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Loglinear analysis and correspondence analysis provide us with two different methods for the 
decomposition of contingency tables. In this paper we will show that there are cases in which 
these two techniques can be used complementary to each other. More,specifically, we will show 
that often correspondence analysis can be viewed as providing a decomposition of the difference 
between two matrices, each following a specific loglinear model. Therefore, in these cases the 
correspondence analysis solution can be interpreted in terms of the difference between these 
loglinear models. A generalization of correspondence analysis, recently proposed by Escofier, will 
also be discussed. With this decomposition, which includes classical correspondence analysis as a 
special case, it is possible to use correspondence analysis complementary to loglinear analysis in 
more instances than those described for classical correspondence analysis. In this context corre- 
spondence analysis is used for the decomposition of the residuals of specific restricted loglinear 
models. 
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1. Introduction 

For the analysis of contingency tables, loglinear analysis is already a very popular 
technique in the English speaking countries. Standard references are Andersen (1980), 
Bishop, Fienberg and Holland (1975), and Fienberg (1980). In the last few years there is a 
growing interest in correspondence analysis, which has been the most important data 
analytic technique in France for many years. When one has full command of the French 
language, the basic works are those of the group around Benz6cri (1973, 1980). In the 
English speaking world the growing interest is apparent from works written by de Leeuw 
(1984), Girl (1981), Greenacre (1984), and Nishisato (1980). Apart from these books, the 
number of articles and contributions at conferences is growing rapidly. 

Strangely enough, correspondence analysis was already known in the English litera- 
ture for a long time be it under several other names. Nishisato (1980) gives a full survey of 
all these names and references which have appeared in the history of correspondence 
analysis. Greenacre (1984) accentuates that these other approaches have a different ration- 
ale and interpretation. He discusses this for the approaches "reciprocal averaging," "dual 
(or optimal) scaling," "canonical correlation analysis," and "simultaneous linear regres- 
sions." The recent flourishing of correspondence analysis as a data analytic technique is 
probably due to the heavy emphasis on the geometrical aspects of the method. Canonical 
correlation analysis of categorical data (Kendall & Stuart, 1973, pp. 588-598), which is 
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proved by de Leeuw (1971) to be formally identical to correspondence analysis, empha- 
sizes the quantification aspect. 

With the growing interest in correspondence analysis, there is a natural interest in 
relations between correspondence analysis and loglinear analysis. Until now, the literature 
on this topic can be divided into two approaches. The first approach deals with the 
RC-model (RC for "row, column") of Goodman (1979, 1981a, 1981b) and generalizations 
of this model (Agresti, 1983; de Leeuw, 1983). The RC-model is a model for a two-way 
contingency table in which the loglinear interaction parameter has a multiplicative form. 
Goodman (1981b) shows that, when the frequencies in a two-way table are generated 
from an underlying discretized bivariate normal distribution (or a bivariate distribution 
which is bivariate normal after a proper transformation), the estimates of the multipli- 
cative row and column parameters are approximately the same as the row and column 
scores found for the first dimension in correspondence analysis. See also Fienberg and 
Meyer (1983) and Isra~ls and Sikkel (1982) for other relations between the RC-model and 
correspondence analysis. 

Contributions in the second approach discuss the complementary use of correspon- 
dence analysis and loglinear analysis. Examples are Daudin and Tr6court (1980) and 
Isra~ls and Sikkel (1982). They conclude that loglinear analysis is the method most apt to 
trace higher-order interactions, although it is recognized that the interpretation of these 
interactions is often difficult. When the number of variables is small, loglinear analysis can 
be complemented by correspondence analysis. In these two papers complementary use of 
the techniques is advocated only in a general way. It is not made explicit how exactly 
these methods can be used in a complementary way. It is our purpose to propose more 
specific ways of combination in this paper. 

First we give a short introduction to correspondence analysis. Following the French 
tradition, heavy emphasis will be placed upon the geometrical aspects of the technique. 
Correspondence analysis as such is a technique for the analysis of two-way tables. We will 
discuss the most usual way to analyse higher-way tables with correspondence analysis. 
We will not deal with correspondence analysis of higher-way contingency tables by means 
of the so-called Burt matrix (see Girl, 1981, pp. 134-162; Greenacre, 1984, chap. 5). In 
section 3 we will discuss loglinear analysis. Special attention is paid to the case of the 
three-way contingency table. In section 4 we will present our main results on the comple- 
mentary relation of correspondence analysis and loglinear analysis. It will be shown that 
the correspondence analysis solution is based on the decomposition of the difference be- 
tween two loglinear models, which will be specified there. The results will be presented for 
two-way, three-way and higher-way contingency tables respectively. Our results will be 
illustrated by an example. A three-way table on suicide behavior is analyzed. In section 5 
a generalization of correspondence analysis is discussed. The generalization is used to 
make it possible to use correspondence analysis complementary to loglinear analysis in 
more cases than these discussed in section 4. We will end with some conclusions. 

2. Correspondence Analysis of Contingency Tables 

We will treat correspondence analysis briefly here, with an emphasis on the geo- 
metrical aspects. For details and proofs we refer to Girl (t981) or Greenacre (1984), and 
the references mentioned there. 

Correspondence analysis is a technique with which it is possible to find a multi- 
dimensional representation of the dependence between the row and column variable of a 
two-way contingency table. This representation can be constructed using the scores found 
for row and column categories as coordinates for the category points. These scores can be 
normalized in such a way that distances between row points or between column points in 
euclidian space are equal to chi-squared distances. By emphasizing the chi-squared dis- 
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tances, Heiser and Meulman (1983) treat correspondence analysis within the multi- 
dimensional scaling frame work. 

Consider a two-way contingency table F with elements f o, having I rows (i = 1 . . . . .  i, 
. . . .  i', . . . .  1) and J columns (j = 1, ... , j  . . . . .  j', . . . .  J). An index is replaced by " + "  when 
summed over the corresponding variable, for example Zjf~j =f i+.  The chi-squared dis- 
tanees are computed on the profiles of the corresponding rows or columns, where for 
example the profile of row i is the row of values fifff~+. So Zjf~fff~+ = 1. The chi-squared 
distance between rows i and i' is defined as 

as(i, i') = zj \f~+ f~'+/ 
f+~ , (1) 

n 

where n = f +  +. Equation (1) shows that 62(i, i') is a measure of the difference between the 
profiles of row i and i'; when i and i' have the same profile, 82(i, i') = 0. 

The correspondence analysis solution can be found as follows: let X be the matrix to 
be analysed; D, and Dc diagonal matrices with marginal row frequencies x~+ and column 
frequencies x+j respectively; E -- D, t fDc /n ,  where n = f +  + and t is a vector with ones, the 
length of which depends on the context. Elements of E have the following form: 

e~j = x!+x+) (2) 
n 

Subsequently the singular value decomposition of the matrix D71/2(X - E)D71/2 is 
computed. Elements of this matrix have value (1/nl/2)((xlj - eij)/e~J2), which are standard- 
ized residuals, scaled by (1/n) 1/2. These residuals are decomposed with (3): 

1)71/2(X _ E)D71/5 = U A V ' ,  (3) 

where U ' U  = I, V ' V  = I, and A is a diagonal matrix with singular values 2, in descending 
order; ~t is the index for dimension. The dimensionality of the solution is equal to min 
( 1  - 1, J - 1). For the remaining dimensions 2, = 0. 

U and V contain scores corresponding with the row and column categories. These 
scores are normalized as follows: 

R = Dr-12Unl /2 ,  and 

C = D~ 1/2Vnl/2. (4) 

So R ' D , R  = n l  and C ' D c C  = nL  Furthermore t ' D , R  = 0 and t'Dc C = 0: For  each di- 
mension row scores and column scores have a weighted variance of 1 and a weighed 
average of 0. 

One can make a simultaneous representation of row and column points in three ways 
(Girl, 1981, pp. 134-151): (a) The first can be made by using scores R and d = CA as 
coordinates, so that the euclidean distances between column points are equal to chi- 
squared distances. The weighted variance of the coordinates of the column points equals 
22 for each dimension. (b) The second is made by using/~ = RA and C as coordinates, so 
that the analogous result holds for the row points. (c) The third simultaneous repre- 
sentation is made by using RA 1/2 and C A  1/2, so that a symmetric representation of row 
and column points is chosen. Row scores can be derived from column scores (and column 
scores from row scores) with the so called "transition formulas": 

R = D 7 I X C A -  1, and 

C = D~- 1 X ' R A -  1. (5) 
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Bringing A from the right to the left side of (5), it is easily seen that in the above 
mentioned simultaneous representation, (b), the row scores/~ are in the weighted average 
of the column scores C, and in (a) the column scores (7 in the weighted average of the row 
scores R. This property is called the "barycentric principle." Here the weighting is done by 
the column and row profiles. The transition formulas define the rationale for the "recipro- 
cal averaging" approach. 

Chi-squared distances between row i and i', and their approximations, can be com- 
puted with (6): 

(Ii  --  I i , )O71XD~-  I X ' D ;  l(I i  - -  Ii,)'n = (Fi - -  F,,)'(f, - -  Fi, ), (6) 

where li is the i-th row of the identity matrix, ~ the i-th row of matrix/~. With the right 
term of (6) one can compute approximations of the chi-squared distance by dropping the 
last column(s) of R. 

The so-called reconstitution formula (Benzrcri, 1973, 1980; Greenacre, 1984, p. 93) 
can be found by substituting (4) in (3): 

D 7 t(X - E)D~- in  = R A C ' ,  

so that 

X = E + D,  R A C ' D ,  n -  1 = n -  1D,(tt' + R A C ' ) D c .  (7) 

Elements of R A C '  are equal to (x o - eis)/eo. Equation (7) shows that correspondence 
analysis decomposes the departure from independence in a matrix. This decomposition 
has the following relation with the well-known Pearson goodness-of-fit X 2 statistic, which 
will be defined in (14): 

trace A 2 = X 2 / n ,  (8) 

where trace A 2 is called the total "inertia." So, correspondence analysis decomposes the 
X2-value of a matrix (Kendall & Stuart, 1971, pp. 588-594). The importance of dimension 
ct can be evaluated by the ratio of the inertia of dimension ct and the total inertia: 22/ 
E, 22 . This quantity can be interpreted as the proportion "explained" inertia for dimen- 
sion ct, or the proportion of X 2 that is decomposed in dimension ct. 

Clouds of points can be interpreted using chi-squared distances: when two row 
points (or two column points) are near each other, their profiles are similar. When profiles 
differ considerably, the distance between the points is large. The profiles of the marginal 
frequencies of X are projected into the origin. When the distance of a category point to 
the origin is small, the profile of this category point does not differ much from the mean 
profile. The distance of row i to column j can be interpreted with the transition formulas; 
roughly one can say that i and j will be near each other when x 0 >> e o, and that i and j 
are far apart from x u << ej. 

An important aid in the interpretation of a solution is the property that the sum of 
the weighted squared distances of the row points (or column points) to the origin, is equal 
to 22 for dimension ct: 

22 = , \ - -~ - ) t ,  ' I  t n / '  (9) 

With (9) one can evaluate the relative contribution of row i to dimension at with the ratio 
( ( f~+ /n )~ ) /22  , which can also be interpreted as the proportion of variance in dimension at 
accounted for by row i. The same holds for column point j, wlien one uses the last term of 
(9). Using the theorem of Pythagoras, it is also possible to compute for row i on dimen- 
sion ct the ratio of the squared projected distance and the squared total distance to the 
origin. With this ratio is is possible to evaluate how good the total chi-squared distance of 
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row i to the origin is represented on dimension 0t. We will use these ratios when we 
interpret the examples. 

In the introduction it was stated that correspondence analysis is formally identical to 
canonical correlation analysis of contingency tables. From this follows the special relation 
between ).~ and the Pearson product-moment correlation coefficient: The correlation be- 
tween the row and column variable is, under all possible rescalings of the row and column 
categories, maximal and equal to 21, when as quantification of the categories of both 
variables the scores for the first dimension are taken. 22 is equal to the maximal corre- 
lation of the quantified variables, where the quantification is restricted to be orthogonal 
to the quantification for the first dimension, and so forth (Kendall & Stuart, 1973, pp. 
588-594). Correspondence analysis thus finds the maximal canonical correlations between 
the row and column variables. 

Correspondence analysis as explained above is a method for the analysis of two-way 
contingency tables. A higher-way contingency table can be analysed in several ways. We 
will differentiate between three approaches. The first approach takes "slices" of a data 
block as its starting point: one can analyze separate tables for each category of other 
variables, for example when the three way table F is of order I x d x K, one can analyze 
two-way tables of order I x d for every category of the third variable. It is also possible to 
concatenate these slices, thus creating "interactive variables." Interactive variables are 
constructed by merging two or more original variables. For  a three-way table F one can 
find three two-way matrices having order I x (J x K), J x (I x K) and K x (I x J) re- 
spectively. As far as we know, Gifi (1981, p. 151) is the only English standard reference in 
which this alternative is actually applied. On the other hand, in the French literature this 
is the method used most often to study interaction in higher-way tables. The two-way 
tables that are formed in this way are called "tableaux multiples" (e.g. Benzrcri, 1973, 
1980). In the sequel we will confine ourselves to this alternative and refer to these tables as 
"multiple tables." Multiple tables will be notated by placing the variables, which consti- 
tute the interactive variables, between brackets, for example in a three-way table the three 
possible multiple tables are F 1 × ~2 × 3), F 2 × tl x 3~ and F a × tl x 2) 

A second approach for the analysis of higher way tables takes adding up over vari- 
ables as its starting point. One can analyze marginal tables of two variables, but it is also 
possible to analyze concatenations of these marginal tables, for example in the three-way 
table one possibility is a table of order I x (J + K) formed by concatenating the marginal 
tables of order I x K and I x J. Leclerc (1975) discusses properties of correspondence 
analysis solutions. A third possibility in this approach is to analyze the so-called Burt 
matrix, which consists of concatenations of uni- and bivariate marginal matrices, and is of 
order (I + J + K) × (I + J + K) (Greenacre, 1984, p. 140-143). Correspondence analysis 
of a Burt matrix comes to the same as homogeneity analysis (Girl, 198t) or multiple 
correspondence analysis (Greenacre). 

In the third approach a higher way analogue of singular value decomposition is 
performed on standardized residuals of the higher-way matrix (Kroonenberg, 1983). For  
four and higher way tables the three approaches can of course be mixed, leaving us with 
an abundance of possibilities. Further research is needed to get a better understanding of 
all these possibilities, especially as to which possibility gives the best answer to which 
question. 

Practice seems to show that in the two variable case correspondence analysis is an 
especially good method to gain insight into the relation between the variables of a contin- 
gency table when the number of categories is large. 

3. Loglinear Analysis 

Loglinear analysis is a well-known method to study the structural relations between 
variables in a contingency table. We treat here only some main points of loglinear analy- 
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sis. For details and proofs we refer to Andersen (1980), Bishop et al. (1975), and Fienberg 
(1980). Loglinear analysis decomposes the logarithm of the frequencies using the linear 
model. For example, in the case of a three-way matrix, the unrestricted loglinear model 
(called "saturated model") has the form 

logfq k ---- u + ul(i) + U2U ) + U3(k) ~t_ Ul2(i j  ) _~. Ulattk ) .~_ U23(jk ) .4- U123(ijk). (10) 

In the saturated case one has for a frequency f ~  one parameter for the mean; three sets of 
parameters for the margins; three sets of parameters for the so-called first order interac- 
tion (or two-factor interaction); and one set of parameters for second order interaction. 
The u-parameters follow the usual ANOVA constraints: they sum to zero for each sub- 
script. 

The purpose of loglinear model fitting is to investigate whether, for a given dataset, 
certain u-parameters can be restricted to have value zero, for all i, j and k. The procedure 
is to specify a restricted model, to compute expected frequencies under this model, and to 
evaluate whether the difference between the expected frequencies and the observed fre- 
quencies is large. This evaluation usually takes place with the aid of Pearson's goodness- 
of-fit statistic X 2, or the likelihood-ratio chi-squared test G 2. Consult the above men- 
tioned reference for details. Very often attention is restricted to the class of hierarchical 
models; When a u-term is zero, all higher order u-terms having the same indices are also 
zero; for example when u12,j~ = 0, then U123,~k)= 0. The primary reason for this re- 
striction is interpretive (Fienberg, 1980, p. 43). 

Maximum likelihood-estimation is the most often used estimation method for loglin- 
ear models. The estimates are unique, and the estimation formulas do not differ when the 
frequencies form a sample from a (product-) multinomial or Poisson distribution. ML- 
estimation amounts to the same thing as fitting marginal tables to the full table. For 
example in the restricted model 

logf/jk = U + Ul(i) + U2(j) + Ua(k) + U23(jk), (11) 

and expected frequencies mijk have the following structure: 

mijk = mi+ +m+ Jk (12) 
rt 

Complete minimal sufficient statistics for m~+ ÷ and m+jk  aref~+ + andf+jk respectively, so 
for model (11) 

. fi+ +f+;k (13) 
m t j  k ~- 

n 

It is easy to see that for the fitted marginalsf~+ + = ~hi+ + a n d f + ~  = rh+~k, that is for 
the fitted margins the observed marginal frequencies are equal to margins of estimates of 
the expected frequencies. This is a special property of ML-estimation. For (11), it is possi- 
ble to estimate the expected frequencies directly. This is not always the case: Sometimes 
expected frequencies have to be estimated iteratively when they can not be written out in 
closed form. The procedure mostly used is called "iterative-proportional fitting." For  the 
three variable case this is only needed in case of hypothesis u12s = 0. See Reynolds (1977, 
chap. 6) for details on this procedure, and for general specifications when direct estimates 
cannot be found. 

Evaluation of the fit of models is done with the Pearson goodness-of-fit chi-squared 
statistic X 2, 

(Observed-Expected)2 (14) 
X 2  = ~ w .... ,,~A ' 
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where the sum is taken over all frequencies; or the likelihood-ratio chi-squared statistic 
G2: 

G 2 = 2Y. Observed log (Observed/Expected), (15) 

where again the sum is taken over all frequencies. The values of X 2 and G 2 are asymp- 
totically distributed as a chi-squared variate when the specified model is true. The number 
of degrees of freedom is equal to the number of cells with non-zero fitted values minus the 
number of fitted independent parameters. A good review of goodness-of-fit measures is 
Bonett and Bentler (1983). 

We code LL-models by placing the variables that constitute the highest fitted mar- 
ginals between brackets: For the example above we write the model as [1][23], for the 
saturated model we write [123]. 

It is not usual to interpret individual u-parameters. This has the following reasons: 
Unlike in the ANOVA situation, there is no underlying empirical scale for a dependent 
variable. The "dependent variable" here is the logarithm of a frequency. Furthermore, the 
number of u-parameters that must be interpreted often becomes very large, especially 
when there are higher order interactions present, or when the number of categories is 
large. Moreover, it is not necessary to estimate these u-parameters if we only want to 
investigate whether variables are related or not. 

Loglinear analysis seems especially a useful method to trace relations between vari- 
ables when the number of variables and the number of categories is not too large. 

4, Correspondence Analysis Decomposing the Difference Between 
Two Specific Loglinear Models 

Equation (6) showed that correspondence analysis decomposes the difference 
(X - E), where the computation of values of E is based on the margins of X, see (2). We 
will show that values xij and eij are equal to ML-estimates of expected frequencies, com- 
puted under a specified loglinear model. This is the case for two-way contingency tables, 
and multiple tables formed from three-or-higher way tables. This result makes it possible 
to interpret the correspondence analysis solution in terms of loglinear models, and to 
circumvent the often arising interpretation problems with loglinear u-parameters. We will 
consider these applications more thoroughly at the end of this section. First we will dis- 
cuss the situation for a two-way table, then for a three-way table, and finally for higher- 
way tables. 

For a two-way contingency table with elements f~ it is easy to show that values xij 
and %. are equal to ML-estimates of expected frequencies following models [12] and 
[1][2] respectively. For x~g this is evident, since X = F :  we take as X-- the  matrix to be 
analysed--the matrix of observed frequencies F, and in case of the saturated model [12] 
estimates of the expected frequencies are equal to the observed frequencies, rh o = f o .  
Values eli are equal to estimates of the expected frequencies following the independence 
model [1][2]: For this model rhli = f i , f ,  Jn, and since ei~ = xl, x,,i/n, (see (2), and X = F, 
it follows that x~, =f~,  and x , j  = f , i .  So, in case of a two-way contingency table the 
correspondence analysis solution can be interpreted in terms of the difference between the 
loglinear models [12] and [111-2]. Of course, this result is not very amazing. Without 
explicit reference to loglinear models, it is stated in almost all correspondence analysis 
literature that correspondence analysis decomposes the departure from independence of 
the row and column variable. 

Results become more interesting in case of analysis of three-or-higher-way tables by 
means of multiple tables. First consider the three-way table F with frequencies f~i~, from 
which (without loss of generality) the multiple table F x × 12 x 3) is constructed. We will 
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index the elements of X and E as x~m and e~m, where each distinct combination of variable 
2 and 3 forms a different category of the interactive variable, which is indexed by m. Of 
course, since X = F 1 x (2 × 3), elements xi,, are equal to ML-estimates of expected fre- 
quencies for the saturated model [123]. Values ei., are equal to ML-estimatcs of expected 
frequencies for model [1][23]. These expected frequencies rhOk are estimated with (13), 
rh~jk =f~**f ,  jk/n. We know that ei .  = x ~ , x , , , / n .  Since X = F 1×(z~3), it follows that 
x~, =f~** and x , , ,  =f,~k and consequently ei,. = rhiik. So when the three-way matrix F is 
flattened to the multiple matrix F l ×(2 × 3), the correspondence analysis solution can be 
interpreted in terms of the difference between the loglinear models [123] and [1][23]. 
When multiple tables F 2×(1 ×3) o r  F 3×{1 ×2) would have been constructed, values e~j 
would follow model [2][13] or [3][12] respectively. 

When we have higher-way contingency table F, we can construct multiple table 
F A × B, where A and B are two groups of variables which together constitute the higher- 
way table, where A ~ B = 0. So, from the variables of group A and B two interactive 
variables are constructed. (When a group has only one variable, this variable is the new 
interactive variable.) In this case the correspondence analysis solution can be interpreted 
in terms of the difference between loglinear models [A u B] and [ALIBI: elements xab of 
X are equal to elements f~b of F A × n; elements eab of E are equal to %b = X. .  X.b/n. For 
model [A][B] expected frequencies m,b are estimated with the formula rh~b = f , . f . b / n ,  
and since X = F A ×n, we find that xa. = f a , ,  X,b = f . b ,  and %b = rh~b. 

For three- and higher-way tables we can conclude that, when one analyses multiple 
tables with correspondence analysis, the correspondence analysis solution can be interpre- 
ted in terms of the difference between two loglinear models. We have also shown that, 
when one inspects the correspondence analysis solution, one does not see all the depen- 
dence in the data matrix, but only a part of it. For  example, for the multiple table 
F 1 × t2 × 3) constructed from the three-way table F, the first-order interaction between Vari- 
ables 2 and 3 does not influence the solution. One can use this fact in two ways when one 
has to decide which multiple table can best be chosen. Let us consider again a three-way 
table. Firstly, when some first-order interaction does not seem interesting, one can code 
the corresponding two variables interactively. Secondly, when one is especially interested 
in the relation of some variable with the other two, this variable should not be coded 
interactively with another variable. The correspondence analysis solution shows the two 
first-order interactions of this variable with the other two, and the second-order interac- 
tion. 

Another implication of our results is that it is in some cases possible to use corre- 
spondence analysis and loglinear analysis complementary to each other. One can use the 
two techniques to find answers to different questions: loglinear analysis can answer the 
question of which variables are related: correspondence analysis can answer the question 
of how these variables are related, that is, which categories occur more often together 
than expected, and which categories less often. Or, to put it differently, loglinear analysis 
answers questions about interaction between variables on the "variable level," and corre- 
spondence analysis on the "category level." Not  only for two-way tables but also for 
three- or higher-way tables, some of the computable Pearson goodness-of-fit measures can 
be decomposed with correspondence analysis. One circumvents problems with the inter- 
pretation of u-parameters in this way. For  this reason we would advise one to do a 
loglinear analysis, and evaluate the acceptability of models with the X2-statistic first. 
Secondly, we decide which multiple matrix or matrices one should choose, and thirdly we 
perform the correspondence analysis on these matrices. Correspondence analysis decom- 
poses the values of the X2-statistics, computed in the loglinear analysis, We will illustrate 
this procedure with an example. 
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Example: Suicide Behavior 

A contingency table with data on suicide behavior is analysed. The number of suc- 
cessful suicides is arranged by the variables "age" (18 categories) x "sex" x "cause of 
death" (10 categories). In a cell one finds the number of times persons of a certain age and 
sex, committed suicide, using one of ten methods. The data are collected by the German 
Office for Statistics in Western Germany for the years 1974 to 1977, and can be found in a 
book on suicide prevention by Heuer (1979, Table 1). We have omitted one age-group 
(5-10 years old; n = 1) and one cause of death ("died later because of suicide attempt"; 
n = 5) from the analyses because of their small marginal frequency. 

In literature on suicide, official statistics are often said to be not completely reliable 
(Diekstra, 1981, pp. 63-84, Douglas, 1973, pp. 163-231; Heuler, 1979, pp. 63-72). The 
most important reason is that suicides are sometimes not reported as such, but as acci- 
dents, due for example to different definitions on suicide and attempts to conceal them. 
This will occur more often with certain methods and certain ages (especially with 
children). Apart from case histories, theory on suicide has for various reasons relied heavi- 
ly on official statistics (Douglas, pp. 164-167). One reason is that a good theory on suicide 
should be capable to explain these statistics. A precise understanding of the structure of 
these statistics is therefore important. 

Loglinear analysis is performed with the program BMDP4F  (Dixon, 1981), with 
which all possible hierarchical models are examined. The results can be found in Table 2. 
All goodness-of-fit statistics are significantly different from zero. This is not surprising, 
since chi-squares are proportional to n (n = 53,210). The three first order interactions 
seem to be important (which can be seen from the difference in G 2 and X 2 between all 
models with two first-order interactions, and the model with three first order interactions), 
and even the second order interaction cannot be neglected. We can conclude that there is 
good reason to investigate in which way the three variables are related. 

Which multiple tables should be analysed with correspondence analysis? Here are 
some possible considerations. When one first-order interaction would have been less im- 
portant, we could have used this as an argument to construct from the corresponding two 
variables the interactive variable; but this is not the case. There is no first order interac- 
tion in which we have a priori interest, so that consideration can not be used here. We are 
most interested in the relation of variable "cause-of-death" with the two background vari- 
ables age and sex: in what way is the background related with the chosen cause of death ? 
This points to the multiple table F M x cA × s). 

Correspondence analysis of F s×<M~`4) shows us a one-dimensional solution, since 
"sex" has only two categories; we cannot benefit from the nice geometrical aspects of 
correspondence analysis in the one-dimensional case, and therefore we skipped this analy- 
sis. The analyses of F M ~ ca × s) and F.4 × ~M × s} remain, of which the first one seems most 
interesting. We will represent results using symmetric normalization. The solutions are 
computed using APL. 

Correspondence analysis of matrix F M x ts×.4) decomposes the value of X 2, which is 
9995 for model [M][SA], in 8 dimensions. The first two dimensions are shown in Figure 
1. The singular values are .312 and .268, and they "explain" 52 percent and 38 percent of 
the X z value respectively. These singular values can be interpreted as maximal canonical 
correlations between the background variables and the cause of death. The first order 
interaction between age and sex does not influence the solution. Roughly, the first dimen- 
sion stresses the differences in behavior of men and women, the second dimension stresses 
the different use of methods by people of different ages. In Table 3 the contributions to 
the eigenvalues for the individual categories can be found, as well as the contributions of 
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Table 1: Suicide behavior :  age by sex by cause o f  death 

Labels for  cause of death-categor ies:  

1. Suicide by solid or  l iquid matter (MATT)  
2. Suicide by tox i f icat ion of gas at home (GASH) 
3. Suicide by tox i f icat ion with other  gas (GASO) 
4. Suicide by hanging,  s t rang l ing ,  suf focat ing (HANG) 
5. Suicide by drowning (DROW) 
6. Suicide with guns and explosives (GUNS) 
7. Suicide with knifes etc. ( S T A B )  
8. Suicide by jumping (JUMP) 
9. Suicide with o ther  methods (OTHE) 

MATT GASH GASO HANG DROW GUNS STAB JUMP OTHE TOTAL 

Men 

10-15 4 0 0 247 1 17 1 6 9 285 
15-20 348 7 67 578 22 179 11 74 175 1461 
20-25 808 32 229 699 44 316 35 109 289 2561 
25-30 789 26 243 648 52 268 38 109 226 2399 
30-35 916 17 257 825 74 291 52 123 281 2836 
35-40 1118 27 313 1278 87 293 49 134 268 3567 
40-45 926 13 250 1273 89 299 53 78 198 3179 
45-50 855 9 203 1381 71 347 68 103 190 3227 
50-55 684 14 136 1282 87 229 62 63 146 2703 
55-60 502 6 77 972 49 151 46 66 77 1946 
60-65 516 5 74 1249 83 162 52 92 122 2355 
65-70 513 8 31 1360 75 164 56 115 95 2417 
70-75 425 5 21 1268 90 121 44 119 82 2175 
75-80 266 4 9 866 63 78 30 79 34 1429 
80-85 159 2 2 479 39 18 18 46 19 782 
85-90 70 1 0 259 16 10 9 18 10 393 
90+ 18 0 1 76 4 2 4 6 2 113 

TOT 8917 176 1913 14740 946 2945 628 1340 2223 33828 

Women 

10-15 28 0 3 20 0 1 0 10 6 68 
15-20 353 2 11 81 6 15 2 43 47 560 
20-25 540 4 20 111 24 9 9 78 67 862 
25-30 454 6 27 125 33 26 7 86 75 839 
30-35 530 2 29 178 42 14 20 92 78 985 
35-40 688 5 44 272 64 24 14 98 110 1319 
40-45 566 4 24 343 76 18 22 103 86 1242 
45-50 716 6 24 447 94 13 21 95 88 1504 
50-55 942 7 26 691 184 21 37 129 131 2168 
55-60 723 3 14 527 163 14 30 92 92 1658 
60-65 820 8 8 702 245 11 35 140 114 2083 
65-70 740 8 4 785 271 4 38 156 90 2096 
70-75 624 6 4 610 244 1 27 129 46 1691 
75-80 495 8 1 420 161 2 29 129 35 1279 
80-85 292 3 2 223 78 0 10 84 23 715 
85-90 113 4 0 83 14 0 6 34 2 256 
90+ 24 1 0 19 4 0 2 7 0 57 

TOT 8648 77 241 5637 1703 172 309 1505 1090 19382 
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Table 2: Loglinear analysis of data ' in table 1 

Only hierarchical models with all main effects are reported. 
.1 is added to each cell for all analyses. 
Labels M, S, A denote variables method, sex and age. 

Model df G 2 X 2 

[M] [S] [A] 280 12337 12304 

[M} [SA] 264 10313 9995 

IS ][MA ] 152 7780 7198 

[A ] [MS] 272 6858 6522 

[MS ] [MA ] 144 2300 2253 

[MA ] [SA ] 136 5756 5369 

.[MS ] [SA] 256 4834 4519 

[MS] [MA] [SA] 128 429 436 

the first two dimensions to the squared distances of the categories to the origin. Note that 
for the methods with high marginal frequencies almost the complete distance is projected 
on the first two dimensions. Combining the results from Figure 1 and Table 3, interpreta- 
tion becomes easy: JUMP is done more by women, MATT more by older women, and 
DROW by younger women, Men use more "violent" methods: HANG is done more by 
older men and boys--this last group almost exclusively commits suicide by HANG, and 
GASO and GUNS by younger men. (See Table 1 for an explanation of the cause-of-death 
labels.) 

The correspondence analysis solution for matrix F A ×(M,s )  can be found in Figure 2 
and Table 4. The point for children from 10 to 15 years old is not plotted (coordinates are 
- .469, -2.878) to make the structure of the other points more clear. This solution is not 
influenced by the first order interaction between method and sex. The first two singular 
values are .315 and .100, with respective "explained" percentages of X 2 81 percent and 8 
percent--the first dimension is very dominant. On this dimension a gradual shift in use of 
methods can be found from young persons to persons older than 65. Most women points 
lie on the left, most men points on the right: women commit suicide relatively more often 
when they are older. At younger age men predominantly commit suicide using methods as 
MATT, GASO, OTHE and GUNS. Men use HANG most often when they are children, 
middle-aged or old. Women use HANG and DROW especially when they are old. The 
second dimension is dominated by children up to 15 years (contribution is .55), for which 
the boys commit almost exclusively suicide by HANG (contribution is .60). We saw this 
result already in the previous analysis. 

In this section we have tried to show how correspondence analysis can complement 
loglinear analysis by decomposing the X2-statistics found with loglinear analysis. The 
correspondence analysis plots prove to be a very useful aid in the interpretation of loglin- 
ear interaction, especially when used together with tables of contributions of individual 
category points. Because of the large number of categories, and the presence of first- and 
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second-order interaction effects, the interpretation of u-parameters would have been a 
cumbersome job. 

5. Using a Generalization of Correspondence Analysis for the 
Decomposition of the Difference Between Other Loglinear Models 

In the previous section it was shown that, when analyzing multiple tables, the corre- 
spondence analysis solution can be interpreted in terms of the difference between the 
saturated model (the observed frequencies) and a specific loglinear model. When the dif- 
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Table 3~ Contr ibut ions of ca teg0ries to eigenva!ues~ analysis F Mx(GxA)  ..... 

Contr ibut ions of methods 
to dimensions: 

Proportion squared projected 
distance to the or ig in:  

MATT .240 •142 .666 .290 
GASH .001 .009 .036 .384 
GASO .119 .207 .401 .514 
HANG ,127 .404 .297 .695 
DROW .176 .058 .608 .148 
GUNS .261 .061 .824 .140 
STAB .001 .005 .052 .320 
JUMP .071 .000 .720 .000 
OTHE .005 .113 .048 .766 

1,000 1.000 

Contr ibut ions of sex-age categories 
to dimensions: 

Men 

10-15 .019 .046 
15-20 .028 .006 
20-25 .033 .106 
25-30 .024 •096 
30-35 ,022 .079 
35-40 .028 .036 
40-45 .041 .009 
45-50 .056 .001 
50-55 .034 .006 
55-60 .020 .013 
60-65 .023 .035 
65-70 .021 .069 
70-75 .013 .089 
75-80 .009 .078 
80-85 ,001 .051 
85-90 .002 .032 
90-+ .001 .010 

1.000 1.000 

Women 

• 0 0 1  • 001 
.021 .028 
• 046 .039 
028 .033 
036 .023 
037 .027 
O30 . O03 
037 .001 
052 .000 
047 .001 

• 065 .010 
. 0 6 1  . 0 3 1  

• 066 . O28 
.056 •012 
• 033 .003 
• 009 .001 
• 002 .000 
, i . . . . . . . . . . . . . . . . . . . . .  

1,000 1.000 

Proportion squared projected 
distances to the or ig in:  

Men Women 

333 .586 .149 .122 
545 .087 .390 .378 
282 .653 ,532 .328 
238 .710 .485 .419 
261 .692 .604 .285 
449 .430 .599 .330 
752 .120 •871 .061 
920 .011 •871 •024 
827 .100 .949 .004 
602 .288 .908 .017 

.463 •515 .823 .090 
,272 .662 .647 .236 
• 161 .798 ,653 .199 
• 132 .836 ,774 .119 
• 025 .920 ,836 •055 
• 076 •864 ,554 .022 
.084 .812 .533 .057 

ference between such a model and the observed frequencies is significant, it makes sense 
to complement loglinear analysis with correspondence analysis. Unfortunately, it is possi- 
ble to complement loglinear analysis only in a limited number of cases, for example in a 
three-way matrix when one wants to analyze the difference between the observed fre- 
quencies and one of the models [1][23], [2][13] or [-31012]. In this section we will de- 
scribe a generalization of correspondence analysis proposed by Escofier (1983), which we 
will use to analyze the difference between other restricted loglinear models and the satu- 
rated model. At the end of this section we will illustrate this with two examples. 

Escofier (1983) generalizes correspondence analysis by computing the singular value 
decomposition of the matrix Srl/2(GI- G2)Sc 112 instead of the matrix D~'I/2(X 

- -  E)D~-1/2, (3), to find row and column scores R and C, and singular values A. Here G1 
and G2 are matrices of the same size, and S, and Sc are diagonal matrices with weights for 
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Figure 2: Analysis of F Ax(MxS), 
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f irst two dimensions. Singular values 

• 315 ( . 8 0 8 ) ,  A 2 = .100  ( . 0 8 2 )  

row and column categories. In contras t  to  classical correspondence analysis, S,, S c , G1 
and G2 are not  necessarily related in the way that  D, ,  Dc and E are to  the matrix X. So, 

St- 1/2(G 1 __ G2)S c 1 / 2  : U A V ' ,  (16) 

where U, V and A follow the same restrictions as in (3). Row and co lumn scores are found 
a s - - c o m p a r e  with (4): 

R - 1/2 1/2 = Si. U n ,  and 
C = .~- 1/2 V . 1 / 2  (17) 

where n, = trace S, and nc = trace S~. The transit ion formulas are 

R = S,- I(G 1 -- G2)CA- 1 and 
(18) 

C = So-- l(G1 - G2) 'RA-  1 

The  transit ion equations, (5), arc more  simple, since D ~ - 1 E C A - I  = 0 and D ~  1 E ' R A  - x  = 

0. The  reconsti tution formula  is 

G 1 - -  G 2 = S r R A C ' S .  n 7 1 / 2 n Z  1/2 (19) 

Comparab le  with (6), the chi-squared distance between row i and i', and their approxi-  
mations,  can be computed  as 

( I ,  - -  I1,)$71(G1 - G2)S~  I(G1 - G 2 ) ' $ 7 1 ( I ,  - Ii ,) 'n = (rl - r,,)'(ri - ri,). (20) 
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Table 4:  C°n t r i bu t i °ns  of categories to ei£1envaluest analysis F Ax (MxG)  

Contr ibut ions of age categories 
to dimensions: 

Proport ion squared projected 
distance to the or ig in :  

10-15 .005 .547 .071 .860 
15-20 .031 .069 .509 .115 
20-25 .138 .010 .925 .007 
25-30 .124 .023 .945 .017 
30-35 .110 .009 .951 .008 
35-40 .082 .005 .899 .005 
40-45 .029 .025 .674 .060 
45-50 .007 .026 .383 .143 
50-55 .019 .063 .514 .174 
55-60 .029 .050 .708 .123 
60-65 .069 .040 .911 .055 
65-70 .111 .010 .951 .009 
70-75 .097 .008 .913 .007 
75-80 .085 .002 .926 .002 
80-85 .046 .002 .832 .005 
85-90 .014 .073 .493 .263 
90-+ .003 .038 .361 .412 

1.000 1.000 1.000 1.000 

Contr ibut ions of methods-sex 
categories to dimensions: 

Proport ion squared projected 
distances to the or ig in :  

Men Women Men Women 

MATT 
GASH 
GASO 
HANG 
DROW 
GUNS 
STAB 
JUMP 
OTHE 

165 .043 .014 .070 .934 .025 .392 .207 
013 .006 .001 .000 .702 .035 .227 .010 
170 .021 .014 .000 .942 .012 .784 .001 
042 .603 .232 .107 .401 .583 .941 .044 
001 .001 .125 .101 .178 .011 .877 .072 
077 .001 .007 .001 .871 .001 .513 .009 

.000 .005 .009 .010 .033 .135 .734 .084 

.002 .004 .014 .001 .166 .020 .507 .003 
• 114 .000 .001 .027 .886 .000 .061 .240 

1.000 1.000 1.000 1.000 

We will now discuss some principles important for the interpretation. A row point 
(or column point) is placed far from the origin when the corresponding row (or column) in 
the left term of (16) has high values. Two row points (or two column points) deviate in the 
same direction from the origin when the corresponding rows (or columns) have roughly 
the same values. A row point is placed near a column point when the corresponding value 
in the left term of (16) is high. When for GI and G2 the marginal row or column fre- 
quencies are different, Escofier (1983) advises to take as weights for S, and S, the marginal 
frequencies of G1 or of G2 or of (G 1 + G2)/2. When the marginal frequencies of the rows 
(or columns) of Gx and G2 are very different, the weighted average of the column points 
(or row points) is far away from the origin. Escofier indicates correctly that formulas (16) 
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to (20) are difficult to interpret in their most general form, that is when S,, So, G~ and G2 
are not related. Interpretation becomes easier when one of the following conditions holds: 

1. G~t = (3:2 t, G 1 and G 2 have equal marginal row frequencies; 
2. G'~t = G'2 t, Gt and G2 have equal marginal column frequencies; 
3. as in Condition 1, but also Gxt = Srt, as weights for the rows the marginal row 

frequencies are taken; 
4. as in Condition 2, but also G'~t = Sc t, as weights for the columns the marginal 

column frequencies are taken; 
5. G 2 = G~tt'G'jn, that is, G~ = X and G 2 ----- E. 

When Condition 1 holds, t'Sc C = 0: the weighted average for the column scores is 
zero for each dimension when the marginal row frequencies of G1 and G 2 are equal. For 
Condition 2 comparable results hold for the row scores. When Condition 3 holds, (17) can 
be interpreted in terms of the barycentric principle: row points are in the weighted 
average of the column points (when for the simultaneous representation g and C are 
taken as coordinates). A row point represents the difference between the profiles of the 
row in G1 and G2. When Condition 4 holds, we find comparable results for the column 
points. When Condition 5 holds, Condition 1 and Condition 2 also hold. When in addi- 
tion Condition 3 and Condition 4 also hold, we deal with classical correspondence analy- 
sis. Escofier (1983) shows that when only Condition 3 and Condition 4 both hold, the 
generalized correspondence analysis solution can be found with a classical correspon- 
dence analysis program analysing the matrix (G1 - G2 + E). Comparing (3) and (16), this 
will be clear. 

This generalization can be used for the analysis of residuals of various sorts of 
models. Our experience with the generalization of correspondence analysis is promising in 
cases that G1 and G2 have equal marginal frequencies--which often occurs, since it is not 
unusual in model fitting to condition on the marginals. Examples are Goodman's RC- 
model (1979) and quasi-symmetry models for mobility tables, confusion matrices, import- 
export tables, et cetera. For pairs of loglinear models, multiple tables with expected fre- 
quencies also have often the same marginals. When one or both marginals are unequal, 
this fact may dominate the solution, especially when the difference is large. In the sense of 
(19), in the first few dimensions first the difference between these marginals is reconstitu- 
ted. One is usually not interested in the reconstitution of this part of the difference be- 
tween G~ and G2. This is also the case in our context, and therefore we will discuss here 
only examples for which Conditions 3 and 4 hold. Another important property is that a 
point represents the difference between the profiles of the category in G1 and G2. 

Examples 

For the suicide data, we will show two examples. The first example shows the differ- 
ence between the saturated model (observed frequencies) and the model with two first 
order interactions [MA][SA], using multiple table F u x ts × A~ In the resulting solution the 
relation between sex and method will be shown; that is, how this relation is the same over 
ages (first order interaction) and how it differs over ages (second order interaction). The 
second example shows the difference between the models [MSA] and [MS][MA][SA],  
using the same multiple table. Here the solution should be interpreted in terms of the 
second order interaction only. 

The first two dimensions of the first example are plotted in Figure 3. Singular values 
are .305 and .095, and they explain 87 percent and 10 percent of the total inertia respec- 
tively. For the first dimension this solution is roughly the same as the solution in Figure 
1 : this dimension is dominated by the first order interaction between sex and method. The 
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k 2 = .095 ( .085)  

second dimension is dominated by the second order interaction. This is clear from the fact 
that the age lines for men and women are reflected--roughly--in the origin: for example, 
apart from the first order interaction that women drown themselves more often than men, 
we can see that the second order interaction is that older women and younger men drown 
themselves more than older men and younger women. Contributions of individual catego- 
ries can be computed in the same way as for classical correspondence analysis. For  rea- 
sons of space we do not give them here. 

Figure 4 shows the first two dimensions of the second example. Singular values are 
.056 and .040, which explain 49 percent and 26 percent of the total inertia. It makes sense 
to study the third dimension, but for reasons of space we skip the discussion of this part 
of the analysis. This solution should be interpreted in terms of the second order interac- 
tion only. Again, the men and women age line is roughly reflected in the origin. The point 
for women from 10 to 15 years old is not plotted (coordinates are 2.808 and .308) to make 
the structure of the other points more clear. A study of contributions of method categories 
shows that the first dimension is dominated by H A N G  and MATT, and the second di- 
mension by DROW and JUMP.  For  example, part of the second order interaction is that 
solid and liquid matter is used more by younger and older women, and men of moderate 
age. 

6. Conclusions 

It is shown that correspondence analysis of multiple tables can be seen as the de- 
composition of the difference between two matrices, each following a specific loglinear 
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model. Apart from the fact that this is of theoretical interest, it can lead to a better 
understanding of what correspondence analysis shows us, and it can lead to a comple- 
mentary use of loglinear analysis and correspondence analysis: instead of the cumbersome 
interpretation of u-parameters, one has the disposal of a nice geometrical representation 
of the data. This complementary relation is made more complete by the introduction of 
Escofier's generalization of correspondence analysis (1983). 

We have shown that the analysis of a three-way table using multiple tables works out 
fine. Our experience is that this is usually the case, when marginal row and column fre- 
quencies of the multiple table are not too low. Low marginal row or column frequencies 
can cause instability of (parts of) the solution. When the number of variables is larger 
than 3, and the number of categories of the row and column variable becomes large, the 
interpretation of the correspondence analysis solution can become difficult. Computing 
weighted averaged points over the interactive variable (where the weighting is done over 
the marginal frequencies, and the averages are taken over the categories of the original 
variables) is often helpful in these cases. For example in the first example, 2 weighted 
sex-categories and 17 weighted age-categories can be computed. 
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