Use of the Multinomial Jackknife and
Bootstrap in Generalized Nonlinear Research

Canonical Correlation Analysis Report
87-4

Eeke van der Burg
Jan de Leeuw

University of Twén e

ar X ]
Division of Educational Measﬁreme.nt
and Data Analysis
.




e . e oo e o

Use of the Multinomial
Jackknife and Bootstrap in Generalized

Nonlinear Canonical Correlation Analysis

Eeke van der Burg

Jan de Leeuw



mnats codinia il bl anindNh e shaanl _JndihensnlREEN. _sssstesfiennnashennn _cnlinaEEREESE _afhadi R

Jackknife and Bootstrap

1

ABSTRACT

In this paper we discuss the estimation of mean and standard
errors of the eigenvalues and category quantifications in gener-
alized nonlinear canonical correlation analysis (OVERALS). Starting
points are the delta method equations, but the jackknife and
bootstrap are used to provide finite difference approximations to

the derivatives.

Keywords: canonical correlation analysis, delta method,
jackknife, bootstrap, confidence interval, nonlinear

transformation.
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INTRODUCTION

Nonlinear canonical correlation analysis with k sets of vari-
ables, OVERALS, is a multivariate technique in the sense of Gifi
(1981, chap. 6). It is described by De Leeuw (1984a), Van der Burg,
De Leeuw and Verdegaal (1984, 1986) and Verdegaal (1985). The k
sets of variables are related in a linear way, as in ordinary
canonical correlation analysis, but at the same time the variables
are transformed nonlinearly. This can be formulated as a least
squares problem minimizing the sum of squared deviations between
unknown object scores and linear combinations of transformed vari-
ables, organized in sets (Van der Burg et al., 1984, 1986)

In current implementations of OVERALS the variables are categ-
orical, 1.e. they assume only a small number of possible values.
The technique assigns a numerical score to each category, the so-
called category quantification. Scores are assigned in such a way
that the sum of the t largest eigenvalues (generalized canonical
correlations) is maximized, while at the same time the measurement
characteristics are respected. Thus for ordinal variables we impose
ordinal restrictions on the category quantifications, for numerical
variables the category quantifications must even be linear with the
original scores. For nominal variables there are no additional
restrictions.

The scoring system we just outlined gives a single quantifi-
cation for each variable. It is also possible to obtain multiple

quantifications for each variable by using copies. (De Leeuw,
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1984a; De Leeuw, 1985; Tijssen, 1985; Van der Burg et al., 1986).
This means that a variable occurs more than once in a set. When
only nominal characteristics are employed for all copies, the
measurement level is called multiple nominal. In case only one
quantification is dealt with the measurement level is called single
nominal, single ordinal, or numerical.

Because variables are categorical the profile for each individ-
ual only assumes a finite number of values. The quantities computed
in canonical correlation analysis (category quantifications, object
or profiie scores, canonical correlations, correlations between
quantified variables and canonical variables, and so on) are func-

tions of the profile frequencies.

THE DELTA METHOD

We shall develop our statistical methods in a general multi-
nomial context, not necessarily in terms of profile frequencies or
proportions, and not directly applied to OVERALS output. The data
are a vector p of proportions, based on a simple random sample of
size n. Thus we suppose that p is a realization of the random vari-
able p, where np has a multinomia{ distribution with parameters
(n,n). We imbed .the variable p in a sequence p,, where np, is also
multinomial with parameters (n,x). For the expected value and the
dispersion we have E(En)=“ and C(En)=n'1(n-nn'), where n=diag(x).

We also have convergence in law to a normal distribution, in the
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sense that §n=n1/2(gn-n) + N(0,V), with V short for [-nz'.

Now suppose ¢ is a real valued function defined for all p {or
all p close to n), and twice continuously differentiable at n. Then
the delta method (Rao, 1965, section 6.a.2, contains a nice dis-
cussion) states that n1/2(¢(en)—¢(n)) + N(0,g'Vg), where g is the
vector of partials of ¢ at n. We can easily understand this result
by writing p, as gn=n+n°1/2;n and then developing a Taylor series
for e(p,) in n‘l/?gn around =n. This gives:

(1) alp,) = olx) + n"}/2

t ‘1 N ‘1
9'z, + (2n) z 'Hz + op(n ).
A sequence of random variables X, is op(n'l) if nx, converges in
probability to zero. Matrix H contains the second order partials of

¢ at n. The variance of ¢(En) is given by
(2) Var_(6(p,)) = E_((op, N?) - (E_(s(p )2
R n n n n n

The second term of (2) is obtained by taking expectations of (1).

As the random variable z, converges in law to N(0,V) (the necessary

Plond ¢
conditions for En(op(n'l)) = o(n‘l) (cf. Serfling, 1980, section

1.4) are satisfied) we get
(3) E (e(p,)) = o(x) + (2n) Leruv + o(n1).

The squared expectation is
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(4) (E (o0 )12 = (o(x))2 + n"Lo(a)trtv + o(n”)).

The first term of (2) is obtained by squaring (1) and taking expec-

tations:
(5) En((¢(2n))2) = (o(x))? + n"Lo(n)trHy + n'lg'Vg + o(n71).

Subtraction of (5) and (4) gives

lgvg + otn”]y,

(6) Var_(o(p,)) = n
which corresponds to the delta method variance. Result (6) makes it
possible to estimate the standard error of statistics of the form
¢(En). The estimate is n'1§Q§ where 5 estimates g and Q estimates
V. Usually 9=Vp=P-pp‘ with P=diag(p), and §=gp the partials of ¢ at
p. If we have an estimate o of the standard error, then we also
have an approximate confidence interval (95%) of the form
(¢(2n)—1.960, ¢(En)+1.960).

We can also evaluate the bias of ¢(p,) as an estimate of ¢(n).

To do so, expression (3) is used:
_ -1 -1
(n E (elpy)-0(n)) = (2n) "trHV + o(n™"),

so that estimates of H and V (e.gq. Hp and Vp) give an estimate of
¢(x) with bias of order n~l.

In many cases, and for instance in generalized canonical corre-
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lation analysis, the quantities of interest are defined by very
complicated implicit functions. This makes it extremely tedious to
compute first order derivatives, while second order derivatives are
usually well nigh impossible to obtain. In some special cases, such
as correspondence analysis (Gifi, 1981, chap. 12; De Leeuw, 1984b;
Schriever, 1985) the delta method can be applied, but in other
cases it simply is not feasible. In such cases we can use a resam-
pling method such as bootstrap and jackknife (Efron (1982) gives an
overview), which we view here as methods to approximate the
relevant partials. Gifi (1981, chap. 13) concentrates on the
bootstrap. In this paper we use both jackknife and bootstrap and

compare the results.

THE MULTINOMIAL JACKKNIFE

Suppose we drop one observation from the sample. If it has pro-

file number k, then the vector of profile proportions changes to
_ -1
(8) pk) = p + (n-1) (p-ek).

with e, the Kth unit vector. The jackknife value for the observa-

tion is ¢(p(k)), and the pseudo value ¢ (p) is defined as
k

(9) ¢, (P) = nelp) - {n-1)e(p(k)).
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The jackknife method uses the average pseudo value Zpk¢k(p) as an
estimate of ¢(x) (p, are the elements of vector p), and uses the
variance of the pseudo values as an estimate of g'Vg. We shall
explain why this is a reasonable procedure. Observe for the moment
that no derivatives need to be computed.

Write ¢§ for the average of the pseudo values, and °§ for their
variance. Then combination of (8) and (9) using a Taylor series

for ¢(p(k)) in (p-e, ) around p gives

(100 6, () = o(p) - 9" (p-e,) = (20-2)7 (pe, ) 'H, (p-e,)
+ o((m~h).
Thus
_ -1 -1
(11) ¢§(p) = ¢(p) - (2n-2) terHp + o{{n) 7).

If we combine this result with the bias estimate provided by the

delta method, given in (7), we see that
(12) ("'1)(Eu(°§(3n)) - ¢(n)) » O.
Thus, the average pseudo value corrects for bias, in the same way
as the delta method adjustment requiring second order derivatives.

To compute og we observe that

(13) ¢k(p) - os(p) = -g‘(p-ek) + o(l).
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From (13) it follows that

(14) og(p) + gp.Vpgp.
Thus og/n is asymptotically equal to the delta method variance
estimate. More precise expansions can be found in De Leeuw (1985).
The only computations that are required is that the analysis
technique is repeated for each observation that is successively
dropped. For each jackknife sample a pseudo value is computed. This
gives new estimates of the relevant quantities. Their mean is the
improved estimate, their variance is an estimate of the stability.
If the number of profiles is much smaller than the number of obser-
vations, then it is more efficient to organize the computations in
terms of profiles (as above), because repeating exactly the same

analysis for observations with the same profile is avoided.

THE RANDOM JACKKNIFE

Because generalized canonical correlation analysis with a large
number of observations (and/or profiles) can be very expensive, it
is often not feasible to compute all pseudo values. Instead we can
estimate the average pseudo value and the variance of the pseudo
values by Monte Carlo methods. This amounts to leaving out one
observation at random, and repeating this a number of times. If the

sampling is repeated this obviously converges to the theoretical
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Jackknife.
It must be remarked that the delta method provides us with an
approximation to the standard error. The jackknife in our inter-

pretation, gives an approximation to the delta method approximation

of the standard error. And the Monte Carlo method approximates the
jackknife approximations. Thus there are three levels of approxima-
tion involved. It does not follow, of course, that approximation of
the true standard error becomes progressively worse, because there
can be complicated interactions between the three approximation
processés.

We also emphasize that it is not necessary to present the jack-
knife as an approximation of the delta method. It can also be
interpreted in its own right as a method to study stability, indeed
the idea of investigating the effect of ‘leaving-one-out' also

makes sense in a nonstochastic context.

THE MULTINOMIAL BOOTSTRAP

If we look at the basic properties of the jackknife, as we have
presented it, we see that the vector of profile proportions is
perturbed by leaving out single observations. We apply our tech-
nique to all these perturbed vectors, which are located reguarly
around the observed vector, and we use this grid of perturbed

values to estimate the relevant derivatives in a clever way.
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Because observations are assumed to be equally important, each
perturbation of the sample gets the same weight, i.e. occurs once
in the distribution of all possible jackknife samples. If we use
the corresponding perturbations of the profile proportions we need
weights Pis-esPp for the different profiles.

The bootstrap is based on a different set of perturbations. In
fact bootstrapping means resampling with replacement from the orig-
inal sample, taking n observations (Efron, 1982). It means that we
look at all vectors of profile frequencies adding up to n. It also
means that the perturbations of the profile frequencies are
centered around the sample value p, and that they have weights

according to their similarity with the sample value. Suppose
(15) q = (ny/n, wevy np/n)

is a bootstrap perturbation of the profile proportions. Then the

probability to occur in the distribution of all possible bootstrap

samples is

_ n! " "m
(16) wq(p) = nl! """'"m! Py eeeees Py -

The bootstrap pseudo values are defined as

(17) oq(p) = 2¢(p) - ¢(q).

The average bootstrap pseudo value is
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(18) og(p) = )qwq(p)¢q(p).

and the bootstrap variance is

(19) o2(p) = Tw (p)(e (p) - o pN)?
§ qQq q s )

Substitute q=n'1/zz+p in the pseudo values (17) and develop a

Taylor series in n’llzz around p. This gives

(20) ' ¢q(p) = ¢lp) - n-l/zgp'z - (Zn)-lz‘sz + o(n-l).

Thus the average pseudo value is
(21)  oglp) = Jg(plag(p) = o(p) = (2mT'erH v, + o(n”h,

PP

as {wq(p)z=0 and 2wq(p)zz'=vp. Combining (21) with (7) shows that

the expected value of oglp ) is

- -1 -1
(22) Eoglpy) = E_(elp,) - (2n) "trHV + op(n )).
Combining (22) with (3) gives
(23) n(E og(p,) - ¢(n}) » 0.

Thus the average pseudo value is an estimator of the population

mean o(x) with bias of order n-l. For the variance of the pseudo

values we subtract (21) from (20) which gives
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(24) ¢q(p) - ¢§(p) = -n'llzg ‘'z - (Zn)'lz‘sz

[

-1 -1
+ (2n) tervp + o(n™ "),

Then the pseudo value variance is
2 -1 s -1
= + .
(25) oglp) = n 9 vpgp o{n 7)
The expected value of °§(En) converges to the delta method variance
(26) n(E_o2(p 1) » g'v
7°§'Bn g vs.

Thus the bootstrap variance is an asymptotically unbiased estimator
of n'lg'Vg. This result means that the variance of the bootstrap
values (and the pseudo values) estimates the delta method variance.
The jackknife pseudo value variance estimates g'Vg, so that the
estimates of bootstrap and jackknife differ in a factor n.

For large n a random version of the jackknife is necessary. For
the bootstrap a random version is nearly always obligatory, as
there are n bootstrap samples possible. If the number of bootstrap
samples is R, we need of course to take R large enough. Not very
much research is done on what is large enough. Only Borsboom & Van
Pelt (unpublished) did some research on this subject with regard to
a computer program for nonlinear canonical correlation analysis
(CANALS, cf. Van der Burg & De Leeuw, 1983). They took bootstrap
samples (of 4241 observations) adding one at a time and recomputing

standard errors of caiegory quantifications. When the difference
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between previous and current standard errors was smailer than .0l
they stopped taking bootstrap samples. Using the category with the
largest standard error as a criterion, they judged that about 40
samples is enough for CANALS in this example. Their method is im-
plemented in a computer program by Borsboom & Visser (1987). We
repeated the analysis of Borsboom & Van Pelt with the Whales data
(for a description see further on). We added 10 samples each time,

starting at 10 and ending with 120.

EXAMPLES

In this section the jackknife and bootstrap procedures are used
to compute pseudo value means and standard errors for four differ-
ent data sets. For the smaller data sets (i.e. Whales and Russett)

a complete jackknife and a random bootstrap procedure were applied,

"while in the case of the FYTY and SIMS data sets a Monte Carlo

version of jackknife and bootstrap were used. For all data sets the
generalized canonical correlations (i.e. eigenvalues) were em-
ployed. In addition for the Russett and FYTY data some category
quantifications were also considered. An overview of the results of
these analyses is presented in tables found in the following sec-
tions of this paper. Many of these tables have a column for eigen-
values (respectivily category quantifications), computed from the
original data matrix (or sample), in single precision (SP) and

double precision (DP). For single precision the convergence of the
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OVERALS program is computed with accuracy to 10'5, while for double
precision it is computed with accuracy to 1078, The OVERALS conver-
gence criterion is specified in terms of the difference between the
sum of eigenvalues for two consecutive iterations in the alterna-
ting least squares procedure. Many tables which follow have three
columns for estimated population means, of which there are two for
jackknife (single and double precision, JSP and JDP) and one for
bootstrap (single precision, BSP). In addition many tables also
contain estimated standard errors corresponding to the estimated
means.

The first example considered (the Whales data set, Vescia, 1985)
consists of fifteen variables decribing characteristics of 36
whales, porpoises and dolphins (e.g. form of the head, kind of
feeding, place of blow hole, colour, etc.). Using the twelve vari-
ables without missing scores we repeated an analysis described by
Van der Burg (1985). This means that the program OVERALS was used
for homogeneity analysis (multiple correspondence analysis): twelve
sets each consisting of one variable treated as multiple nominal.

The second example considered was based on the Russett data set
(Russett, 1964). These data contain three sets of variables dealing
with attributes of 47 countries. The first set contains two vari-
ables concerning ownership of land, the second set contains the
variables gross national product and percentage of people working
in agriculture, while the third set includes the four variables
that -are indicators of political instability. The multichotomized

scores originally established by Gifi (1981, chap. 7) were used in
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this study. The data were analyzed with numerical, single nominal,
and multiple nominal options.

The third example (designated FYTY for From Year to Year) is
based on a sample from a large school career survey (for references
see De Leeuw & Stoop, 1979). In the example we consider, there are
520 school children and six variables divided into three subsets.
The variables are choice of school after primary education (set 1),
achievement test score and teacher's advancement recommendation
(set 2), educational level of father and mother, and profession of
father (set 3). The different sets were measured at different
points in time period, the order considered was: subset 3, subset
2, subset 1. The FYTY data were analysed in the same three ways
used with the Russett data.

The fourth example also comes from a school survey, in this case
the SIMS (Second International Mathematics Study) Project (Pelgrum,
~ Eggen & Plomp, 1984 and 1986). For this example the complete data
base (4863 school children) as well as a sample from that base
(1000 school children) were considered. The eigenvalues correspond-
ing to the complete data base were treated as population par-
ameters, while the sample data were used to estimate these popu-
lation parameters. The variables considered in this example were
divided into three subsets. One subset contains the variables type
of school and father's education, another subset contains three
attitudes towards mathematics, while the remaining subset includes
a mathematics test score. Four measurement levels were considered

for the SIMS data example. Single nominal, ordinal and numerical,
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and multiple nominal.

RESULTS FOR WHALES

Table 1 contains bootstrap estimates for the Whales example. As
earlier specified, the bootstrap procedure was implemented with
various numbers of samples with increments of size 10. The number
of samples ranged from 10 to 120. Results for this example were
computea in both single and double precision. The estimated popu-
latfon means and standard errors are presented in Tabie 1. It may
be noted that the bootstrap pseudo value means show only minor
differences, even for the extreme cases (i.e. number of samples of
10 and 120). However, the estimated standard error tended to in-
crease for number of samples 10 to 40, while remaining rather
stable for number of samples greater than 40. In addition, it was
found that differences were negligible between the two levels of
precision. For the remaining examples 40 samples were considered
when a random process was used in identifying samples. In addition,

only single precision computation was used with the bootstrap.

INSERT TABLE 1 ABOUT HERE

The eigenvalues computed from the Whales data are presented in
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Table 2. Four methods were considered: SP, DP, APL and CA. The
first two use the Fortran OVERALS program, and result in similar
efgenvalues. The third method is based on an APL version of the
OVERALS algorithm. Since APL is quite precise (16 digits accuracy)
the results obtained under this method may be considerably more
accurate than results from the Fortran program. The fourth method
considered was correspondence analysis (CA). In those cases in
which all variables are treated as multiple nominal, the OVERALS
problem may be reformulated in a format which is consistent with
correspohdence analysis. For this reason a correspondence analysis

program (ANACOR, Gifi, 1985) was used. The eigenvalues from ANACOR

INSERT TABLE 2 ABOUT HERE

are precisely the same as the OVERALS eigenvalues. However the
variances do differ (see Table 3). Although the APL eigenvalues are
slightly different from those obtained under the above mentioned
approaches, those differences hardly seem worth mentioning. The
Jackknife and bootstrap results are presented in column 4 to 11 of
Table 2. The bootstrap results are based on 120 samples, while the
JSP and JDP results are based on 36 samples (a complete jackknife).
The estimated means do not substantially differ from each other,
but the estimated standard errors do manifest sizable differences.

The three jackknife estimates are very similar, however the boot-
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strap estimates are considerably lower in magnitude than the jack-
knife estimates. It is clear from Table 1 that using more samples
will not change the estimated standard error. Thus in this case the
bootstrap results converge to values different from those of the
jackknife method. As the number of observations is very small in
this example (i.e. 36) this may be due to the fact that asymptotic
characteristics are not satisfied, and thus approximations may be
imprecise. We can compare the results obtained under OVERALS with
those obtained under CA. As it is possible to compute the first
order derivatives in case of correspondence analysis, the ANACOR
program delivers variances (Table 3). The first two bootstrap
estimates are sytematically lower than the CA values, while the
corresponding jackknife estimates are higher. Only the third

variance is similar for the bootstrap and jackknife (and lower than

INSERT TABLE 3 ABOUT HERE

for CA). Assuming that CA gives the more precise value (direct
computation instead of approximation), we find that the jackknife
overestimates and the bootstrap underestimates the standard error.
We do not make conclusions on the third variance as the smallest

eigenvalue normally is much less precise than the larger ones.
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RESULTS FOR RUSSETT

A complete jackknife and a random bootstrap were applied to the
Russett data. As the number of observations (47) is still rather
small we may expect different results from the bootstrap and jack-
knife analyses. The results for the eigenvalues are presented in
Table 4. One of the most striking aspects of these results is that
the standard errors are considerably larger than those obtained
with the Whales data. It should be realized however, that hom-
ogeneity analysis is known to be a very stable technique, and most
1ikely an example with more variables in the sets will be less
stable. JSP means appear to be rather strange, especially if we
keep in mind that the data are not a sample but the population. JOP
estimates seem to be a little less unexpected. Estimation by boot-
strap is more like the eigenvalues based on the complete data set
than the estimation by jackknife. But in any case the results
appear discouraging. Bootstrap standard errors are smaller in gen-
eral than jackknife standard errors but they are too large for

reasonable confidence intervals.

INSERT TABLE 4 ABOUT HERE

A look at results for category quantifications of two variables

(LABO and DEMO) is even more perplexing (Table 5). The bootstrap
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estimates provide at least a rough approximation of the corre-
sponding population results. However the jackknife estimates are
quite different from the population values. In addition, the corre-
sponding standard errors seem extrordinarily large. A direct look
at the bootstrap and jackknife results (without computing pseudo
values) shows their values to be rather stable (Figures 1 and 2).
Every dash (-) corresponds to a category quantification resulting
from one bootstrap/jackknife sample (called bootstrap/jackknife
sample value), while the symbol O represents the original category
quantifications of the Russett data. On the horizontal axis the
original category scores are scaled, while on the vertical axis the

category quantifications are scaled. As the jackknife and bootstrap

INSERT FIGURES 1 AND 2 ABOUT HERE

sample value variances differ asymptotically by a factor n, we
divided the bootstrap sample values (in deviation from their mean)

1/2 45 make the results comparable for the two techniques. It

by n
may be noted that DEMO is a much more stable variable than is LABO.
For the latter variable, cateories 1 & 2, and 4 & 5 respectivily
show considerabie overlap. However, overall the results appear
rather stable.

Because the results for the Whales and the Russett examples were

disappointing, additional examples involving larger data sets were
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considered.

RESULTS FOR FYTY

The FYTY data were analyzed by the Monte Carlo version of jack-
knife and bootstrap. The resulting eigenvalue estimates are pre-
sented in Table 6. Considering the FYTY data as a sample from a
large data base, we can expect eigenvalues obtained from the orig-
inal sample to be larger than estimates obtained from bootstrap and
Jackknife. This is because sample estimates tend to overestimate
the population parameters while the jackknife and bootstrap pseudo
value means are supposed to reduce the bias found in sample esti-
mates. The actual estimation outcomes that were obtained for the
FYTY data are as follows. The jackknife estimates were rather simi-
lar to one other but do not seem to show any relation with the
sample eigenvalues. Here the JSP estimation seems to have outper-
formed the JOP estimation, but that is not really true. The JSP
values have been produced with three digits accuracy, which was not
sufficiently precise. For instance the second estimate of the popu-
Tation mean (multiple nominal), seems very good for JSP, and some-
what worse for JDP. This difference is due to the number of digits
provided in the'bomputer output. As all jackknife values differed
from the sample value in the fourth and higher digits, we obtain
the same values when we truncate at three digits. Consequently,

sample and jackknife estimates are the same. The JDP estimate, in
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which 6 digits accuracy is provided, is much larger, but must be
more precise. Thus in this case the JSP results may be somewhat
suspect. For this reason we l1ook only at the JOP results. For the
following example we used output with 6 digits accuracy to avoid

this problem.

INSERT TABLE 6 ABOUT HERE

The bootstrap estimates of the population mean appear better
than the jackknife estimates. The bootstrap estimates are indeed
always smaller than the sample eigenvalues. For all measurement
levels the first value provided a closer approximation than the
second value. Many eigenvalue routines give more precise results
for the larger efgenvalues (supposing that the smaller ones are
also computed). This phenomenon may provide an explanatién for the
difference in accuracy obtained for first and second eigenvalues.

Due to the large number of observations standard errors are
smaller than found for the Russett example. However especially in
the case of jackknife these standard errors are still unacceptably
large.

Untill now it would seem that the bootstrap method is preferable
to the jackknife method, since it apprears to provide more precise
estimates with smaller variance. As the number of sample observa-

tions is still not large, an additional sample size which more
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closely approximates the asymptotic case seemed warrented. For this

reason the next example {s based on 1000 observations.

INSERT TABLE 7 ABOUT HERE

However, before this next example is presented some category
quantifiéations of the FYTY data are considered. To do this, the
variables PRE and TON are used (Table 7). Looking at the standard
errors for these variables, it may be noted that TON is much more
stable than PRE. We also see that the standard errors of the cate-
gory quantifications are larger than those for the eigenvalues
{Table 6). As category quantifications are proportional to the
square root of eigenvalues, their standard errors will increase at
a corresponding rate. In Table 7 we see that again the JSP and JDP
results agree rather well, but the correspondence between sample
eigenvalues and the estimated population means is almost nonexis-
tent for the jackknife. Bootstrap results are very similar to the
sample values for TON, however results for PRE show less similarity
(but not as bad as jackknife estimates). Looking at the category
quantifications of the jackknife and bootstrap samples directly
{1ike we did for the Russet example), we find that those variables
behave very stably (Figures 3 and 4). In the case of TON all fourty

dashes (jackknife/bootstrap sample values) fall together both for
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INSERT FIGURES 3 AND 4 ABOUT HERE

Jackknife and bootstrap, while for PRE we find some variability
amoung the category quantifications. Note that in case of JDP, most
of the variability that is present is due to a single outlying

sample. This stability in the results is very striking.

RESULTS FOR SIMS

In Table 8 we find results for the eigenvalues of the SIMS data.
The data base itself consisted of 4863 observations and served as
the population of interest. For the purpose of estimating the popu-
lation eigenvalues a sample of 1000 observations was considered.
The bootstrap and jackknife approaches were used (on the sample)
for reestimation of the population values {(with the computer re-
sults specified to 6 digits for both SP and DP). Note that boot-
strap estimates are always between the population and the sample
values. Theoretically this is to be expected The same outcome is
also expected when the jackknife is used. However, this did not
occur in half the cases of Table 8. Since standard errors appear to
be reasonably small, it is suggested that confidence intervals for

bootstrap results be computed.
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DISCUSSION

In comparing jackknife with bootstrap one is left with the im-
pression that the jackknife method is far more imprecise than the
bootstrap method. Apparently jackknife approximations are less
stable for smaller samples. The use of double precision computa-
tions tends to improve the jackknife results, but does not elim-
inate the problem. For the bootstrap method it does not matter
whether computations are SP or DP.

For smaller samples the jackknife standard error is larger than
the bootstrap standard error. It is possible that approximations
are not precise enough because of the small sample size. It appears
that the jackknife and bootstrap method converge to different
values.

Jackknife results are sensitive to precision and thus to compu-
tational error. This can be concluded from the differences in SP
and DP results. This finding does not vary with sample size. It
concerns mainly the estimated population means of eigenvalues and
not the corresponding standard errors. Estimation based on boot-
strap is more robust than estimation based on jackknife. Results
for category quantifications are discussed further on.

For smaller samples the estimated standard errors of eigenvalues
(both for jackknife and bootstrap) are unacceptably large (varying
from .025 to 1.05). Such error variation would result in huge con-
fidence intervals (with substantial overlap among intervals).

In all cases considered, the estimated population means for
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eigenvalues appear to be worse for jackknife than for bootstrap, as
bootstrap estimates are nearer to the population or sample value,
than jackknife estimates are. Even for the largest sample con-
sidered, more deviations (i.e. population mean not in 95% confi-
dence interval) were found with jackknife than with bootstrap.
Deviations occur for second eigenvalues (ordinal and numerical) of
JOP and for all second eigenvalues of JSP (Table 8). Many eigen-
value routines are less precise for the smallest computed eigen-
value. As jackknife is sensitive to precision this may be the
cause.

Estimates for category quantifications seem rather strange.
Category quantifications correspond to the square root of eigen-
values, and thus will be less precise. However the estimates are
sometimes highly inaccurate, even for very stable jackknife or
bootstrap sample values. Again in this case the bootstrap seems to
perform much better than the jackknife (Table 7). In several plots
stability of results is illustrated (Figures 1 to 4). Only in the
case of LABO are the results unstable. This variable has a much
smalier weight than the other variables used for illustration. It
may be that this smaller weight results in a lower level of stab-
ility.

In the case of the example based on the largest sample, the
bootstrap means computed directly from bootstrap samples provided a
less accurate estimate of the population value than was provided by
pseudo value means which are presented in Table 8. A similar out-

come was found {although the differences were less) for jackknife.
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Using pseudo values tends to provide a better approximation than
obtained by averaging boots}rap and jackknife results directly.

If we compare other studies using jackknife and bootstrap, we
find that Boomsma (1986) concludes that both methods give very
similar results for a sample size of 100. He estimates parameters
for Covariance Structure Analysis. We cannot confirm his findings
in the case of OVERALS parameters.

In conclusion we can say that the bootstrap method performed
better than the jackknife method. For larger samples the bootstrap
proceduré works quite well for computing confidence intervals. The
use of 40 samples seems to be sufficient for estimation, but was
not thoroughly investigated in our study. For larger samples eigen-
values computed from OVERALS seem quite stable. However, category
quantifications §eem to result in much wider confidence intervals.
Studying results for category quantifications directly (i.e. jack-
knife and bootstrap sample values) leads to more positive con-
clusions which are more in agreement with other's earlier experi-
ence with the examples here considered (cf De Leeuw & Stoop, 1979;

Gifi, 1981, chap.7).
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TABLE 1

WHALES, multiple nominal. Estimated population means and es-
timated standard errors for bootstraps with different sample
sizes. SP=single precision, DP=double precision.

Whales pop.mean st.error pop.mean st.error
Bootstr SP  DP S DP Bootstr SP  DP sP DP

10 .601 .601 .031 .031 70 .608 .608 .042 .042

.397 .398 .058 .058 .395 .396 .041 .04l
.306 .305 .022 .017 .298 .,299 .026 .025
20 .602 .602 .029 .029 80 .608 .607  .043 .043
.393 .393  .049 .049 .394 .394  .044 .044
.308 .308 .020 .018 .297 .298  .025 .025
30 .605 .605 .032 .032 90 .610 .045
.395 .396 .046 .046 .394 .046
.302 .303 .024 .023 .297 .025
40 .606 .606 .041 .041 100 .612 .047
.391 .392 .043 .043 .394 .044
.298 .299  .027 .026 .296 .025
50 .609 .609 .040 .040 110 .612 .046
.391 .392 .042 .042 .393 .043
.299 .300 .027 .026 .295 .025
60 .610 .610  .039 .039 120 .613 .045
.394 .395 .041 .041 .393 .042

.298 .299 .027 .026 .295 .026




TABLE 2

WHALES, multiple nominal. Eigenvalues, estimated population
means and estimated standard errors for jackknife (J) (36
samples), bootstrap (B) (120 samples) and OVERALS-APL. SP=
single precision, DP=double precision.

Whales ei?envalue population mean standard error
pP*  APL JSP JDP JAPL BSP JSP  JDP JAPL BSP

MULT .635 .637 .618 .611 .614 .613  .056 .056 .056 .045
NOM  .413 .415 .385 .398 .400 .393 .060 .060 .061 .042
.317 .320 .279 .282 .285 .295 .028 .028 .026 .026

1 gigenvalues SP=DP=CA (Correspondence Analysis)



TABLE 3

WHALES, estimated variances for Jackknife
(36 samples), bootstraps (120 samples),
and correspondence analysis. SP=single
precision, DP=double precision.

Whales JSP JDP BSP CA
estimated .0032 .0031 .0020 .0025
variances .0037 .0036 .0018 .0031

.0008 .0008 .0007 .0012




TABLE 4

RUSSETT, three measurement levels. Eigenvalues, estimated
population means and estimated standard errors. SP=single
precision, DP=double precision, J=jackknife (47 samples),
B=bootstrap (40 samples).

Russett eigenvalue population mean stand. error

SP  DP JSP JDP BSP JSP JDP BSP
single .765 .770 .420 .703 .673 .065 .058 .032
nominal .710 .706 .924 .616 .638 .105 .089 .034

numerical .687 .687  .674 .656 .660  .057 .057 .048
.461 .463  .479 .412 .400  .095 .076 .047

multiple .815 .815 .710 .690 .732 .049 .049 .029
nominal .736 .734 .450 .443 .625 .053 .054 .025




TABLE 5

RUSSETT, single nominal. Frequencies, category quantifications,
estimated population means and estimated standard errors for two
variables. SP=single precision, DP=double precision, J=jackknife
(47 samples), B=bootstrap (40 samples).

Russett. cat.quant. population mean standard error
freq. SP P JSp JDP BSP JSP  JoP  BSP
LABO
10 -1.213 -1.157 -3.226 -.556 -1.240 .969 .835 .699
11 -.970 -1.019 .229 -1.969 -1.191 .931 .805 .476
14 .622 .606 1.120 .465 .662 493 .445 455
11 1.176 1.200 1.028 1.831 1.410 706 .587 .392
DEMO

1 1.147 1.106 1.4341 0.5551 1.0822 1.3591 .9941 .6772
19 -1.090 -1.085 -.674 -.480 -1.049 L322 .294 .30
12 -.400 -.410 -1.272 -1.610 ~-.553 .614 .529 .544
19 1.171 1.173 1.406 1.448 1.284 .215 ,207 .261

1 519 observed values
2 511 observed values



TABLE 6

FYTY, three measurement levels. Eigenvalues, estimated popu-
Tation means and estimated standard errors. SP=single preci-
sion, DP=double precision, J=jackknife, B=bootstrap (both 40
samples).

FYTY eigenvalue population mean stand. error

sp DP JSP Jpp BSP JSP JDP BSP
single .735 .734 1.202 1.060 .731 .061 .056 .021
nominal .399 .400 .269 .167 .367 .034 .025 .017
numericél .695 .695 .851 .679 .692 .016 .014 .017

.341 .341 .639 .567 .326 .057 .054 .013
multiple .742 .742 .690 .695 .729 .014 .012 .018

nominal .555 ,5655 .555 .626 .535 .019 .026 .016




TABLE 7

FYTY, single nominal. Frequencies, category quantifications,
estimated population means and estimated standard errors for
two variables. SP=single precision, DP=double precision,
J=jackknife, B=bootstrap (both 40 sampies).

FYTY cat.quant population mean standard error
freq. SP DP Jsp Jop BSP JSP JDP  BSP
TON

42 -.586 -.586 -2.052 -2.065 -.584 175 0173 .128
208 -.853 -.853 -1.774 -1.748 -.851 .077 .075 .087
165 .056 .056 2.119 2.132 .,080 125 .122 .146
105 1.853 1.853 .317 .291 1.867 .125 .124 .125

PRE

49 -.622 -.622 -43.102 -40.287 -.617 6.574 5.641 .581
147 -.592 -.592 -23.000 -20.275 -.694 4.157 3.696 .457
181 -.184 -.184 8.989 7.886 -.126 .587 2.143 .295
111  .298 .298 33.994 32.606 .200 4.147 3.598 .676

32 3.680 3.680 5.795 -.212 4.275 3.022 2.350 .81l




TABLE 8

SIMS, four measurement levels. Eigenvalues of popula-
tion (POP) and sample (SAM), estimated population
means and estimated standard errors. SP=single preci-
sfon, DP=double precision, Jd=jackknife, B=bootstrap
{both 40 samples).

SIMS eigenvalue population mean stand. error
POPL saml JSP JDP BSP? JSP JDP BSP

multiple .615

.625

nominal  .450 .463

single .613
nominal .352
single .613

ordinal .352

numerical .606
.350

.622
377

.622
.377

.615
.363

.615 .620 .619 .011 .011 .011
.566 .463 .454 .013 .013 .012

.621 .622 .616 .014 .013 .012
.171 .377 .371 .015 .013 .010

.728 .628 .619 .014 .014 .012
.602 .697 .375 .094 .092 .012

.609 .608 .613 .012 .012 .012
.277 .321 .359 .010 .009 .01

1 No difference between eigenvalues SP and DP, except
for the first ef

.621.
2

genvalue of single nominal (SP,SAM):

BDP with convergence to 1075 gives the same results.
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FIGURE CAPTIONS

Figure 1. RUSSETT. Category quantifications for LABO based on three
methods: JSP, JOP and BSP (0 orginal sample value, - jackknife/

bootstrap sample value).

Figure 2. RUSSETT. Category quantifications for DEMO based on three
methods: JSP, JDP and BSP (0 original sample value, - jJackknife/

bootstrap sample value).

Figure 3. FYTY. Category quantifications for TON based on three
methods: JSP, JDP and BSP (0 original sample vatue, - jackknife/

bootstrap sample value).

Figure 4. FYTY. Category quantifications for TON based on three

methods: JSP, JOP and BSP (0 original sample value, - jackknife/

bootstrap sample value).
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