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Abstract: OVERALS is a techinque for canonical correlation analysis with two or more sets of 
variables. Any three way table can be used as input for the OVERALS program. In OVERALS 
terminology the ways are called objects, variables and sets. Three measurement levels of the data 
can be handled: numerical, ordinal and nominal. They can be defined for each variable separately. 
Also the conditionality of the data is defined variable-wise. The OVERALS technique searches 
for what is common between sets of variables measured on the same objects. The mathematical 
model and the algorithm are discussed. In addition an illustration of the technique is given in the 
form of an application. 

1. Introduction 

1.a. Characteristics of the input data 

l.a.1. Modes and ways 
OVERALS is a method for analyzing several sets of data at the same time (Van 
der Burg, De Leeuw and Verdegaal, 1988). It is not specially made for multiway 
data. However many multiway tables can be analysed with the OVERALS 
program. OVERALS is a form of Canonical Correlation Analysis (CCA). This 
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variables 
s . . . . . . . . . . 

t . . . . . . . . . . 
e . . . . . . . . . . . 

. . . 

b" :::::::::: : : : : 
j .............. 
e ............. 
C ............ 

t . . . . . . . . . . . 
s . . . . . . . . . . 

Fig. 1. Three way-table, suited for the OVERALS technique. 

method searches for a subspace that several sets of variables, measured on the 
same objects, have in common. Translated into terminology of multiway data, 
there are three modes: objects, variables and sets. Thus the data matrix has to 
be a three-way table as in Figure 1. 

For the OVERALS technique it is not necessary, as it is for other multiway 
methods, that the variables for each set are the same. Or even that there is an 
equal number of variables for each set. Therefore ‘irregularities’ in the block are 
permitted (see l.b.2). 

Naturally many entities can be used as objects, variables and sets, e.g. 
schoolchildren, schoolresults and schoolclasses or countries, economic charac- 
teristics, and years, etc. The OVERALS technique treats the three ways differ- 
ently, that is it does not make any distinction between modes and ways. Thus 
every way is taken as a new mode. Consequently, the data are not considered to 
be symmetric or asymmetric, as (a)symmetry is only under discussion if two ways 
share one mode. 

l.a.2. Type of scales 
Several scale types can be handled by the OVERALS technique. A distiction is 
made between variables measured on interval level (numerical variables), on 
ordinal level and on nominal level. For ordinal data only the order of the 
categories (per variable) is taken into account, and for nominal data only the 
classes of objects formed by each variable. This means that, for ordinal vari- 
ables, each monotone ascending transformation gives the same information 
about the objects as the original coding. For nominal variables each isomorphic 
transformation and for numerical variables each linear transformation contains 
the same information. 

For the OVERALS technique the method of optimal scaling is chosen to find 
the best transformations of the variables. In optimal scaling the transformations 
depend both on the measurement level of the data, and on the model (compare 
Young, 1981). Or, to be a little bit more precise, the measurement level 
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set 1 set 2 set 3 set k 
variables variables variables variables 

; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Fig. 2. Three-way table changed into a two-way table by concatenating the slices for sets. 

determines which class of transformations is considered, and the fitted model 
determines how the transformation is selected from the class of admissible ones. 

1. a. 3. Conditionality 
The data are always interpreted in a variable-oriented way. If one transforms 
the three-dimensional table into a two-dimensional table by putting the slices 
for sets next to each other, the data are considered as column conditional. This 
way of concatenating the sets also shows how the input for the OVERALS 
program must be. A two dimensional table of objects X variables, organized in 
sets (Figure 2). 

Observe again that for OVERALS not all sets need to contain the same 
variables. Thus flattening out a three-way table is rather a special case of the 
OVERALS setup. 

1. b. Ma thematical model 

l.b.1. The OVERALS technique for a three-way table measured on interval level 
In Figure 2 a data matrix is represented that can serve as input for the 
OVERALS program. The object of an OVERALS analysis is to find what is in 
common between the sets of variables. To put it differently, one can ask which 
weights we need to apply to make the weighted sums of all sets of variables as 
similar as possible to each other. One particular way of measuring similarity of 
weighted sums uses an unmeasured variable X. We want to make the weighted 
sums as similar to x as possible. 

The vector x has n scores, as many as there are objects. For each set there 
will be m weights, as many as there are variables, and one weighted sum. This 
formulation of the k-sets canonical correlation problem corresponds to Carroll 
(19681, who translates it mathematically into maximization of the sum of squared 
correlations between the unmeasured variable x and weighted sums of variables 
for each set. Let us collect the weights for each set into a m-vector uj. Denote 
the data per set by the matrix Hi (n x m). Then Carroll (1968) searches for 

k 

maximum c cor(x, Hjaj)* over x and aj. 
j=l 

(1) 
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Van der Burg (1988, p. 101) translates the same k-sets canonical correlation 
problem into a loss function, minimzing the sum of squared (SSQ) differences 
between x and the weighted sums while x is unit-normalized, i.e mean zero and 
variance one. The result is similar to that of Carroll (1968) (see Appendix). It 
looks as follows: 

minimize i SSQ( x - Hjaj) over x and aj, 
j=l 

(2) 

for unit-normalized x and Hj (per column). Generalization of this expression to 
allow for more solutions for object scores x and weights aj, where a new solution 
of x is uncorrelated with the preceeding solution(s), gives 

minimize i SSQ( X - HjAj) over X and Aj. (3) 
j=l 

for unit-normalized X and Hi; X uncorrelated over columns. In (3) X is a 
(n XP) matrix, with I, the number of solutions (dimensions), and Aj is a (m Xp) 

matrix. Expression (3) is a formulation of a k-sets CCA-technique. It corre- 
sponds to OVERALS for a three-way table (see next paragraph). Other formu- 
lations are possible, e.g. Horst (1961) or Kettenring (1971). In (3) only variables 
measured on interval level are implied. Thus (3) defines a form of linear 
multivariate analysis, where “linear” refers to a numerical measurement level. 
In the next paragraph optimal scaling is introduced, resulting in a nonlinear 
technique. 

1. b.2. Optimal scaling 
Introducing optimal scaling for the variables (columns of Hi) in (3) results in 
transformed variables Qj (n X m> of which the columns satisfy the measurement 
restrictions. Let us denote the collection of transformations that satisfy the 
measurement restrictions for a variable h, (a column of H,, . . ., Hk) as C, 
(t = 1,. . .) km). C, contains all linear transformations of h, for numerical 
variables, all monotone ascending transformations for ordinal variables, and all 
isomorphic transformations of h, for nominal variables). Then expression (3) 
with optimal scaling is 

minimize h SSQ( X - QjAj) over X, Aj and Qj, 
j=l 

(4) 

for unit-normalized X and Qj; X uncorrelated over columns; 4‘ E C, (t = 

1 , . . . , km). The vector qt is a column of Q,, . . . , Qk. Model (4) is described by 
Van der Burg (1988, p. 101) or Van der Burg and Dijksterhuis (1989). Both 
these articles refer to Gifi (1981) and Van der Burg et al. (1988). In the latter 
article a clear description is given of the solutions for the parameters. 

Model (4) in a slightly more general form is called OVERALS. OVERALS is 
more general, because it can handle sets of variables that differ both in number 
as well as in definition. In this article we refer to (4) as the OVERALS model. 
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1. b. 3. Missing observations 
In the OVERALS model (4) no adaptations are made for missing data. In Van 
der Burg (1988, p. 107) the model with missing options is given. We do not show 
it here. In practice missing data do not contribute to the loss. Each object that 
misses an observation on one of the variables of a set, is considered as missing 
all the scores for that particular set. Thus this object does not contribute to the 
loss for the corresponding set, but it does contribute for the other sets. 

1. b. 4. Multiple transformations 
The model described by expression (4) deals with one nonlinear transformation 
for each variable. Sometimes one is interested in more than one transformation. 
Usually there must be a special reason for this. For instance if one knows that a 
variable has a nonlinear relationship with some variables and a linear relation- 
ship with other variables. In that case one can use copies of a variable in a set 
(i.e. one variable two or more times repeated, maximally p times). Then each 
copy gives another transformation. 

If p copies are used for a variable and the nominal measurement level is used 
for all copies, we can compute the so-called multiple nominal transformation of 
a variable by summing the weighted transformations over copies for each 
dimension. The multiple nominal transformation is used in (multiple) correspon- 
dence analysis. In the usual description of this technique the notion of copies 
will not be found. It simply says that for a second solution a second transforma- 
tion is needed. The notion of copies makes it possible to link (multiple) 
correspondence analysis to OVERALS (Van der Burg et al., 1988). 

To distinguish between one nominal transformation (no copies or rather one 
copy) and a multiple nominal transformation (p copies), we refer to the first 
type as single nominal and the second type as multiple nominal. Other transfor- 
mations with copies do not have a special name. 

l.b.5. Probalistic assumptions 
No probabilistic assumptions are made except for a multinomial distribution of 
the profile frequencies. If a simple random sample is used, this assumption will 
be satisfied. 

To learn about the significance of OVERALS statistics and to compute 
confidence intervals and estimate bias, one needs to use randomization tech- 
niques, such as the Bootstrap and the Jackknife (Efron, 1982). De Leeuw and 
Van der Burg (1986) and Van der Burg and De Leeuw (1988) found that 
randomization techniqes are rather succesful in determining the significance of 
eigenvalues (OVERALS-fit per dimension). In addition computation of confi- 
dence intervals and estimation of bias for eigenvalues using the Bootstrap also 
was succesful. The Jackknife seemed to perform less satisfactory. Transforma- 
tions of variables were obviously less stable than eigenvalues. 

1. b. 6. Possible developments 
The algorithm of the OVERALS program is of an Alternating Least Squares 
(ALS) type (see also section 2). Other types of algorithms are possible. One 
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alternative is majorization (De Leeuw, 1988). Majorization is used in many 
multidimensional scaling techniques. In short it replaces the loss function f(x) 
one is trying to minimize by a more simple loss function g(x,y) that approxi- 
mates f(x) locally at the current solution y. The more simple function is 
minimized in each step, after which a new approximation is computed and 
minimized. A majorization algorithm for OVERALS has been developed, and 
will be tested out in the future. 

In De Leeuw and Van Rijckevorsel (1988) various generalizations of multiple 
correspondence analysis are suggested. The notion of copies is combined with 
the notion of bandwidth of a quantification. This produces a system of measure- 
ment levels of which both continuous ordinal and continuous numerical vari- 
ables are special cases, and which incorporates B-splines of various degrees. 
Incorporating this system in OVERALS produces an even more flexible tech- 
nique. 

Other loss functions than the simple least squares loss function have been 
tried out. Heiser (1987) has a majorization algorithm for least absolute deviation 
versions of OVERALS. Work is in progress for a maximum likelihood version, 
based on a transformed multivariate normal model. 

l.c. Links to other techniques 

l.c.1. Type of models that can be dealt with by OKWALS 
OVERALS is considered as the most general model in the so-called Gifi-system 
of nonlinear multivariate analysis (Gifi, 1990). It has most Gifi-models as a 
special case. The name OVERALS is due to this fact. The second part of the 
name also corresponds to Alternating Least Squares, which refers to the type of 
algorithm (see section 2). 

The models that can be dealt with by OVERALS are PRINCALS (nonlinear 
principal component analysis), ANACOR (correspondence analysis), HOMALS 
(multiple correspondence analysis). In addition, the CORALS model (nonlinear 
canonical correlation analysis) is a special case of OVERALS. If linear tech- 
niques are considered, normal PCA is a special case of PRINCALS and 
consequently of OVERALS. In the next paragraphs we give some explanation to 
these relationships between OVERALS and the above mentioned models. 

When all the sets contain only one variable, we are dealing with a two-way 
table. If one wonders what is in common between the sets, it corresponds to 
what is in common between the variables. Then we deal with principal compo- 
nent analysis (PCA). A nonlinear version of PCA (with optimal scaling) is called 
PRINCALS (Gifi, 1990; SPSS, 1990). Thus OVERALS with one variable per set 
is PRINCALS. If, in addition, only numerical transformations are used it is 
normal PCA. 

If we restrict not only the number of variables per set to one, but also the 
transformations to multiple nominal, we get multiple correspondence analysis or 
HOMALS (Gifi, 1990; SPSS, 1990). This technique is also called dual scaling 
(Nishisato, 1980). If, in addition, the number of variables is restricted to two, 



E. van der Burg et al. / OVERALS 147 

OVERALS is similar to correspondence analysis or ANACOR (Greenacre, 
1984; Gifi, 1990; SPSS, 1990). 

Another nonlinear model for PCA is called PRINCIPALS or PRINQUAL 
(Young, Takane and De Leeuw, 1978; Kuhfeld, Young and Kent, 1987). This 
model corresponds to OVERALS with one variable per set. However PRINCI- 
PALS/PRINQUAL deals with dicrete and continuous variables, OVERALS 
and PRINCALS only with discrete variables (see 2.b.2). 

Young, De Leeuw and Takane (1976) describe a model for canonical correla- 
tion analysis with optimal scaling. They called it CORALS. OVERALS with two 
sets of variables is similar to CORALS. Van der Burg and De Leeuw (1983) and 
Gifi (1990) decribe an alternative for the CORALS model, as the parameters of 
the CORALS model could not be solved easily at that time. This alternative is 
called CANALS. CANALS is a nonlinear generalization of ordinary canonical 
correlation analysis for two sets of variables. However it is not similar to 
CORALS and thus not to OVERALS for two sets (see Appendix). 

I.c.2. Other models on k-sets analysis 
As mentioned above the CANALS model is very closely related to the OVER- 
ALS model for two sets, but is not the same. There are many more CCA-tech- 
niques that are related to OVERALS. They are related as they try to find an 
answer to the same question “what is in common between sets of variables”. 
Names of techniques are for instance SUMCOR, GENVAR, MAXRAT, 
MAXNEAR. See for a discussion about these models Van de Geer (1984) and 
Gifi (1990). All these models generalize the two-sets CCA-technique defined by 
Hotelling (1936). However they emphasize different aspects. Authors who 
worked on forms of k-sets canonical correlation analysis are e.g. Horst (1961), 
Carroll (1968), Kettenring (1971), Van de Geer (1984; 1986), Ten Berge (1988) 
and Gifi (1990). 

l.c.3. Models that generalize OVERALS 
As mentioned already in l.c.1. OVERALS is considered as the most general 

techique in the Gifi-system of nonlinear multivariate analysis. However, time 
goes on and more general models were invented. Coolen and De Leeuw (1987) 
discuss a model named PATHALS, a technique for nonlinear path analysis. 
They show, that OVERALS can be seen as a special case of PATHALS. 

Another generalization originates with Van Buuren (1990). He discusses time 
series techniques with optimal scaling. He shows that the OVERALS loss is a 
special case of the so-called canonical class loss function of his type of time 
series analysis (Van Buuren, 1988, p. 133). 

A new development in k-sets analysis is filtering the contribution of the sets 
(in terms of variance accounted for) to get a more stable or better interpretable 
solution than in OVERALS. Nierop (1989) works with this idea and uses the 
name set component analysis. He shows that Set Component Analysis has 
OVERALS as a special case. 
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l.c.4. Links to other forms of multiway analysis 
OVERALS is related to other three-way techniques that generalize principal 
component analysis. We can compare it, for instance, to the class of three-way 
models discussed by Kroonenberg (1983). There are some important differences, 
however. In order to explore them, we now think of the model that says that the 
OVERALS loss for a particular set of variables is zero. This implies that there 
exists quantifications Qj, scores X, and weights Aj, such that QjAj =X for all j 
(see (4)). Thus we can quantify our variables in such a way that the spaces Lj 
spanned by the columns of the Qj have a subspace of dimension p in common, 
in other words we can quantify our variables such that the dimensionality of the 
intersection of the Lj is at least p. 

If we compare this with the IDIOSCAL or TUCKER2 model, then there we 
have Qj = XB$Y’, which has a column rank p and a row rank s (thus X is n Xp 

and Y is k x s, all sets have k variables). In this formulation the TUCKER2 
model is obtained from the OVERALS model by requiring that Aj = AUj (with 
A = Y(Y’Y)-’ and U;. = y-l), i.e. the OVERALS weights themselves satisfy 
another (smaller) OVERALS model as well. Because in the TUCKER2 situa- 
tion we often have the same variables in all sets, we can impose further 
restrictions that also restrict the dual (row) space of our data matrices. Thus the 
OVERALS model is more general than the TUCKER2 model, both alge- 
braically and from the data analysis point of view (different variables in the sets, 
and possibility of optimal scaling). 

2. An illustration of the characteristics of the computer program 

2.a. Description of the algorithm 

2.a. 1. Goodness-of-fit function 
In the foregoing paragraphs the OVERALS-loss has been discussed. The first 

line of expression (4) shows the loss. This loss is the badness-of-fit for OVER- 
ALS. It can be changed into a goodness-of-fit by subtracting it from a constant. 
From the appendix we can see that the OVERALS-loss can be written as 

tr[kX’X-kX’P*X], (5) 

where P* = Cy= I Pj/k is a function of the data transformations. Let us denote 
this by P*(Q). As tr[X’X] is equal to np, the goodness-of-fit is: 

knp - loss = tr[kX’P*(Q)X] = kn 2 pi. (6) 
i=l 

Thus pi corresponds with the fit for the ith solution. This means that the 
eigenvalues of P*(Q) are the OVERALS-goodness-of-fit measures. The maxi- 
mum of the eigenvalues is one and the minimum is zero. The sum of the 
eigenvalues is maximally p and minimally zero. This sum is called FIT in the 
output of the OVERALS computer program (mark that capitals are used for the 
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statistics in the computer program output). In addition, (1 - CLi) is called the 
MEAN LOSS over sets (per dimension) in the output. The p’s are referred to as 
EIGENVALUES. The general MEAN LOSS (summed over dimensions1 or 
LOSS corresponds to (p - sum EIGENVALUES) or ( p - FIT). 

The loss for the solution can also be patitioned over sets. In that case we have 
for j= l,...,k: 

tr[X’X-X’P,(Q)X]. (7) 

This expression summed over sets gives (5). If (7) is divided by n the maximum is 
p and minimum is zero. Then 

tr[ X’X/n - X’P;.(Q)X/n] (8) 

gives the LOSS PER SET, which can even be partitioned over dimensions by 
computing successivily the diagonal elements of the matrix between square 
brackets. Averaging (8) over sets gives the MEAN LOSS, i.e. (p - FIT). 

The SINGLE FIT for a variable h, (a column of H,, . . . , Ilk) is defined as 
I 

arat> (9) 

where the vector ai is the row-vector of the weight matrix Aj that corresponds 
to this particular variable. In paragraph l.b.2. aj was defined as a column of Aj. 
We do not use this definition anymore, so that we can redefine a. If the squared 
elements of Q, are taken separately, the contribution of this variable for each 
dimension is obtained. 

If a variable is treated as multiple nominal (thus p single nominal copies), 
there is much more freedom in scaling the variable than in case of single 
nominal, ordinal, or numerical. Consequently we can consider the fit if the 
variable is scaled in this way. This gives the MULTIPLE FIT. When the 
difference is taken between the MULTIPLE FIT and the SINGLE FIT, we get 
the SINGLE LOSS. Thus 

SINGLE LOSS = MULTIPLE FIT - SINGLE FIT. (10) 

The statistics in (10) can be used to diagnose the qualities of a variable in the 
analysis. For a mathematical definition of MULTIPLE FIT and SINGLE LOSS, 
we refer to the appendix (All to A13). 

2.u.2. Optimization method 
The method used to perform the optimization is the so-called Alternating Least 
Squares method. As we have seen in paragraph l.b.2 the OVERALS model (4) 
is formulated as a least squares problem. There are two types of parameters in 
(4). The first type of parameters is due to the canonical correlation model, i.e. X 
and Aj. The second type of parameters is due to the transformations, namely 
Qj. These parameters are called scaling parameters. The OVERALS problem is 
solved for the different sets of parameters alternately, while the other parame- 
ters are kept at a constant level. Thus if we know the scaling parameters and the 
weights, we can solve X. Then keep the new X and the Qj at a constant level, 
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and compute Aj. The last step is to update the Qj, while keeping the new X and 
new Aj at a constant level. This corresponds to one iteration cycle. The iteration 
process stops if the difference between two consecutive losses is small enough. 

2.a.3. Parameter solutions 
The solutions for the different parameters are described in detail by Van der 
Burg (1988, p. 108) and Van der Burg et al. (1988). We discuss the solutions only 
very briefly here. The parameters X are solved by minimizing (4) with respect to 
X, this gives: 

kXM = (I - uu’/n) i QjAj. (11) 
j=l 

The vector u consists of IZ ones. The matrix M is a symmetric matrix of 
Langrange multiplyers and Z is the (n x n)-identity matrix. If the right hand side 
of (11) is denoted by 2, the matrix M2 = Z’Z/n. Thus to update X first the 
matrix 2 is computed, then M, and next M-’ with the help of a routine for 
eigenvalue decomposition. This solves X as X = ZM- ‘. 

The weight parameters could be solved by normal regression, however, we 
then need the inverse of (QjQj>, which is a m dimensional eigenvalue problem. 
To avoid this, the weights are also solved with an alternating least squares 
algorithm. The product QjAj can always be written as a sum of products of the 
columns of Qj and the rows of Aj, i.e. QjAj = C, .= lj qtai. Zj is the set of indices 
for the variables of set j. If the variables are numbered from 1 to km, 
Zj = ((j - 1)m + 1,. . . , jm}. This decomposition can be made for every matrix 
QjAj. If the loss of (4) is partitioned over sets, the loss part for set j corresponds 
to 

SSQ(X_QjAj)=sSQ(v,j_4ta:), (12) 

with V,;=X- CrG,_, 4,~:. Ii - t is the index set Ii without element t. The right 
hand side of (12, can be”mhimized over a, by normal 
(qlqr) is a scalar which can be easily inverted. Thus 

a, = V,)z,(Gzt)-‘. 
For every set a, (t E Zj> is solved successivily, keeping 
constant level. 

the other weights at a 

Minimizing (12) over qt together with the restrictions on qt mentioned in (4) 
gives 

min SSQ( V, - qla:), (14) 

with q1 E C, and q1 unit-normalized. Van der Burg et al. (1988) show that q1 is 
solved in three steps. First by normal regression, which gives 4i. Then by linear 
or monotone regression of h, on q1 for numerical and ordinal variables 
respectivily (q2), and next by unit-normalizing (4J. For nominal variables no 
second step is required. The q3 is the new update for qt. Thus 

regression. In this case 

(13) 
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II q2 = linear regression on q1 for numerical variables 
q2 = monotone regression on q1 for ordinal variables 
q2 = q1 for nominal variables 

III qr = q3 = unit-normalized q2 (15) 

For every set the qt are solved successivily, keeping the other q’s at a constant 
level. The monotone regression that is used in the OVERALS program corre- 
sponds to Kruskal’s secondary approach (Kruskal, 1964). This means that ties, 
i.e. equal observations within a column of the data matrix, remain tied in the 
scaling. The primary approach to ties, where untying of ties is possible, is not 
included in the OVERALS program. 

2.a. 4. Initial configuration 
Two options are possible for the initial configuration of the scaling parameters 
Qj. One possibility is a random start configuration. The other possibility is a 
numerical solution for all the single variables (i.e. variables with single nominal, 
ordinal or numerical measurement levels) and a multiple nominal solution for 
multiple variables (variables with a multiple nominal measurement level). 

If the numerical/ multiple nominal option for the initial configuration is used, 
the OVERALS computer program solves the problem in the usual alternating 
least squares way, using two steps. In the first step the single variables start with 
unit-normalized values and the multiple variables with scores zero. After con- 
vergence of the numerical/multiple problem, the OVERALS problem is solved 
for other measurement levels, using the numerical/multiple nominal solution as 
start values. 

The object scores X always start with a random configuration. The first values 
of the weights are based on the initial values of X and Qj, thus no initial values 
are necessary for the Aj. 

2.a.5. Local minima, degeneracies and convergence problems 
The OVERALS problem can be translated into an eigenvalue problem, as 

shown in the Appendix. It concerns the eigenvalue decomposition of matrix P*. 
As long as the variables are measured on interval level, the P* matrix is a 
constant. However, if single nominal or ordinal restrictions are used the matrix 
P* depends on the transformations of the data matrix, thus P*(Q). For 
constant P * the OVERALS iteration process converges to a well defined 
minimum. However, if the matrix P* is no longer constant, local minima may 
occur. 

For multiple nominal variables the same holds as for numerical variables. In 
that case P* (defined in a slightly different way) is a constant too. We do not 
explain this here. A discussion on the multiple nominal case is given in Van der 
Burg et al. (1988). 

Very little research is done into the seriousness of the local minima. Using 
the numerical option for the initial values of variables measured on the ordinal 
or single nominal measurement level, seems to avoid local minima. This idea is 
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based more on experience with the OVERALS program, than on systematical 
investigation. 

The OVERALS loss as defined in (4) should go down in every iteration step, 
independently from the measurement levels used in the program. Sometimes 
however we find the loss going up. The computer precision must be considered 
as the reason for this phenomenon. 

2. b. Characteristics of the program 

2. b. 1. Software package and memory requirements 
The OVERALS program is included in a software package. It is contained in 
SPSS for main frames, as well as in SPSS/PC + . It is available in the form of an 
optional extension named SPSS Categories. In addition, an SPSS version with 
the extension Categories exists for the Macintosh. All the advantages (and 
disadvantages) of SPSS also hold for OVERALS For instance, a system file can 
be used as input, but also raw data. Labels can be given to variables, recoding 
can be done easily, etc. SPSS has a special user’s guide for the extension 
Categories. It is a small booklet written clearly in typical SPSS style (SPSS, 
1990). 

The SPSS/PC + version needs 640 K to run OVERALS. To increase 
workspace 64 K of expanded memory can be used. To install SPSS/PC + 
(version 3.1 is needed) a hard disk is required. At least 4.5 MB of disk space 
must be available. (The entire SPSS/PC + system with all of its options and the 
tutorial requires approximately 14 MB). The program runs. on IBM PC/XT, 
PC/AT, PS/2, or closely compatible machines. Version 2.0 or later of PC/DOS 
or MS/DOS is needed and at least one 5.25- or 3.5-inch floppy disk drive. 

For the Macintosh version (Mac System 6.0 or higher) 2 MB of memory and a 
hard drive are necessary. If one wants to run SPSS concurrently under Multi- 
Finder (in order to do multitasking) 4 MB is needed. For installation of all the 
SPSS facilities approximately 15 MB of disk space must be available. The 
Macintoshes suitable for SPSS are Mac Plus, Mac SE, or Mac II series. 

2.b.2. Data format and data manipulation 
All possibilities for data manipulation that are provided by SPSS may be used 
for OVERALS data. Therefore it is easy to recode a variable, or to compute a 
new variable. Specially for continuous variables this recode option is important, 
as the OVERALS program expects discrete data, i.e. data with not too many 
different scores per variable. These data manipulations have to be performed 
before starting the OVERALS analysis. 

Apart from being discrete, the data for the OVERALS program have to 
consist of positive integers. The user has to specify the maximum value for each 
variable. All negative and zero values or values higher than the maximum are 
considered as missing values. Fractional values are truncated after the decimal 
and included in the analysis. 

As seen in paragraph l.b.2. the OVERALS program can handle several types 
of transformations of the variables using optimal scaling. As the optimal scaling 
is part of the OVERALS model, we do not consider this as data manipulation. 
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If a variable is considered as multiple nominal, the program produces the p 
copies and the p transformations automatically. These transformations are 
printed in the output as one p-dimensional transformation. Thus the p single 
transformations are weighted for each dimension and summed over copies. In 
the Appendix this multiple transformation is referred to as Y,, a (n Xp) matrix. 
As Y, has only as many different rows as there are different scores or categories, 
this matrix is printed in compact form under the name multiple category 
coordinates. 

If an object misses a score on one variable, the scores on the other variables 
in the same set are also considered as missing for that object (see l.b.3.). Then 
all these scores do not contribute to the loss. This seems to be a data 
manipulation, however it is due to the OVEBALS model with missing observa- 
tions (Van der Burg, 1988, p. 108). 

2.~. Input and output of the OVERALS computer program 

2.c. 1. Input 
The SPSS system has to be informed about the format and the names of the 
variables. For the OVERALS program the user has to specify: 
- the names of the variables (with the maximum score), 
- the names of the variables in the analysis and their measurement level. 

Variables that only occur in the first list can be used for plot facilities. 
Variables in both lists are used for the analysis. 

- the number of sets and the number of variables in each set 
- the number of observations 
- the number of dimensions 
- the type of the initial configuration 
- the maximum number of iterations 
- the convergence criterion value 
- print commands (see 2.c.2.) 
- plot commands (see 2.c.2.) 
- save command (optional) to add object scores to the SPSS system file. A SPSS 

system file is a data file with information about the data, coded in a special 
way for SPSS. 

- write commands (only for main frames) (see 2.c.2.) 
- the data. The data have to be provided in the form of a table of objects x 

variables with sets next to each other. Either a raw data file or a SPSS system 
file can be used. 

2.c.2. Available output 
The objects scores X form an orthogonal space on to which variables and 
objects can be projected. The coordinates of the projections of the variables, 
called component loadings, correspond with the correlations between trans- 
formed variables and object scores. These component loadings can be inter- 
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preted in the same way as component loadings in PCA. Thus for each trans- 
formed variable, a vector can be depicted illustrating its importance with respect 
to the different dimensions of the solution. 

The rows of the matrix X provide the scores for each object. If, for every 
variable, all scores of objects belonging to the same category are averaged, the 
so-called centroids are obtained. Projecting the centroids of a variable on its 
vector, gives the projected centroids. For multiple variables p vectors can be 
used, however in the OVERALS output only the centroids are shown, which are 
similar to the Y,-scores (see Appendix) projected on to the space of object 
scores. 

The scores of the transformed variables in unit-normalized form (i.e. 4,) are 
called the category quantifications in SPSS. The weighted transformed variables 
(i.e. qtai) are called the single category coordinates. These values are only 
computed for single variables, and always printed in compact form (see 2.b.2.). 
For all variables the multiple coordinates Y, are computed. 

Another way of interpreting the projected centroids is by realizing that the 
projected centroids are similar to the category quantifications projected on to 
the space of object scores. If we use c,, a p-vector, for the component loadings 
of qt, the projected centroids correspond with qtc:. 

The output of the OVERALS program always includes 
- a table listing measurement levels of each variable by set 
- EIGENVALUES and LOSS values by set by dimension. 

Optional print output consists of 
- marginal frequencies for the variables in the analysis 
- history of iterations, i.e. FIT, LOSS and LOSS difference value for every 

iteration step 
- MULTIPLE FIT, SINGLE FIT and SINGLE LOSS per variable 
- category quantifications, projected centroids and centroids 
- category quantifications, single and multiple category coordinates 
- weights and component loadings. 

Optional plot output consists of 
- component loadings 
- object scores [optionally labeled per variable] 
- category quantifications (plotted against the original scores> per variable 
- all category coordinates and category coordinates per variable 
- all centroids and centroids and projected centroids per variable 

Optional write output to a SPSS system file (only for main frames) 
- variable names, measurement levels, labels, and set numbers 
- original scores per category 
- category quantifications 
- single category coordinates 
- multiple category coordinates 
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- 

- 

- 

- 

3. 

centroids 
projected centroids 
weights 
component loadings. 

Application 

3.a. Vegetable soups 

3.a.l. Description of the data 
The data to analyse are from sensory research. Forty vegetable soups were rated 
on five variables by nineteen trained assessors. It concerns odour, taste and 
mouthfeel attributes (see Table 1). The scores vary from 0 to 98, the assessors 
used a line scale to indicate their ratings. A score of 0 indicates that an attribute 
was not present according to the assessor, a score of 98 means that the attribute 
is very strongly present in a particular soup. Apart from the attributes, the brand 
of the soup is known, the package and the type (see Table 1). In this application 
the odour, taste and mouthfeel attributes are analysed. They form a 40 X 19 X 5 
multiway table. The other characteristics are used to interpret the solutions and 
to identify groups. 

3.a.2. Objective of the OVERALS analysis 
Originally the vegetable soup data were gathered as part of a larger experiment 
in which chemical and microscopical data also were collected (Cramwinckel and 
Van Mazijk-Bokslag, 1990). The object of that experiment was to get informa- 
tion about the contents, the sensory quality and the taste of forty different 
vegetable soups. The main objective of the secondary analysis reported in this 
paper is not the quality or taste of the soups but the use of the five attributes by 
the assessors. It is interesting to know on which attribute(s) they agree mostly 
and which attributes give rise to confusion. In addition, it is interesting to find 

Table 1 
Sensory variables of the vegetable soup research 

Odour and taste attributes 
Spiciness (0 = not,. . . ,98 = much) 
Vegetables (0 = not,. . . ,98 = much) 
Saltiness (0 = not,. . . ,98 = much) 

Mouthfeel attributes 
Thickness, jelly-like (0 = not,. . . ,98 = much) 
Firmness of vegetables (0 = not,. . . ,98 = much) 

Package (concentrated in tin, instant in packet, dried in packet, 
deep-frozen, ready-to-eat in tin) 

Type (ordinary, cream, Chinese). 



156 E. van der Burg et al. / OVERALS 

out whether the partition of the soups, according to the ratings, makes sense in 
the light of the type or package of the soup. In order to try to answer these 
questions the ratings are analysed with OVERALS, using the assessors as sets, 
the soups as objects and the attributes as variables. Comparison of a solution 
with ordinal measurement levels and one with numerical measurement levels, 
also enables us to investigate whether this kind of data should be analysed under 
metric or nonmetric assumptions. 

3.a.3. Pre-treatment of the data 
Two assessors (sets) were removed from the data because they had too many 
missing values, 17 sets remained. As the variables could take 99 different values, 
they were categorized into a small number of scores (categories). Some prelimi- 
nary ordinal analyses with different numbers of categories (seven, six and five 
were tried) showed an extreme outlier in a three-dimensional solution. Removal 
of the outlier resulted in a new outlier, removal of this outlier again showed a 
new outlier. The same was encountered with a two-dimensional solution. This 
phenomenon seemed due to the fact that many of the higher scores and some of 
the lower ones occurred only once. To cope with the outliers the number of 
categories was reduced to just three, resulting in less extreme outliers (they did 
not vanish). This data reduction appears not too severe, as the numerical and 
the ordinal analyses show comparable and interpretable results. In a previous 
OVERALS-analysis a partition of the variables into three categories also 
resulted in an interpretable solution (Van der Burg and Dijksterhuis, 1989). The 
three categories used for all attributes, are 1 = scores 0 to 25,2 = scores 26 to 50 
and 3 = scores 51 to 98. The third category was taken larger than the first and 
second category to take account of the skewness. For four variables one category 
was resealed to a lower or higher value, as these four categories still contained 
only one observation. 

To perform a numerical analysis (i.e. with only numerical measurement 
levels) the data also had to be discretisized, as 99 scores are too much (see 
2.b.2.). However, a larger number of categories was used as for the ordinal 
analysis. The scores were recoded into ten categories, corresponding with ten 
equal sized intervals (category 1 consists of scores 0 to 9, 2 = scores 10 to 
19,. . . ) 10 = scores 90 to 99). The last category was empty for every variable. 

3.a.4. Eigenvalues, fit and loss 
A three-dimensional solution is obtained in both the ordinal and the numerical 
analysis. The eigenvalues of the three-dimensional solutions were not really high 
(see Table 2). The maximum of an eigenvalue is one and the minimum zero. A 
FIT ( = sum eigenvalues) of approximately 1.7 indicates that the solutions found 
are not very strong. In general high eigenvalues are needed to correspond with 
much variance in each set. This gives an indication towards differences between 
the sets probably due to individual differences in the use of the five attributes. 
As can be seen from Table 2 the two solutions have rather similar eigenvalues, 
for the moment it seems that the ordinal solution based on just three categories 
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Table 2 
Eigenvalues and fit of a three-dimensional solution with ordinal and numerical measurement 
levels 

Analysis 

Ordinal 
Numerical 

No. of 
categories 

3 
10 

Eigenvalues Fit 

dim1 dim2 dim3 

0.684 0.533 0.433 1.650 
0.715 0.510 0.429 1.654 

is about as good as a numerical solution based on ten categories. A high number 
of categories does perhaps provide only superfluous information. To see if this 
conclusion holds, the loss of both solutions is compared. In addition both the 
component loadings and the object scores are matched. 

3.a.5. Component loadings 
In order to see how the attributes were used by the assessors, plots of the 
component loadings are given for each attribute separately. Thus five plots are 
made instead of one. Dimension 1 and 2, and dimension 1 and 3 are plotted 
against each other, resulting in 10 separate plots. In Figure 3 these plots are 
shown for the ordinal solution. Not all vectors are identified by their set 
number. However, for interpretation of the figure this will do. 

A Procrustes rotation (Peay, 1988) to match the three-dimensional configura- 
tions of the component loadings for the ordinal and the numerical solution, 
revealed an almost identity: 97% of the variance of the two configurations was 
matched. For this reason the results of the numerical solution are not shown. 
The high match confirmed the idea that the ordinal and numerical solution 
provide the same information. The matching was performed by means of the 
Procrustes-PC program of Dijksterhuis and Van Buuren (1990). 

Inspection of Figure 3 shows that the assessors agree very much on the 
attribute thickness. The first dimension depends mostly on this characteristic. 
The second dimension is dominated by spiciness and firmness. Assessor 3 and, 
to a lesser extend, assessor 4 must be mentioned here as persons who do not 
agree with the other assessors about spiciness. The variables corresponding to 
the attribute ‘vegetables’ correlate mostly with the second dimension, although 
the agreement between the assessors is much less on this attribute than on 
firmness or spiciness. With respect to vegetables assessors 3 and 12 behave 
rather exceptionally. The third dimension is, for the larger part, determined by 
saltiness. 

Apparently thickness is the attribute on which the assessors agree mostly, 
followed by spiciness and firmness, and in the last place by saltiness. It seems 
that ‘vegetables’ is one of the most difficult attributes to agree about. Especially 
assessor 3 must be mentioned as a person who interpretes many attributes 
differently from the other assessors. 
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Fig. 
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3. Component loadings of the ordinal solution for each attribute separately. 

3.a.6. Object scores 
In Figure 4 the object scores of the ordinal solution are shown. The soups are 
labeled according to package and type. To check if the ordinal and numerical 
three-dimensional solutions are alike, again a matching is performed with the 
help of a Procrustes rotation. This rotation accounts for 98% of the variance in 
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np. 
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A tin. concentrated, + tin. ready-to-eat. P deep-frozen. A packet. dried, x packet, instant, 0 Chinese, 0 cream 

Fig. 4. Object scores of the ordinal solution, labeled by type and package. 

the solutions, so only 2% is lost in the matching process. Therefore the solutions 
are almost identical. Again only the ordinal configuration is shown. 

From Figure 4 can be inferred that there does exist an overall difference in 
taste between soups from tins and from packets (and deep-frozen). This distic- 
tion is found along the second dimension, with the tins having higher scores on 
it than the packets. Since spiciness and firmness were the attributes associated 
mostly with the second dimension (in negative direction), it seems that soups in 
tins are less spicy and firm than in packets. 

Most of the soups have low scores on the first dimension, six soups have 
higher scores, they seem more thick than other soups. As may be expected the 
two cream soups are found between the thicker types. The third dimension is 
not directly interpretable in terms of package or type of soup. Figure 3 showed 
that saltiness is the main attribute for the third dimension, so it can be 
concluded that the judged saltiness of the soups has no clear relation with the 
package of the soup. The four ‘Chinese’ vegetable soups have low scores on the 
second dimension in common, so they do posses firm vegetables and are rather 
spicy. In other respects the Chinese soups do not differ much from the other 
soups. The one deep-frozen soup also seems to have a salty taste and firm 
vegetables. 

Labeling the plot of object scores by brand did not show any regularity. 
Therefore the names of the soups are not shown in Figure 4. 

3. a. 7. Conclusion 
By analysing k-sets data from the field of sensory research with OVERALS a 
lot of aspects of the data can be studied. Plotting the component loadings of a 
variable for all sets, like in Figure 3, provides a useful way to identify the 
consistency of the use of the variables (in this case attributes) by the sets 
(assessors in the panel). The relative position of the objects (vegetable soups) 
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shows the more important (dis)similarities between the objects. The object 
scores can be compared with the component loadings to see which variables are 
responsible for congruences or differences between them. In addition, labeling 
the object scores by external variables (package, type), variables not used in the 
analysis, also helps to interpret the solution. 

It can be concluded from the analysis that it is not useful to analyse the larger 
number of categories. The results from an ordinal analysis with only three 
categories and the results from a numerical analysis with ten categories are 
almost identical. Apparently the higher number of categories does not provide 
much extra information. An ordinal ten-category solution has not been com- 
pared with the numerical solution, as this solution will capitalize on unique 
patterns in the data. 

Appendix 
. 

Carroll (1968) solves the following problem 

max i cor(x, Hiaj)‘. 
j=l 

(Al) 

The solution for uj is given by normal regression. Thus 

aj = (HjWj))lHi’X. (A2) 

Using q. = Hj<H~Hj>-‘H~ gives Pjx = Hjaj. Substituting this in (Al) results in 
k 

max C ~‘P~n/x’x. (A3) 
j=l 

Define P* = Cf=, P,/k, then (A31 corresponds to 

max kx’P*x/x’x. W) 

Expression (A41 shows that x is proportional to the first eigenvector of P*, and 
that the maximum is k times the corresponding eigenvalue 8. Thus x satisfies 

p*x = 8x. WI 

The OVERALS-problem for one dimension (2) is 

min i SSQ(x - Hjaj) over x and uj (A61 
j=l 

for u’x = 0 and x’x = II. The restrictions u’x = 0 and x’x = 12 are similar to the 
restriction x is unit-normalized. (For u see 2.a.3.) The data matrices are 
assumed to be unit-normalized (column-wise) too. The solution for uj is again 
the regression solution, thus Hjuj = Pjx. Substituting this in (A61 and using the 
method of undetermined multipliers gives 

min tr k[x’x_2x’P*x+x’P*x- (x’x-~)c#J +x’u~], W) 
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with 4 and 6 unknown. Solving S by differentiation of (A7) with respect to x, 
and setting the result to zero, and defining Al. = 1 - 4 gives 

XP = (I - uu’/n)P*x. (A*) 

As Hi is considered as unit-normalized, the matrix (I - uu’/n) (putting the 
following matrix in deviation from its column means) has no effect on P*. (For Z 
see 2.a.3). Then (A8) turns into: 

P*x = px. w9 

Thus X/ & represents the first eigenvector of P*, and Al. = 8. Generalization of 
(A9) to more solutions gives 

P*X=xM with X’X=nZ. (AlO) 

The columns of X/ 6 represent a rotation of the ordered eigenvectores of P* 
and M is the symmetric matrix of ‘Lagrange multipliers with eigenvalues pi 
similar to the eigenvalues of P *. The loss is a function of the sum of the ,u’s, i.e. 
lOSS = knp (1 - CicLi/p). 

If the variables are measured on interval level P* is a function of the data, 
which are constant. However if the data may be transformed P* is a function of 
the transformed data, thus P*(Q). In the latter case there is a difference 
between maximzing the sum of squared eigenvalues (which is the case in 
CANALS) or the sum of the eigenvalues (OVERALS/CORALS). In the linear 
case the difference does not exist (Van der Burg and De Leeuw, 1983). 

Multiple fit 

The quantified variable qr has uI as weights for p dimensions. Now if this 
variable has been considered as multiple nominal, there are p values for qr (say 

%(l), * * * 3 qtcpJ and p values for a, (say a,(,), . . . , a,~,~). If the weighted quantifi- 
cations are in the following way: 

yt = i qt(i)‘:(i)T (fw 
i=l 

the multiple nominal quantification for this particular variable is obtained. If the 
variable were single, we still can compute the Y,. Then we act for a moment as if 
there are p copies, and compute Y,. The multiple fit for each variable is defined 
in the following way: 

MULTIPLE FIT = tr [ T’F]. (AM 

As (A121 is formulated for every variable, there are km MULTIPLE FIT%. For 
each dimension the contribution of a variable to the MULTIPLE FIT can be 
obtained by computing the elements of the trace separately. The SINGLE LOSS 
is defined as 

SINGLE LOSS = tr [ Y,‘Y, - u,ui] (A 13) 
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The expression above holds only for single variables. For a more detailed 
discussion on multiple nominal transformations we refer to Gifi (1981) and Van 
der Burg et al. (1988). 

Availability of the OVERALS program 

The OVERALS program is available as a procedure of the SPSS package. It is 
part of the optional extension SPSS Categories. This extension consists of 
programs for conjoint analysis and nonlinear multivariate techniques. The 
procedures of SPSS Categories are: ORTHOPLAN, PLANCARDS, CON- 
JOINT, ANACOR, HOMALS, PRINCALS and OVERALS. 

The address of SPSS in the USA and in Europe is: 

SPSS Inc. SPSS International B.V. 
444 N. Michigan Avenue P.O. Box 115 
Chicago, Illinois 60611 4200 AC Gorinchem 
U.S.A. The Netherlands 
Telephone: 312.329.3500 Telephone: + 31.1830.36711 

Telex: 21019 (SPSS NL) 
Fax: +31.1830.35839 
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