‘defence’ and the preference for the VVD are more stable than the
other variables. For the other variables the bootstrap details differ more or less from
the original transformations. For instance, where there are ties in the original ordinal
transformations. in most cases they are not found in the mean bootstrap solutions.
However the fact that the main shape of the ordinal transformations is preserved in
the bootstrap transformations means that the data behave in a rather ‘consistent’
manner.

7. Conclusion

The non-linear canonical correlation technique gives new possibilities in data analysis
when we are interested in the relation between two sets of variables. The greatest
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Figure 9. The transformations of the variables ( ) and the bootstrap means (- - ). Ordinal solution.

advantage of this technique is the fact that we are free to choose the measurement
level of each variable separately. 2o that we do not have to impose strong restrictions
on the analvsis unnecessarilv. The CANALS technique is a real extension and
improvement of the technique proposed by Young ef al. (1976). The alternating least
squares algorithm of the CANALS program is a very nice way of avoiding eigenvalue
computation and computing results rather quickly and preciselv. Another advantage
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of the CANALS technique is that missing data can be treated in a reasonable way.
Many techniques do not have facilities for missing data which are optimal. Missing
observations can easily cause unique data patterns that dominate the solution, but
with awareness of this phenomenon, it is easy to respond adequately.

The application of CANALS shows us that. in case of the Parliamentary data. a
numerical and an ordinal treatment of the variables give analysis results which are
very similar. However, it shows us too that the fine nuances in the scoring system
get a chance to come to the surface when treating the data on an ordinal
measurcment level. Finally the bootstrap study of the data of the Dutch Parliament
gives some evidence of the stability of the transformations of the variables.
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