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CONSTRAINED LATENT 
BUDGET ANALYSIS 

Peter G. M. van der Heijden* 
Ab Mooijaartt 
Jan de Leeuw* 

A budget is defined as a row of a two-way table consisting of 
conditional probabilities adding up to one. The latent budget 
model approximates the observed budgets of a table by a lower 
number of underlying, or latent, budgets. The model was origi- 
nally proposed by Clogg (1981) in the context of square social 
mobility tables. In this paper we discuss the model in the con- 
text of two-way contingency tables. We extend the latent budget 
model by imposing constraints upon the parameters. Special 
attention is given to imposing multinomial logit constraints on 
the latent budget parameters. We show what these constraints 
imply for the interpretation of the latent budget model as a 
loglinear model for the latent probabilities. We discuss two 
examples. 

1. INTRODUCTION 

In a two-way contingency table, the row and the column vari- 
ables regularly play different roles: One can be considered an ex- 
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planatory variable and the other a response variable. In such a situa- 
tion we are interested in the dependence of the response variable on 
the explanatory variable. One way to study this asymmetric relation 
between the two variables is by comparing the proportions condi- 
tional on each level of the explanatory variable. 

In this paper we examine a model for the conditional probabili- 
ties, namely, the latent budget model (see van der Heijden, Mooi- 
jaart, and de Leeuw 1989; de Leeuw, van der Heijden, and Verboon 
1990). A vector with conditional proportions that add up to one is 
called an observed budget; for each row there is an observed budget 
that specifies the observed proportions of the response variable for 
that row. The latent budget model approximates the observed bud- 
gets by a mixture of one or more unknown or latent budgets. There 
are two types of parameters in the latent budgets: (a) conditional 
probabilities that add up to one (probabilities which have to be esti- 
mated) and (b) mixing parameters that define how the latent budgets 
are mixed to approximate as closely as possible the observed budgets. 

In the context of square social mobility tables, Clogg (1981) 
presented the latent budget model as a reparameterization of latent 
class analysis. Unaware of this earlier work de Leeuw and van der 
Heijden (1988) independently found the latent budget decomposi- 
tion for the analysis of so-called time-budget data. Time-budget data 
are a specific type of constant row-sum data (also called composi- 
tional data) in which the matrix to be analyzed comprises (groups of) 
individuals in the rows, activities in the columns, and proportions of 
time spent by individuals on the activities in the cells. In the same 
context of time-budget analysis, de Leeuw et al. (1990) discussed the 
identifiability of the model in more detail and demonstrated the 
relation of latent budget analysis to logcontrast principal component 
analysis (Aitchison 1986), which is another method for the analysis 
of compositional data. 

Preliminary results of latent budget analysis in the general 
context of contingency tables can be found in van der Heijden et al. 
(1989). De Leeuw and van der Heijden (1991) discussed the relation- 
ship between latent budget analysis, (simultaneous) latent class 
analysis, and (a maximum likelihood version of) correspondence 
analysis (Goodman 1985, 1986; Gilula and Haberman 1986, 1988). 
Van der Heijden (1991) discussed the relationship between versions 
of the latent budget model, the RC(M)-association model, and corre- 
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spondence analysis, which deal with structural zero cells in two-way 
tables. 

Van der Heijden et al. (1989) also showed how latent budget 
analysis can be used to analyze higher-way contingency tables. To 
analyze higher-way tables, one must subdivide the variables into two 
subgroups: explanatory variables and response variables. The vari- 
ables in each subgroup are treated as a joint variable. 

In this paper we extend the latent budget model by imposing 
constraints upon the parameters of the model. We consider fixed- 
value constraints, equality constraints, and linear-logistic constraints. 
Constraining parameters in models is important for several reasons. 
First, imposing further constraints (i.e., if they are legitimate) often 
simplifies the model because it reduces the number of parameters to 
be interpreted. Second, substantive research questions can some- 
times be -formulated as constraints on the latent budget model. Test- 
ing the admissibility of these constraints provides answers to the 
research questions. Third, constraining parameters reduces the stan- 
dard errors of the unconstrained parameter estimates. 

In section 2 we define the latent budget model and discuss its 
relevant properties. In section 3 we discuss the three types of con- 
straints. 'Then we discuss the identifiability of the model when con- 
straints are used and the degrees of freedom. In the examples, we give 
special attention to the analysis of higher-way tables, where by impos- 
ing constraints, we can use the factorial structure of joint variables. 

2. 1UNCONSTRAINED LATENT BUDGET MODEL 

2.1. Introduction 

To present the latent budget model formally, we introduce 
some notation. Let observed proportions be denoted as p1j, where i 
(i = 1 . , I) indexes the levels of the explanatory (row) variable 
A, and j (j = 1,. . . , J) indexes the levels of the response (column) 
variable B. If we sum over an index, we will replace the index by a 
plus sign: pi+ = 21jpij. The proportions pij are derived from frequen- 
cies ni1 as pij = nij/N, where N = n++. 

The conditional proportions we are interested in are p1/pi+. 
The inde-pendence model is often used as a baseline in the study of 
the dependence of B on A. Independence implies for the theoretical 
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probabilities 7Tij that 7Ti/iri, = 7T+j, which shows that under indepen- 
dence, the conditional probability for column j is rij irrespective of 
the level of the explanatory variable. Thus, the dependence of the 
response variable on the explanatory variable can be studied by com- 
paring values pijlpi+ for different i. The logit model can be used to 
study the dependence of the response variable B on the explanatory 
variable A if the response variable is dichotomous. The multinomial 
logit model can be used if the response variable is polytomous (see, 
for example, Bock 1975; Haberman 1979; Agresti 1990). The inde- 
pendence model is a special case of such models. The independence 
model is also a special case of the latent budget model. 

In an observed budget, with the conditional proportions (pi,/ 
Pi+, , pijlpi+, . .plpi+), row budget i is the conditional distri- 
bution of the column categories for row i. The latent budget model 
describes the theoretical budgets with elements rijlvi+ as a mixture of 
T latent budgets, indexed by t (t = 1, . . . ? T). Let the latent budget t 
have parameters rrkx, where the bar over B shows that these latent 
budget parameters are conditional probabilities interpreted as fol- 
lows: The parameter lTJfX specifies the probability of level j for re- 
sponse variable B given latent budget t. Let the mixture be defined 
by mixture parameters 1T AX, where the bar over variable X indicates 
that the mixture parameters are conditional probabilities interpreted 
as follows: The parameter TAX specifies the probability that an obser- 
vation falls into latent budget t given level i for the explanatory 
variable A. The model is defined thus: 

7Tij ETAX,7BX (1) 

t=1 

with constraints 

T - 

E7TAX 1 for i =1, . . T 

t=1 

(2) 

'7Tt 1for t = 1, T ,,7TBX2 
j=1 

If the number of latent budgets T is 1, then (1) is equivalent to the 
independence model: In this case, TAl = 1 for all i and r1BTX = ,+j If T 
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= min (I,J), then the model is equivalent to a saturated model: In 
this case it does not impose constraints. 

On the assumption that the observations are distributed multi- 
nomially for each level of the explanatory variable A, maximum 
likelihood estimates can be derived (see below). The model can be 
tested against the unconstrained alternative using the Pearson chi- 
square test and the likelihood ratio chi-square test. If the model is 
true, then the test statistic follows asymptotically a chi-squared distri- 
bution with (I - T)(J - T) degrees of freedom. The conditional test 
of the model with T = n latent budgets, given that the model with T 
= n + m latent budgets is true (nm -1, n + m < min(I,J)), does not 
follow asymptotically a chi-squared distribution because we are work- 
ing in the domain of mixture models. (See Aitkin, Anderson, and 
Hinde [1981] and Everitt [1988] for discussions of this problem in 
latent class analysis.) 

2.2. Example 

To motivate the model, we analyze German suicide data. Van 
der Heijden and de Leeuw (1985) used correspondence analysis to 
analyze these data. The row variable is a cross-classification of two 
explanatory variables-namely, age group and sex-and the column 
variable, or response variable, is cause of death. The data are given in 
Table 1. They were collected by the German Office for Statistics in 
Western Germany for the years 1974 to 1977, and are provided by 
Heuer (1979, Table 1). The latent budget model aims to find the 
latent buclgets of cause-of-death categories that have generated the 2 
x 17 = 34 observed budgets of cause-of-death categories. The latent 
budgets can be interpreted as typical cause-of-death distributions. 

For the model with one latent budget, G2 = 10,332.9 (df = 
264). For two latent budgets, G2 = 4,595.4, df = 224; for three, G2 = 

1,085.9, af = 186; and for four, G2 465.7, df = 150. We use the test 
statistics only as descriptive measures for three reasons. First, the 
sample size is large (n = 53,210). Second, we are analyzing popula- 
tion data, so we don't have to make inferences from the sample to 
the population. Third, the observations are most likely not com- 
pletely independent, since it is known that suicides generate new 
suicides with similar characteristics (here, suicides of the same age 
and sex and the same cause of death). We use the model with one 
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TABLE 1 
Suicide Behavior: Age by Sex by Cause of Death 

Cause of Deatha 
Age 1 2 3 4 5 6 7 8 9 Total 

Males 
10-15 4 0 0 247 1 17 1 6 9 285 
15-20 348 7 67 578 22 179 11 74 175 1,461 
20-25 808 32 229 699 44 316 35 109 289 2,561 
25-30 789 26 243 648 52 268 38 109 226 2,399 
30-35 916 17 257 825 74 291 52 123 281 2,836 
35-40 1,118 27 313 1,278 87 293 49 134 268 3,567 
40-45 926 13 250 1,273 89 299 53 78 198 3,179 
45-50 855 9 203 1,381 71 347 68 103 190 3,227 
50-55 684 14 136 1,282 87 229 62 63 146 2,703 
55-60 502 6 77 972 49 151 46 66 77 1,946 
60-65 516 5 74 1,249 83 162 52 92 122 2,355 
65-70 513 8 31 1,360 75 164 56 115 95 2,417 
70-75 425 5 21 1,268 90 121 44 119 82 2,175 
75-80 266 4 9 866 63 78 30 79 34 1,429 
80-85 159 2 2 479 39 18 18 46 19 782 
85-90 70 1 0 259 16 10 9 18 10 393 
90+ 18 0 1 76 4 2 4 6 2 113 

Females 
10-15 28 0 3 20 0 1 0 10 6 68 
15-20 353 2 11 81 6 15 2 43 47 560 
20-25 540 4 20 111 24 9 9 78 67 862 
25-30 454 6 27 125 33 26 7 86 75 839 
30-35 530 2 29 178 42 14 20 92 78 985 
35-40 688 5 44 272 64 24 14 98 110 1,319 
40-45 566 4 24 343 76 18 22 103 86 1,242 
45-50 716 6 24 447 94 13 21 95 88 1,504 
50-55 942 7 26 691 184 21 37 129 131 2,168 
55-60 723 3 14 527 163 14 30 92 92 1,658 
60-65 820 8 8 702 245 11 35 140 114 2,083 
65-70 740 8 4 785 271 4 38 156 90 2,096 
70-75 624 6 4 610 244 1 27 129 46 1,691 
75-80 495 8 1 420 161 2 29 129 35 1,279 
80-85 292 3 2 223 78 0 10 84 23 715 
85-90 113 4 0 83 14 0 6 34 2 256 
90+ 24 1 0 19 4 0 2 7 0 57 

Total 17,565 253 2,154 20,377 2,649 3,118 937 2,845 3,313 53,211 

aCause-of-death categories: 1 = ingestion of solid or liquid matter; 2 = gas poisoning at 
home; 3 = poisoning by other gas; 4 = hanging, strangling, suffocation; 5 = drowning; 6 = guns or 
explosives; 7 = knives, etc.; 8 = jumping; 9 = other methods. 
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latent budget as the baseline model, which assumes that age-sex 
combinations are independent of the cause of death. Models with 
more than one latent budget describe the dependence of the re- 
sponse variable on the explanatory variables. The model with two 
latent budgets fits .555 of this dependence ([10,332.9 - 4,595.4] . 
10,332.9), the model with three latent budgets fits .895, and the 
model with four latent budgets fits .955 of this dependence. We focus 
on the solution with three latent budgets, keeping in mind that this 
solution shows only the main aspects of dependence. Including a 
fourth latent budget leads to a further gain of only 6 percent. The 
parameter estimates are given in Tables 2a and 2b. 

We first study the latent budgets that have generated the ex- 
pected budgets. The latent budget parameters 7TBX can be interpreted 
cursorily by comparing them with their corresponding marginal 
probabilities 7+F,j. If 7TFBtX > f-, then latent budget t is characterized by 
category j (among others) in the sense that, given t, a much higher 
probability of j is observed than if we had no information about t. 
This shows that the first latent budget is characterized by relatively 
high conditional probabilities of suicide by ingestion of solid or liquid 
matter, including medicine (71T.X = .530 versus 7F+j = .330), by gas 
poisoning (gas home, .011 versus .005; gas other, .135 versus .040), 
by guns and explosives (.104 versus .059), and by other methods 
(.141 versus .062). This latent budget is used relatively more often by 
younger adults: For example, for males aged 15-20, 7AX =.519; for 
males agedI 20-25, "TAX = .666; for females aged 15-20, TAX = .458, 
and so on'). 

The second latent budget, used mainly by females (see esti- 
mates i ̂ AY in second column for females), gives estimates relatively 
higher than marginal probabilities for drowning (.099 versus .050), 
ingestion of solid or liquid matter (.437 versus .330), and jumping 
(.084 versus .053), methods that are relatively less violent. The third 
latent budget is used mainly by males and gives relatively higher 
estimates for hanging (.840 versus .383), guns and explosives (.090 
versus .059), knives (.029 versus .018), and so on. 

To understand how the expected budgets are constructed 
from the latent budgets, we have to consider the row parameters. A 
cursory overview of all the row parameter estimates iTAX can be 
obtained by comparing them with the parameter estimates iTtj: .296, 
.396, and .308. These are the probabilities of each of the latent 



286 VAN DER HEIJDEN, MOOIJAART, AND DE LEEUW 

TABLE 2a 
Latent Budget Analysis Parameter Estimates for Data in Table 1 

(Row Parameters fTAx) 

Males Females 

Age t= 1 t= 2 t= 3 t= 1 t= 2 t= 3 

10-15 .026 .000 .974 .278 .642 .081 
15-20 .519 .000 .481 .458 .542 .000 
20-25 .666 .000 .334 .408 .592 .000 
25-30 .671 .000 .329 .428 .572 .000 
30-35 .626 .031 .343 .300 .700 .000 
35-40 .543 .060 .396 .303 .697 .000 
40-45 .491 .054 .455 .154 .834 .012 
45-50 .460 .033 .507 .109 .882 .009 
50-55 .354 .128 .518 .080 .878 .042 
55-60 .290 .187 .522 .056 .909 .036 
60-65 .228 .229 .544 .016 .937 .047 
65-70 .126 .318 .556 .000 .931 .069 
70-75 .074 .374 .552 .000 .967 .033 
75-80 .037 .391 .573 .000 .978 .022 
80-85 .006 .482 .511 .000 1.000 .000 
85-90 .000 .414 .586 .000 1.000 .000 
90-+ .029 .346 .625 .000 .999 .001 

*rx .296 .396 .308 

budgets when there is no information about the level of the row 
variable. The parameter estimates 71x are the weighted averages of 
the row parameters 7rAX Comparison of iTit and iQ shows that the 
first latent budget is used predominantly by males aged 15 to 55 and 
by females aged 15 to 40. It is hardly used by young boys (aged 10- 
15) by males older than 70, or by women older than 40. The second 
latent budget is used mainly by males aged 80 to 90 and by females 
of all ages, but it is hardly used by males under 40. The third latent 
budget is predominantly used by males of all ages and is hardly 
used by females. Roughly speaking, then, the first latent budget is 
used mainly by younger adults, the second is used mainly by fe- 
males and older males, and the third is used almost exclusively by 
males. 

It is difficult to say whether the three latent budgets that we 
found can be considered generic types of suicide. Heudin (1982, 
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TABLE 2b 
Latent Budget Analysis Parameter Estimates for Data in Table 1 

(Column Parameters ir*X) 

Cause of Deatha fr+j t = 1 t = 2 t = 3 

1 .330 .530 .437 .000 
2 .005 .011 .004 .000 
3 .040 .135 .002 .000 
4 .383 .000 .315 .840 
5 .050 .021 .099 .015 
6 .059 .104 .000 .090 
7 .018 .007 .017 .029 
8 .053 .052 .084 .016 
9 .062 .141 .044 .010 

Total 1.000 1.000 1.000 1.000 

aSee note to Table 1. 

Chapter 7) points out that there are many possible explanations for 
the suicide method chosen. For example, it is argued that women 
care what they will look like after their death. This could explain 
their preference for the methods overrepresented in the second bud- 
get, which do not lead to mutilation of the body. In the third budget 
we find overrepresentation of methods that do mutilate the body. 
Another theory emphasizes the importance of opportunity. Some of 
the methods overrepresented in the first budget are methods for 
which one must have opportunity; i.e., one needs medicine, a car, or 
a gun (which is not easy to obtain in Germany). Younger people may 
have more opportunity to use these methods. Psychoanalytic theo- 
ries suggest that suicides represent sexual wish fulfillments: To poi- 
son oneself is to become pregnant; to drown is to bear a child; to 
throw oneself from a height is to be delivered of a child. Poisoning, 
drowning, and jumping are three methods that are overrepresented 
in the second latent budget. There are also individual factors in- 
volved: Psychoanalysts suggest that suicide is a message to relatives. 
All the above explanations are highly speculative, although evidence 
of regional differences in methods used supports the opportunity 
theory. For example, people in the United States are more likely to 
commit suicide by using guns than people in countries where guns 
are not easily obtained. More information is needed to understand 
the relation of age and sex to the method chosen. 
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2.3. Comparison with Latent Class Analysis 

Clogg (1981) presented latent budget analysis as a reparame- 
terization of latent class analysis, and as a result many properties of 
latent class analysis also hold for latent budget analysis. Let -<Tx be the 
probability of falling into latent class t; let ,TX be the conditional 
probability of falling into level i of variable A given latent class t; and 
let -TaBX be the conditional probability of falling into level j of variable 
B given latent class t. Then the latent class model for two-way contin- 
gency tables is defined as a model for the latent probabilities 71Tijt of 
falling into level i of variable A, level j of variable B, and level t of 
the latent variable X: 

X AX Bx 
Tijt= ,t 'Tt 7Th t* (3a) 

And the latent probabilities are related to the probabilities using 
only the manifest variables A and B by 

T 

T"= E Ti't- (3b) 
t=1 

Latent budget analysis and latent class analysis have in common the 
parameters 7T.BX. The latent budget analysis parameters T<AX are derived 
from the latent class analysis parameters -<t and - t X by using Bayes's 
rule: 

X AX 
AX =Tt it (4) 

it T 

X vXAX 

Latent budget analysis and latent class analysis are also readily 
compared in terms of the latent probabilities Tijt. For both models 
the column parameters are related to the latent probabilities ITijt as 
TBX = IT1t/iT+ +t. For latent class analysis the row parameters are 

related to the latent probabilities Tijt as TAX = iT++t, whereas for 
latent budget analysis the row parameters are related to the latent 
probabilities Tijt as iTAX = i+Ti++. In terms of the latent probabili- 
ties, the observed variables A and B are conditionally independent 
given the latent variable X for both models. From (3a) it follows 
that latent class analysis can be defined as 
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'ITij = 'IT+~ t)(I+1)-T~tT~ (5) i ( ~+ +t ) + +t) 7++t 

Latent budget analysis implies that 

7Tijt = ( ri+t )(7r+jt ) 1)(Ti+t7iT+jt) 

7iTi + + Xi+ + 7T+ +t 7iTi + + 7T+ +t 

Both the latent class model and the latent budget model can there- 
fore be understood as a loglinear model with latent variables (see, 
e.g., Haberman 1979; Hagenaars 1986, 1988, 1990). This relation 
with loglinear analysis will be taken up later in the paper. 

Latent class analysis is most often used to analyze contingency 
tables with more than two variables, where it aims to identify a latent 
variable that can explain the relations between the observed vari- 
ables (see, e.g., Goodman 1974). Relatively little attention has been 
given to latent class analyses of two-way contingency tables, except 
in the theoretical contributions of Good (1969), Gilula (1979, 1983, 
1984), Clogg (1981), Goodman (1987), and de Leeuw and van der 
Heijden (1991), and in the social mobility research of Marsden 
(1985), Grover (1987), Grover and Srinivasan (1987), and Luijkx 
(1987). As far as we know, the reparameterization (1) appears only 
in Clogg (1981) and in the references given in the introduction. 

A choice between the latent class model and the latent budget 
model will depend on the research question at hand. If the question 
is about dependence, that is, how response variables depend on 
explanatory variables, then the latent budget model is more appropri- 
ate (see also section 2.4). If the question is about relations between 
variables, then latent class analysis is preferable. In this sense the 
distinction between latent class analysis and latent budget analysis is 
similar to the distinction between loglinear analysis and (multino- 
mial) logit analysis. It will become apparent in section 3.2 that the 
distinction between explanatory variables and response variables sug- 
gests specific types of models for latent budget analysis that have not 
been considered thus far in the context of latent class analysis. 

2.4. Graphical Representations of the Model 

Figures 1 and 2 illustrate the usefulness of latent budget analy- 
sis with representations inspired by those used in covariance struc- 
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Observed mixtures 

Latent distributions 

-fjj/ 

are derived from three latent budgets plus error (E). Lines in the figure 
symbolize the mixing parameters 

ture analysis. We have chosen two such representations, one empha- 
sizing the interpretation as a mixture model, and one emphasizing 
the interpretation as a MIMIC model. In both, squares indicate ob- 
served entities, and circles latent entities. 

In Figure 1, the latent budget model for Table 1 is represented 
as a mixture model. The observed contingency table is conceived as a 
matrix of I observed distributions (budgets), one for each row. These 
I observed distributions are generated by T latent distributions. The 
observed distributions have elements pili,and the latent distribu- 
tions have elements fryB. The 34 observed age-sex distributions of 
suicide types are represented by squares, and the latent distributions 
are represented by circles. The direction of the arrows in Figure 1 
suggests that the mixtures of three latent distributions generate the 
observed distributions. The error Ei associated with each observed 
distribution represents the difference between the observed distribu- 
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FIGIJRE 2. MIMIC model representation of the latent budget model. 

tion elements pijlpi, and the estimates of expected distribution ele- 
ments 1/'fri+. Next to the arrows we could plot the parameter esti- 
mates T AX, since they show how the mixture of the three latent 
budgets generates the estimates of the expected distributions. In the 
example in section 2.2, the latent distributions can be understood as 
typical distributions of cause-of-death categories, and our analysis 
has demonstrated that the observed distributions of the 34 age 
groups are relatively well approximated by three such typical distri- 
butions. 

In Figure 2, the latent budget model is represented as a 
MIMIC model. In this case, the squares and circles do not denote 
distributions but categories of variables. This interpretation is due to 
Clogg (1981), who used it to represent a social mobility example. 
Here, it demonstrates that given a specific age-sex combination i 
(i = 1, . . ,34), there are probabilities associated with each of the 
three latent states t (t = 1,2,3); in each latent state there are nine 
probabilities (j = 1X. . . ,9) corresponding to the nine cause-of- 
death categories. Now the estimates for the row parameters ^AX as 
well as the estimates for the column parameters T. BX can be specified 
next to the arrows. The parameter estimates 'TX can be placed beside 
the arrows from the age-sex group categories to the latent states. 
Beginning from a specific age-sex group, these estimates add up to 
one, showing that the probabilities associated with the latent states 
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add up to one. The parameter estimates iij- can be placed beside the 
arrows from the latent states to the cause-of-death categories. Start- 
ing from a given latent state, these estimates also add up to one, 
showing that the probability of falling in one of the cause-of-death 
categories is one. In the latent budget model in Figure 2, the squares 
and circles represent categories. In the usual covariance structure 
model, they represent variables. It is sometimes difficult to interpret 
the latent states. In the suicide example a latent state might stand for 
the experiences and influences that people have undergone, which 
might differ by age-sex group. 

A latent class model would be similar to the model in Figure 2, 
except that the arrows would go from the latent classes to the row 
categories, and not from the row categories to the latent classes, as in 
the latent budget model. Latent budget analysis is the equivalent of 
latent class analysis, but the former is used to study asymmetric 
relations between variables and the latter is used to study symmetric 
relations. In this sense, the equivalence between latent class and 
latent budget analysis is similar to the equivalence between loglinear 
analysis and the (multinomial) logit model, the former intended in 
the first place for the study of symmetric relations between variables, 
the second for the study of asymmetric relations between variables. 

2.5. Identification 

For two observed variables, neither the unconstrained latent 
budget model nor the latent class model is identified, although the 
identification problem is rather well understood. For a detailed dis- 
cussion of this identification problem in latent class analysis we refer 
to Goodman (1987); for latent budget analysis the problem is dis- 
cussed in detail in de Leeuw et al. (1990). The latent budget analysis 
parameter estimates can be varied within a specific range without 
changing the estimates of expected frequencies for the model, sug- 
gesting enormous freedom for the parameter estimates. However, 
this freedom is smaller than it seems. The reason is that all parameter 
estimates covary, which means that interpretation remains rather 
stable over different choices of identifying restrictions for the model. 

The identification problem is most easily explained by formal- 
izing the latent budget model in matrix terms. Let Dr be a diagonal 
I x I matrix with marginal probabilities rri, as elements; and let Hlbe 
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the I x J matrix with probabilities 7rij. Collect the parameters TX in a 
I x T matrix A, and collect the parameters ,.Bx in a J x T matrix B. jt 
Let S be a T x T square matrix with the property that S1 = 1, where 
1 is a unit column vector of length T. Let A* = AS and B* -B(S-1) 
be matrices with alternative parameters. Then the identification prob- 
lem can be written as 

Dr711H= AB' = (AS)(S-1B') = A*B*'. (6) 

Since SI = 1, the elements of A* add up to 1 for each row and the 
elements of B* add up to 1 for each column. S has to be chosen in 
such a way that all elements of A* and B* are non-negative, since 
these elements are probabilities. 

The identification problem is very similar to the rotation prob- 
lem in factor analysis, except that the abundance of solutions known 
for factor analysis is not yet available for latent budget analysis. De 
Leeuw et al. (1990) discuss some choices of S and suggest a way to 
obtain them. One possibility is to choose a matrix S that results in as 
many zeros in A* or B* as possible. This number of zeros is maxi- 
mally T(T - 1), the number of free elements of S. If we choose as 
many zeros in A* as possible, interpretation is simplified, because if a 
parameter estimate ATA equals zero, then the estimates of the theoreti- 
cal budget for row i are derived from less than T latent budgets. Of 
course, such a restriction would have to be sociologically justified. 
Many other details on the identification problem of the latent budget 
model can be found in de Leeuw et al. (1990).1 

In the analysis of the suicide data the identification problem is 
negligible: Many row and column parameters are estimated at zero; 
therefore, no admissible matrix S will have a noticeable effect upon 
the parameter estimates (see de Leeuw et al. 1990). 

The problem of identification is related to the derivation of 
the number of degrees of freedom: 

df = No. of nonredundant cells - No. of independent parameters. 

1This approach to identification emphasizes a choice of S, because by 
fitting the model with the EM algorithm, unidentified estimates A and B are 
obtained and are then transformed to some simple structure. It is also possible to 
start the other way around, i.e., to fix some parameters in A and B, try to prove 
that S can only be the identity matrix, and if this is the case, estimate the free 
parameters. The procedure advocated here has the advantage that the unidenti- 
fied estimates suggest which elements of A and B can be fixed to zero without 
decreasing the fit of the model. 
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Given that the row totals ni, are fixed, the number of nonredundant 
cells is I(J - 1). In the unconstrained case with T latent budgets, the 
number of row parameters is I(T - 1), and the number of column 
parameters is (J - 1)T. However, because these parameters are not 
independent, since AB' = ASS-1B', we must subtract the total num- 
ber of free elements of S from the estimated parameters. This num- 
ber is T(T - 1). Hence, in the unconstrained case we get 

df = I(J - 1)- [I(T- 1) + (J- 1)T- T(T- 1)] = (I- T)(J- T). 

2.6. Maximum Likelihood Estimation 

Here we discuss the estimation of the model. Readers who are 
not interested in this subject can skip this section without loss of 
continuity. 

We estimate the model with the EM algorithm (Dempster, 
Laird, and Rubin 1977), which is also the algorithm most often em- 
ployed for the estimation of latent class models (see Goodman [1974] 
for a description of the algorithm). Alternative algorithms used for 
the estimation of latent class models are provided by Haberman 
(1979, 1988) and by Formann (1978). 

The EM algorithm is used to estimate missing values. In this 
paper the observations on the latent variable X are missing, and only 
the marginal frequencies ni1 of the three-way matrix with elements nijt 

are observed. For the unobserved three-way matrix with probabili- 
ties 7ijt, the latent budget model (1) is defined in terms of 'ijt/7i+'+ by 

7ijt/7i+ = iAXt BTX- The loglikelihood for the unobserved matrix is 

I J T 'Tj 
L = EE n,,t In Tij . (7) 

i=1 hl i-It= I 

The unobserved n11t and the parameter estimates for T-AX and i B-X are 
unknown. 

The EM algorithm consists of two steps: the expectation step 
(E-step) and the maximization step (M-step). In the E-step the expec- 
tation of the loglikelihood for the unobserved data nijk is found, 
conditional on the observed frequencies nij and the current parameter 
estimates. The expectations of the sufficient statistics of the complete 
data matrix therefore have to be expressed in terms of the model 
parameters, so we need an expression for nijt. For this step the cur- 
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rent best estimates of TrAX and i,-BX are taken. Thus, updated estimates itit 

of the unobserved frequencies nijt are given by 

n_,t ni, T nij 7 ni ( X (8) 
" 'iJt + IT 1J7Ti' AX BX 

) IT it'Tj 

In the M-step the loglikelihood for the unobserved data is maximized 
as a function of the model parameters. Let yi and 8t be Lagrange 
multipliers needed for the constraints (a). Then the following func- 
tion is to be maximized over iTit and Tj,X: 

IIJT 
AX BX IT AX BX 

i=1 j=1 t=1 (9) 

I 
i ( T -A T 1) EX) 

i=1 t=1 t=l .=I 

To find_the updated estimates TAX and .BX that maximize 
f(TiX IBTXt yi,8), we can rewrite (9) as both (lOa) and (lOb) and maxi- 
mize these over TiAX and iTBX separately: 

I T I T _ \ 

f(7A + T) =- - ET 
AX ( ) - 1AX) + constant, (10a) 

f(BX,8,) Tn+)nTX - 8, ( ( E BtX)-) + constant. (lOb) 
j=I t=1 t=1 j=1 

This gives as updated estimates TAX = ni+tlni++ and .B,X = n+jtln++t. 
These updated estimates are used in (8) as current best estimates in 
the next E-step of the algorithm. 

Initial parameter estimates should be consistent with the con- 
straints (2). If initial estimates equal to zero are chosen, their values 
will not change throughout the algorithm. De Leeuw et al. (1990) 
prove that in this application of the EM algorithm, the likelihood 
increases in each step. Therefore, the algorithm converges. To inves- 
tigate whether it converges to a global maximum, one should try 
different sets of initial estimates. 
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3. CONSTRAINING THE PARAMETERS 

In this section we will describe and illustrate three types of 
constraints on parameters: fixed-value constraints, equality con- 
straints, and multinomial logit constraints. Since latent budget analy- 
sis is closely related to latent class analysis, the procedure for con- 
straining the parameters in latent budget analysis is similar to the 
procedure in latent class analysis. Fixed-value constraints and equal- 
ity constraints are well known in that context, so they receive less 
attention in this paper. Langeheine (1989) gives an insightful over- 
view of constraints in latent class analysis and relates the types of 
constraints to the different ways latent class analysis is presented- 
for example, as a product of conditional probabilities, as in (3a) and 
(3b) (Goodman 1974), and as a loglinear model with a latent variable 
(Haberman 1979). We use both representations in our discussion of 
constraints in latent budget analysis. 

3.1. Fixed-Value and Equality Constraints 

Theory. A fixed-value constraint on a parameter fixes this 
parameter to a prespecified value, for example, TAX = C, or 7 Bx = C', 

where 0 c c, c' ? 1. It is important here to distinguish between 
identifying constraints and constraints that affect the fit of the model. 
In section 2.5, we chose a matrix S to resolve the identification 
problem. This choice of a specific S implies a choice of a specific 

AX 
solution, for example, a solution with as many parameters 7iA as 
possible fixed to zero, or as many parameters ITBX as possible fixed to 

jTt 
zero (see de Leeuw et al. 1990). Such fixed parameters are called 
identifying constraints. To impose these constraints, we first identify 
the model by choosing a matrix S, thus implicitly constraining some 
of the parameters to certain values. We can then constrain one or 
more further parameters. The model with both the identifying con- 
straints and the extra constraints can be estimated by considering 
both types of constrained parameters as fixed parameters. 

Fixed-value constraints are useful for testing whether parame- 
ter estimates differ significantly from values that are of theoretical 
interest. In many circumstances such values will be zero or one. For 
the suicide data discussed in section 2, additional constraints could be 
imposed upon the parameters iTBx for budget t = 3, for example, by 
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constraining all probabilities to zero except those for hanging, stab- 
bing, and shooting deaths. Thus, the third budget would be a budget 
consisting only of more-violent causes of death. Subsequently, the 
row parameters TAX for women in the third latent budget could be 
constrained to zero, so that only males were in the third latent bud- 
get. Such fixed-value constraints would simplify the interpretation 
considerably. 

An interesting example of a fixed-value constraint is rJB X 
- = ~BX BX = ta*lj 
=jt - p+j; that is, element j of each latent 

budget is equal to the sample proportion that falls into category j. 
Thus, for all i and some category j, 7ijl/i, = 7,j. This allows us to 
determine whether the differences between the budgets 7ij/7i, are 
due to differences in column categories other than column category j. 
This hypot:hesis can be tested against the unconstrained model with T 
latent classes; since T parameters are constrained, the test statistic is 
asymptotically chi-square distributed with T degrees of freedom. If 
such a hypothesis cannot be rejected, the interpretation is simplified 
considerably: It is no longer necessary to characterize the groups 
(rows) in terms of differences in their use of column j. Equality 
constraints specify that certain row-parameter estimates 7iTAX or cer- 
tain column-parameter estimates 7 BX are unknown but equal to one 

7J-t 
another. Such equality constraints can be used to test whether two 
parameter estimates really are different. If this is the case, the inter- 
pretation is again simplified considerably. As with fixed-value con- 
straints, the model should first be identified by some choice of S. 
Then certain parameter estimates can be constrained to be equal. 

An interesting test for equality constraints amounts to a test 
for the collapsibility of rows. If ITA4X = ITA,X for all t, then rows i and i' 
are related to the latent budgets in the same way. This implies for the 
theoretical budget elements in rows i and i' that 7ij/7i, = 7i,j/7i,+. The 
equality of theoretical row budgets was used earlier by Goodman 
(1981), Gilula (1986), and Gilula and Krieger (1989) as a criterion 
for the collapsibility of rows. In a similar way we can also interpret 
the test that 7 ATX = ATX for all t as a test for collapsibility of rows i and it i't 
i'. Gilula (1986) and Gilula and Krieger (1989) applied similar tests 
for equality of the parameters of two or more rows (or two or more 
columns) in a maximum likelihood version of correspondence analy- 
sis. The similarity between the work of Gilula and the procedure 
described here follows immediately in all cases in which correspon- 
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dence analysis and latent budget analysis are equivalent (see de 
Leeuw and van der Heijden 1991). In cases in which correspondence 
analysis and latent budget analysis are not equivalent, the tests can 
give different results. 

Derivation of the number of degrees of freedom for the uncon- 
strained case was discussed above in section 2.5. In the uncon- 
strained case we usually choose an S that gives us as many zero 
parameters in A or B as possible, thus simplifying the interpretation. 
This can also be done by constraining these estimates to zero. Each 
additional fixed-value constraint leads to a higher number of degrees 
of freedom. Similar remarks apply to equality constraints. First, we 
constrain T(T - 1) parameters so that the model is identified. Then, 
after imposing equality constraints, we can easily derive the number 
of degrees of freedom. 

We will not discuss examples of fixed-value or equality con- 
straints. Some applications are suggested above, and examples 
can be found in the latent class analysis literature (see, e.g., 
McCutcheon 1987). 

Estimation.2 For the constraints discussed above, the loglikeli- 
hood can always be split into two parts, as in (lOa) and (lOb), which 
can be maximized separately to update parameter estimates. 

We first introduce some notation. We denote parameters con- 
strained to fixed values by adding a bar over the parameter symbol, 
that is, itAX and 7TjBX. In the presence of fixed-value constraints, we 
denote free parameters by adding a tilde over the parameter symbol, 

-AX *BX that is, parameters to be estimated are iTX and 1T. From the parame- 
-AX, -BX -AX BAX B ters it T. T , and jBtX we derive the elements -TAX and rITtX of 

matrices A and B. For this purpose the current estimates of the 
parameters TAX and 1TijX are sometimes rescaled so that estimates for 
the parameters 1TAX and 7T1BX follow constraints (2). itIt 

Fixed-value constraints for specific row and column parame- 
ters can be easily imposed. This is shown for fixed row parameters 
only. (The results for the column parameters can be derived in a 
similar way.) Let the parameter for row i in budget m be fixed to 

-AX AX some constant c; that is, 7T r = C, 0 ' c ' 1. Since the elements iTre of 
matrix A are constrained by (2), we have 

it (1 -Zm )ixt with E )AX 1, (11) 
m s 

2This section can be skipped without loss of continuity. 
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where Imfri-mX implies that the sum is taken over the fixed parameters 
for row i, and X,* AX implies that the sum is taken over the free 
parameters for row i. To estimate the elements r AX of matrix A, we 
maximize the loglikelihood in the M-step over the parameters TAX: 

f(*itXyi)= indext In (( 7-Tirm? it) 
index pairs (i,t) m 

corresponding with 
free parameters (12) 

-E o( zt )-AX) + constant. 
'1j4 it 

Maximizing (12) over TAX, we find the estimate rAX = ni+tlni+ + where 
in obtaining ni++ and ni+t, we use only those frequencies with index 
pairs (i,t) of free parameters. Having rAX we can now find new esti- 
mates iTA using (11). 

We next consider both equality constraints and fixed-value 
constraints. A bar over the parameter symbol indicates that the pa- 
rameter is again fixed to some specific value. A tilde indicates that 
the parameter is either completely free or constrained to be equal to 
other unknown parameters. These two types of parameter constitute 
the matrices A with elements iTrit and B with elements 7T'B. We con- 
sider only equality constraints between row parameters and equality 
constraints between column parameters. We do not consider equality 
constraints between row and column parameters. Thus, the estima- 
tion problem in the M-step can be simplified because we can rewrite 
the loglikelihood, separating the parameters for A from the parame- 
ters for B and maximizing these parameters separately (compare (9), 
(lOa), and (lOb)). - 

We first consider constraints on row parameters <rit. Equation 
(12) represents the loglikelihood function to be maximized over the 
free paramieters *A- I where there are only fixed-value constraints and 
no equalilty constraints. The updated estimates frA can be trans- 
formed into their corresponding rirt via (11). Now let some parame- 
ters 7rTAl be restricted to be equal to one another. We introduce some 
extra notation. Let Ait be the set of pairs {(i,t)} for which equality 
constraints are imposed; we denote this set by the first combination 
(i,t) encountered (the index i running faster than the index t). That 
is, if 7jA2X =- 7T AT then the set {(1,2),(2,1)} isA12, and A21 is not defined. 
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If no equality constraint is imposed for some TAX, then Ai, has as its 
only element (i,t). Let W be the set of existing index pairs (i,t) of the 
sets Ai,. Let the number of parameters in each Ai, be equal to ci,, and 
let fit = index pairs in A,, ni+, Instead of (12) we find that 

f( -AX i,y)= E [Iln (( :4X)tA)] 
Kfit 1i fit In 1 -i 

index pairs (i.t) 
in W (13) 

- ~~yi(( cit - + constant. 
i1 t 

Now we maximize (13) over TiAT and use the updated estimate iAX in 
(11) to find the updated parameter estimates 7AX. For example, if the 
equality constraint is 7rAX = ITA2 , then the updated estimate found for 
7TAX~ iSAX =(n1+ + n2 11n+ i 

711 is 71 1+1 2 + / +), and the other parameters in 
rows 1 and 2 may be derived from ni+tlni++, then adjusted in a way 
similar to (11j so that (2) holds. In most cases the maximization of 
(13) over TAX gives direct solutions. There are cases, however, in 
which no direct solutions exist. In such a case, a Newton-Raphson or 
similar procedure should be applied in each M-step of the EM algo- 
rithm. This can make the algorithm very time-consuming. For a 
discussion of the existence of direct solutions in latent class analysis, 
see Mooijaart and van der Heijden (in press). Since latent class 
analysis and latent budget analysis are equivalent, their results can 
readily be applied to the latent budget model. 

3.2. Multinomial Logit Constraints 

If there is additional information about the rows and columns 
of the two-way table, it is possible to constrain the corresponding 
row and column parameters as a function of this additional informa- 
tion. One sort of additional information specifies that the row vari- 
able or the column variable is a joint variable. The suicide data 
analyzed in section 2 have a joint row variable, based on the separate 
variables age and sex. In section 3.5 we show how this type of addi- 
tional information about the rows can be used in the model. Another 
sort of information that we can use is any available quantitative 
information relevant to the row or column categories. For example, 
consider a matrix of industry groups by years, in which the number of 
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firms in each industry founded in each year are in the cells. The 
observed budgets give the proportions of types of firms founded in 
each year. and the latent budgets give typical distributions of new 
firms by industry. If the row categories of a matrix are specific years, 
then these years themselves could be used as additional information 
in the model. It is also possible to use other variables that describe 
the economic situation in these years to model the differences be- 
tween the observed budgets. 

The parameters 4rAX and 7rBX are conditional probabilities; 
therefore, we use the multinomial logit model, which has been de- 
vised specifically for this situation. We use the version of the 
multinomial logit model discussed extensively by Bock (1975) to 
constrain both the row and column parameters. 

The multinomial logit model has been used to constrain pa- 
rameters in other contexts. Formann (1982, 1985, 1989) constrains 
latent class analysis in a manner very similar to our own but concen- 
trates on latent class analysis of dichotomous variables (see also 
Langeheirne 1989). Shigemasu and Sugiyama (1989) use this parame- 
terization for latent class analysis of choice behavior. Takane (1987) 
uses the multinomial logit model to restrict the conditional probabili- 
ties in ideal point discriminant analysis. 

Multinomial logit constraints on row parameters. Let the addi- 
tional information for the rows i of the two-way contingency table be 
collected in an I x M matrix V, where the columns are indexed by m 
(m = 1, . . . ,M). We can use this information by defining the follow- 
ing model for the (conditional) row parameters 1rAX 

ex,p E vim Ymt 

IT AX T m=I (14) 
it - T At 

, exp (7 Evlm ymt) 
t=l m=l 

Here, ymt is the (m,t)th element of the M x T parameter matrix F. 
Model (14) can be identified by constraining yin = 0, for all m. 

Model (14) allows a large range of constraints to be defined by 
the matrix V. We get more insight into this class of constraints by 
relating unconstrained latent budget analysis to loglinear analysis 
with latent variables. Let Tij. be the latent probabilities. Then equa- 
tion (5) shows that variables A and B are conditionally independent 
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given the level of the latent variable X. Thus, using notation similar 
to that employed by Haberman (1979, Chapter 10), we get 

log 7Tijt = A + AA + k ? + Ax + AAX + ABX (15) l i i J t it jt 

From (14), the conditional probabilities ri+t7r/i+r+ = 7TAX are further 
constrained. Thus, although the variables A and B remain condition- 
ally independent given the level of the latent variable X, the interac- 
tion between A and X, AAX, is further constrained. 

An important special case of (14) is when the row variable is 
itself a cross-classification of two or more variables, and the matrix V 
is a design matrix describing the factorial structure of the rows. In this 
case, we can define a multinomial logit model for the row parameters 
7 AX that is equivalent to a hierarchical loglinear model for uncondi- 
tional marginal probabilities iyi+t. The hierarchical loglinear model to 
which it is equivalent has the same sets of parameters, which describe 
the relations between the explanatory and the response variables, as 
the multinomial logit model and additional sets of parameters that 
describe the relations between the explanatory variables (see Bock 
1975; Haberman 1979). This is well known in the case of two latent 
budgets (T = 2), since then the multinomial logit model simplifies to 
the ordinary logit model (see, for example, Fienberg 1980, Chapter 
6). In fact, if the loglinear parameter estimates are identified in the 
same way that the multinomial logit parameter estimates were identi- 
fied above (i.e., by setting the first parameter of each set equal to 
zero), then estimates for the multinomial logit parameters are equal 
to estimates for the corresponding loglinear parameters. 

The equivalence of the multinomial response model and the 
hierarchical loglinear model gives us further insight into the con- 
strained latent budget model. Goodman (1971) showed that if the 
marginal probabilities 7ri+t follow a restrictive hierarchical loglinear 
model including parameters for t (which correspond to a column of l's 
in V), and if for the latent probabilities 7Tijt the variables A and B are 
independent given the level of variable X, then the probabilities 7-n- still 
follow a hierarchical loglinear model. It follows from collapsibility 
properties in loglinear models that have conditional independence 
properties (see Whittaker 1990). Thus, constraining the latent budget 
model does not affect the relationship between latent budget analysis 
and loglinear analysis: The constrained latent budget model can still be 
considered a hierarchical loglinear model for the latent probabilities. 

Consider an example. Let the rows of a two-way contingency 
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table be stratified by two variables, A and C, with categories of A 
indexed by i and categories of C indexed by k (k = 1, ,K). The 
latent budget model can be written as 

= ETk 7kt ACXfl X (16) 
l7Tik+ t=1 

Consider the case in which the matrix V in (14) does not constrain 
the row parameters; that is, it specifies a saturated multinomial logit 
model. Then the latent loglinear model is (compare (15)) 

log 7Tikjt =A + (A' + Ak + C + A, + AX 
(17) 

? (AAx + AkX + AACXk, + ABX kt ik f 

We can constrain 714A CX by omitting the columns of the matrix V corres- 
ponding to the two-factor interactions AAx and Akctx or the three-factor 

AACX For ex i~it kt t interaction AiAkCX. For example, we could constrain AACX to equal zero for 
all i, k, and t by deleting the columns of V that describe the interac- 
tion between i and k: If a model with this constraint fits adequately, 
we can conclude that the row budgets cross-classified by variables A 
and C can be adequately approximated in terms of the latent budgets 
,TBX by an effect of A and an effect of C, although in terms of the latent 
loglinear model, there is no interaction between these variables in 
their relation to the latent budgets. Thus, the latent budget model can 
still be understood as a loglinear model for the latent probabilities. 

Although the multinomial logit parameters ymt (or the corre- 
sponding A parameters) are the fundamental parameters of the 
model defined for the conditional probabilities 7-AiX, these fundamen- 
tal parameters are difficult to interpret. Usually we do not study the 
ymt parameters. Often we do not even calculate them. Instead, we 
study the conditional probabilities 7TfAX that they yield. A drawback of 
interpreting the conditional probabilities instead of the fundamental 
parameters is that the constraints imposed by the set of fundamental 
parameters are not always clearly revealed by the conditional proba- 
bilities 7TAX used in latent budget analysis. The properties that hold 
for log Tirt are affected by the way in which the conditional probabili- 
ties 7T4AX are defined in (14). However, in situations like model (17) 
with constraint AACX = 0, it is possible to study marginal probability 
estimatesiTAiX-7Ti j t/ir7i + + and({cX- I+k+t/IT+k+ +insteadofestimates 
^ACX= i++bcuete 

7T ik+tl7 because the margins t and 71?k+t are two of the 
margins that generated the hierarchical loglinear model for the la- 
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tent probabilities ITikjt. Interpreting parameter estimates tx and iTx 

instead of 7Xikt can simplify the interpretation considerably. 
To illustrate the usefulness of multinomial logit constraints for 

the row parameters, we will discuss two examples below. 
Multinomial logit constraints on column parameters. Using the 

multinomial logit model, we can define constraints on the column 
parameters (see Bock 1975). We assume that the information on the 
column categories of the two-way contingency table is collected in the 
matrix W, which has J rows and H columns and is indexed by h 
(h = 1, . . . ,H). Let I be an H x T matrix with parameters q!jht. Now 
we can constrain the 71TRx parameters by the multinomial logit model 

H 

_7j jxt wH 4t ( 18) 

E exp ( Wnh_ht 
n=1 h=1 

The matrix W defines a model that is fitted to each latent budget t 
separately. 

If W is chosen in an appropriate way, then the multinomial 
logit model for 7BTX is equivalent to a hierarchical loglinear model for 
the marginal probabilities 7r+jt. Goodman (1971) showed that if 7T,jt 
follows a hierarchical loglinear model and variables A and B are 
independent given X, the latent probabilities 1ri also follow a hier- 
archical loglinear model. The situation is therefore similar to that for 
multinomial logit constraints on the rows. 

When the column categories are classified by more than one 
variable, we can use the matrix W to describe the factorial structure 
of the columns. In this situation, an important special case is a con- 
strained version of the simultaneous latent class model. Let there be 
two variables for the column categories, B indexed by j and D in- 
dexed by m. Then the latent budget model is 

__ij_ AX BDX (19) 
t-1 

T 
it T)Mt ,19 '7Ti+ + t= 1 

and the loglinear model for the latent probabilities 1Tijmt is 

log-1TjjMt =A ? +i (A ? jm? (0 
+i < ?AAX?(Ax?A )x?A ) (20) 

+ AX + AAX + (ABX + ADX + ABDX) 
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Let W constrain the variables B and D to be independent at each 
level of X. This is achieved when W consists of columns contrasting 
the categories of variable B and the categories of variable D but 
there are no contrasts linking them. Then in the loglinear model for 
the marginal probabilities 1T+j,t', B and D are conditionally indepen- 
dent given X (see Bock 1975). This yields model (20) with additional 
constraints ABD = A'BDX = 0. Model (19) can then be rewritten as 

jm jMt 

1Tijm jjAx17.X . (21) 

X7i+ + t=1 

Thus we have obtained a constrained form of simultaneous latent 
class analysis. In this constrained version of the simultaneous latent 
class model, variables B and D are conditionally independent given 
X, and the relationship between variables B and D is identical for 
every level of the group variable A. This identity makes (21) a con- 
strained version of the simultaneous latent class model (cf. Clogg and 
Goodman 1984). The levels of the group variable A may be related 
in different ways to the latent budgets, however. 

To illustrate the usefulness of multinomial constraints for the 
column parameters, we analyze the suicide data that was discussed in 
section 2. 

Degrees of freedom and identification. By imposing multi- 
nomial logit constraints on row and column parameters, we some- 
times identify the model. If the model is identified by imposing con- 
straints as in (14) and (18), then the matrix S in AB' = ASS 1B' can 
only be the identity matrix (cf. Mooijaart 1982), and we should not 
subtract T(T - 1) from the number of estimated parameters. This 
occurs in many constrained models. 

If there is uncertainty about the number of degrees of free- 
dom, this number can be derived by standard methods, for example, 
by determiining the rank of the matrix of partial derivatives of the 
probabilities with respect to the parameters (cf. Goodman 1974). 

Maximum likelihood estimation. When there are multinomial 
logit models for both the row and column parameters, then a 
loglikelihood function that is similar to (9) can be defined, and as in 
(lOa) and (lOb), it can be split into two parts, one part for the row 
parameters and one part for the column parameters. These parts can 
be maximized separately. They are 
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t ( P _ imYtm 
f(ytm) > ii?tlnl MT ? constant (22a) 

i=1 T=1 \>exp ( vim nm) 
n=1 mn=1 

and 
H 

f( t) nj I1~n h= + ) constant, (22b) 
J T (ex(> WhIth 

i= t E exp E Wizhqt,h) 
n=1 h=1 

where (22a) is to be maximized over ytm and (22b) is to be maximized 
over Ifjth 

For the row parameters 7TAX, this amounts to fitting the multi- 
nomial logit model to the updated estimate of the margins of the 
latent frequencies ni+t, using these as if they were ordinary observed 
frequencies. For the column parameters X,BX, this amounts to fitting 
the multinomial logit model to the updated estimate of the margins 
of the latent frequencies n+jk' using these as if they were ordinary 
observed frequencies. 

Bock (1975) shows how to find the estimates for the general 
multinomial logit model using the Newton-Raphson algorithm. He 
also explains how to fit the multinomial logit model in case of struc- 
tural zeros, which can be used in our context whenever there are 
additional fixed-value constraints for some of the Arx. 

We deal now with an important special case in which the 
multinomial logit model is equivalent to a hierarchical loglinear 
model. This might occur for the rows when the matrix V describes 
the factorial structure of the rows of the contingency table, and it 
might occur for the columns when the matrix W describes the facto- 
rial structure of the columns of the contingency table. In such cases, 
the multinomial logit model can be fitted using iterative proportional 
fitting (see Bishop, Fienberg, and Holland 1975; Fienberg 1980, 
Chapters 3 and 4). Iterative proportional fitting is computationally 
more efficient than the Newton-Raphson procedure either when the 
number of parameters to be estimated becomes large or when direct 
estimates for the expected frequencies exist. 

When iterative proportional fitting is used to fit a multinomial 
A X logit model for the row parameters 7rTi, for example, then this proce- 

dure yields constrained estimates 7Ti" but no estimates for the multi- 
nomial logit parameters ymt (compare (14)). However, the con- 
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strained estimates 1 AX can be used to obtain the multinomial logit 
parameters in the following way. Let the estimates of conditional 
probabilities jTiX follow some multinomial logit model. In this case 
the unconditional estimates pi,rAX follow a corresponding loglinear 
model. If the loglinear parameters are identified in the same way as 
the multinomial logit parameters, that is, by constraining the first of 
a set of parameters to be zero, then the estimates for the multinomial 
logit pararneters ymt are identical to the corresponding estimates for 
the loglinear A parameters. Thus, the estimates for the loglinear A 
parameters can be derived easily from log pi, AX, since log pl, ^AX "1'Tit " i Tii ~~ ~AX ^X AX ~X A, logpl+"1^l2 =A + A2 = logp1 +'n1 1;+ A2, and so on. 

Examples. For the suicide data analyzed in section 2, we chose 
the unconstrained model with T = 3. The fit of this model was G2 = 
1,085.9, df = 186, although the fit measures were used as descriptive 
measures only. 

Let the row variable age be A, indexed by i, and let the row vari- 
able sex be C, indexed by k. Then the unconstrained latent budget 
model is (16) or, as the equivalent loglinear model for the latent proba- 
bilities -rikjt, (17). As discussed above, we will use the factorial struc- 
ture of the rows to constrain the row parameters 7i4x. The matrix V 
used to constrain these parameters has as its first column a unit vector, 
as its second column a dummy vector for sex, and then 16 dummy 
vectors for age. The unconstrained model would have 16 extra dummy 
vectors for the interaction between sex and age. We will investigate 
here whether this interaction is important by omitting these sixteen 
columns. In terms of the loglinear model for the latent probabilities 
1Tikjt, this corresponds to constraining the parameters AACX to be zero. 

This constraint can be motivated as follows. In the uncon- 
strained model the expected budgets of the age-sex groups are re- 
lated to three latent budgets. There can be a sex effect, an age effect, 
and an age-sex interaction effect. If the interaction effect can be 
omitted, then the interpretation simplifies considerably: Only the 
age effect and the sex effect need to be interpreted. An individual's 
suicide behavior is then determined by that person's sex and age, but 
not by the specific age-sex combination. 

The number of degrees of freedom for this constrained model 
is derived as follows. There are 34 x 8 independent cells, 18 x (3 - 
1) parameters Ymt for the rows, and T(J - 1) = 3 x 8 parameters for 
the columns; and the model is identified by constraining the row 
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parameters iACX by the matrix V described above. This gives 272 - 
(36 + 24) = 212df. 

The constrained model has a fit of G2 = 1,136.6, df= 212, and 
the difference between it and the unconstrained three-budget model 
is relatively slight, given the large sample size (G2 = 1,136.6 - 

1,085.9 = 50.6, df = 212 - 186 = 26). The parameter estimates in 
Table 33 are similar to the parameter estimates in Table 2, especially 
the column parameters. To simplify the interpretation of the row 
parameters fr A?CX, we also give average age-effect parameter estimates 
jrAX and average sex-effect parameter estimates frCX. (For a derivation 
of these parameter estimates, see the section "Multinomial logit con- 
straints on row parameters," above.) 

The average sex-effect parameter estimates show that the ex- 
pected budgets for males consist far more than average (i.e., much 
more than the probabilities given by the average) of latent budgets 1 
and 3, whereas the expected budgets for females consist far more 
than average of latent budget 2. The average age-effect parameter 
estimates show that the first age group has an extremely high ten- 
dency to use the third latent budget, the younger age groups tend to 
use the first latent budget, and the older groups are most likely to use 
the second latent budget. 

This application shows how the factorial structure of the row 
categories may be used to constrain the row parameters. We con- 
clude that by constraining the row parameters with a multinomial 
logit model, the interpretation has been simplified considerably. Al- 
though this type of application is possible, by using the methodology 
of loglinear modeling with latent variables, it has not received atten- 
tion thus far in the literature. 

Crime among four ethnic groups. The Netherlands Ministry of 
Justice investigated the differences in involvement in crime among 
youth from four ethnic groups: Moroccans, Turks, Surinamese, and 
Dutch. To control for the generally lower socioeconomic status of the 
first three ethnic groups, the Dutch sample consisted of youngsters 
who lived on the same streets as the youngsters from the other ethnic 
groups. For more details, see Junger (1990). Among other things, 
three crime measures were gathered from the police registration: 

3We do not give the multinomial logit parameters ymt, because these 
parameters are much harder to interpret than the conditional probabilities that 
they yield (see (14)). 
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TABLE 3 
Parameter Estimates for Constrained Model 

Average Age 
Males T AkCX- Females 1kT Effect *AY 

Age t=1 t=2 t=3 t=1 t=2 t=3 t= 1 t=2 t=3 

10-15 .023 .002 .975 .268 .732 .000 .070 .143 .787 
15-20 .498 .015 .486 .522 .478 .000 .505 .144 .352 
20-25 .642 .022 .336 .497 .503 .000 .606 .143 .251 
25-30 .648 .023 .329 .483 .517 .000 .605 .151 .244 
30-35 .614 .038 .347 .352 .648 .000 .547 .195 .258 
35-40 .552 .036 .412 .339 .661 .000 .494 .205 .301 
40-45 .473 .071 .456 .183 .817 .000 .391 .281 .328 
45-50 .420 .081 .499 .149 .851 .000 .334 .326 .340 
50-55 .354 .121 .525 .090 .910 .000 .237 .472 .291 
55-60 .304 .165 .532 .059 .941 .000 .191 .522 .287 
60-65 .217 .247 .536 .029 .971 .000 .129 .587 .285 
65-70 .104 .359 .537 .010 .990 .000 .060 .652 .288 
70-75 .054 .417 .530 .004 .996 .000 .032 .670 .298 
75-80 .017 .434 .549 .001 .999 .000 .009 .701 .289 
80-85 .000 .518 .482 .000 1.000 .000 .000 .748 .252 
85-90 .000 .442 .558 .000 1.000 .000 .000 .662 .338 
90+ .005 .395 .600 .000 1.000 .000 .003 .598 .399 

Average Sex 

Cause of Column Parameters iit Effect 'CXkt 

Deatha 7r+, t=1 t=2 t=3 t=1 t=2 t=3 

1 .330 .543 .416 .000 Males .383 .151 .466 
2 .005 .011 .003 .000 Females .143 .857 .000 
3 .040 .130 .001 .006 
4 .383 .000 .340 .823 Average .296 .408 .296 
5 .050 .021 .098 .012 
6 .059 .094 .001 .103 
7 .018 .006 .018 .029 
8 .053 .054 .082 .014 
9 .062 .141 .041 .013 

Total 1.000 1.000 1.000 1.000 

aSee note to Table 1. 
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TABLE 4 
Crime Among Four Ethnic Groups, by Age 

Crime Pattern BDEa 

Ethnicity Age 000 100 010 110 001 101 001 111 Total 

Moroccans 12-13 65 13 1 1 0 1 0 1 82 
14-15 43 12 0 4 2 2 0 2 65 
16-17 26 18 1 2 0 3 0 1 51 

Turks 12-13 52 4 0 0 1 0 0 0 57 
14-15 73 16 1 2 3 0 0 0 95 
16-17 32 13 1 3 0 1 0 1 51 

Surinamese 12-13 71 9 1 0 2 2 0 0 85 
14-15 54 10 0 1 0 1 1 1 68 
16-17 36 12 1 1 0 2 0 1 53 

Dutch 12-13 78 5 0 0 2 3 0 0 88 
14-15 70 5 1 1 0 1 0 1 79 
16-17 26 3 1 1 3 1 0 2 37 

Total 626 120 8 16 13 17 1 10 811 

Note: Type of crime: B = property crime, D = aggression against persons, E = 

vandalism. 
aO = not registered, 1 = registered. 

property crime, aggression against persons, and vandalism. The age 
of the youngsters was coded into three categories: 12-13, 14-15, and 
16-17. This led to the data in Table 4. The relevant questions are (1) 
Are there one or more underlying crime measures? (2) Are these 
underlying crime measures the same for each of the ethnic groups? 
(3) If so, how is group membership (i.e., ethnic-group and age-group 
membership) related to these underlying crime measures? 

Since the table is sparse, the power of tests will be relatively 
low. Therefore, we will not use the test results as evidence for accep- 
tance of models, but rather as evidence for not rejecting them. 

The first two questions can be answered readily by a con- 
strained form of simultaneous latent class analysis similar to (21). 
For the explanatory variables, let age be denoted by A, indexed by i, 
and ethnic group by C, indexed by k. For the response variables, let 
the three crime measures be denoted by B, D, and E, indexed by j, 
m, and n, respectively. Then the latent budget model is 

'7Tikmn = A CXTJBDEX (3 --m 
> 

7Tkt 7jmnt 
, (23) 

'7ik+++ t=i 
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with the parameters .BmD.EX constrained by a multinomial logit model jmnt 

(18) with fixed scores Wjmnh and parameters tfht The fixed scores Wjmnh 

can be collected in an 8 x 3 matrix W, where 8 is the number of 
response combinations defined by j, m, and n, and 3 is the number of 
variables. The first column contrasts the two categories of variable 
B, the second column contrasts the two categories of variable D, and 
the third column contrasts the two categories of variable E. Thus, the 
three variables B, D, and E are unrelated in W, and the variables B, 
D, and E are independent at each level of the latent variable X. 
Therefore tBDEX can be rewritten as 7TBDEX = TBX 

DX EX (COM- Therefre, lTmnt lntca na T1~ - t Mt nt 
pare (19) with (21)). The parameters qIht are collected in a 3 x T 
matrix, where T is the number of latent budgets. There are thus 3 x 
T parameters to be estimated. 

Moclel (23) with the above constraints corresponds to the fol- 
lowing loglinear model for the latent probabilities lTikjmn: 

A + (Al + AC + AAC) + (AB + AD + AE) + X 
'7ikjnmt = A I+ ~ k iki I 

+A \]Am i+ At 

+ (AAX + ACX + AACX) + (ABX +AD +AEX) 
(24) 

Therefore, because of the multinomial logit model for the parame- 
ters -rlBDX , there are no direct relations between the response variables 
B, D, and E. 

Model (23) with two latent budgets, or classes, and constraint 
BmDEX = iBX7 DX EXas an adequate fit: G = 65.93, dfis 66 (see jmnt it Mt nt 

Table 5). Since the Pearson chi-square statistic is better approxi- 
mated by the chi-square distribution in case of small frequencies, we 
also give it here: X= 72.14. The parameters BX TDX , and TEX 

are given in the first columns (model 1) of Table 6. In the first latent 

TABLE 5 
Fit of Models for Table 4 

G2 x2 df 

Model 1, No constraints 65.93 72.15 66 
Model 2, AAZiX = 0 70.30 80.74 72 
Model 3, AACX = 0, ACX = ? 104.87 131.38 74 
Model 4, AAi,/X = 0, AAX = 0 86.70 85.60 75 

Model 5, AACX = 0, AAX is linear in age 70.31 80.81 73 

Note: Models are defined in terms of constraints that they impose upon the 
conditional row probabilities 7IK,X. 
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TABLE 6a 
Latent Budget Estimates for Table 4 

(Parameter Estimates frA CX) 

Model 1 Model 2 Model 5 

Ethnicity Age t= 1 t= 2 t =1 t= 2 t= 1 t= 2 

Moroccans 12-13 .851 .149 .853 .147 .855 .145 
14-15 .693 .307 .703 .297 .701 .299 
16-17 .510 .490 .482 .519 .483 .517 

Turks 12-13 1.000 .000 .935 .065 .935 .065 
14-15 .858 .142 .852 .148 .852 .148 
16-17 .649 .351 .694 .306 .696 .304 

Surinamese 12-13 .921 .079 .930 .070 .931 .069 
14-15 .836 .164 .844 .156 .843 .157 
16-17 .714 .286 .680 .320 .682 .318 

Dutch 12-13 .944 .056 .959 .041 .960 .040 
14-15 .929 .071 .906 .094 .905 .095 
16-17 .779 .222 .790 .210 .792 .208 

budget, children have estimated probabilities of .063, .006, and .017 
of being arrested for crimes B, D, and E, whereas in the second 
latent budget, children have estimated probabilities of .859, .219, 
and .213 of being arrested for those crimes. The first budget is thus a 
budget for children who have a very low probability of being ar- 
rested, whereas these probabilities are high for B and moderate for 
D and E in the second budget. The parameters -i47AC show the esti- 
mated probabilities of each of the latent budgets for each of the age- 
ethnicity groups. It shows that for each ethnic group, the probability 
of the (more criminal) second budget increases as they get older, that 
Moroccans have the highest probability of the second budget in each 
age group, and that the Turks show a rapid increase in the probability 
of the second budget as they get older. The Dutch have relatively low 
probabilities of the criminal budget, especially as they get older. This 
analysis appears to answer the first two questions: (1) The data pro- 
vide no evidence against the existence of only two latent types of 
criminality, and (2) all ethnic groups have these in common. The 
model with two latent budgets gives an adequate fit. 

The third question is also partly answered by the above analy- 
sis. However, we may wonder whether there is in fact any evidence 
of an ethnic-group effect, of an age-group effect, and of an interac- 
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TABLE 6b 
Latent Budget Estimates for Table 4 

(Parameter Estimates jBx, tDXrEX) 

Type of Model 1 Model 2 Model 5 

Crimea Registration t= 1 t= 2 t= 1 t= 2 t= 1 t= 2 

B 0 .937 .141 .942 .135 .941 .135 
1 .063 .859 .058 .865 .059 .865 

D 0 .994 .781 .993 .787 .993 .786 
1 .006 .219 .007 .213 .007 .214 

E 0 .983 .787 .983 .794 .983 .794 
1 .017 .213 .017 .206 .017 .206 

aSee note to Table 4. 

tion between age and ethnic group. This can be tested by constrain- 
ing the parameters 1iACX by using multinomial logit models. In terms ing the parameters 17ikt 

of the latent loglinear model, we can constrain the parameters 
AAX ,ACX and AACX to be zero. Goodness-of-fit statistics for the models it I kt I ~ikt 
that we will discuss are given in Table 5. 

Constraining the parameters A AkCX to be zero implies that there 
are age-group and ethnic-group effects on the amount of criminality, 
but also that the age-group effect is the same for each ethnic group 
and that the ethnic-group effect is the same for each age group. This 
is Model 2 in Table 5. For this model the fit decreases to G2 = 70.30, 
df = 72, X' = 80.74), which is still adequate. The difference between 
the fit of Model 2 and the fit of unconstrained Model 1 (see Table 5) is 
also not significant: G2 = 4.37, df = 6. Therefore, there is insufficient 
evidence of any interaction between age and ethnic group in their 
relation to crime. The parameter estimates for Model 2 are given in 
the middle columns of Table 6. They differ only slightly from those 
for the unconstrained solution. A plot of the parameters riiACYX, showing 
the probabilities for both the constrained and the unconstrained mod- 
els of the criminal latent budget, is given in Figure 3. The lines 
connecting the different age points for the four ethnic groups are 
slightly more regular than those in the constrained solution. 

A more restrictive model constrains both AAX and AACX to be 
zero. This model (Model 3 in Table 5) assumes no direct relationship 
between age and crime, but only a direct relationship between ethnic 
group and crime (specified by the parameters AcX) The fit of this 
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FIGURE 3. Plot of estimated row probabilities of the second (more criminal) latent bud- 
get. Open squares: unconstrained (Model 1, Table 4); solid squares: con- 
strained (Model 2, Table 4). 

model is poor: G2= 104.87, df = 74, X2 = 131.38). Another model 
(Model 4) constrains both A4x and AA5CX to be zero. No ethnic-group 
effect is assumed, only an age-group effect. This model fits quite 
well, but we reject this hypothesis because the difference between it 
and Model 2 is significant: G2 = 86.70 - 70.30 = 16.40, df = 75 - 72 
- 3. 

We therefore end up with Model 2. Model 2 can be con- 
strained further by making use of the fact that the age categories are 
ordered. We can model this by replacing the two columns for age in 
the design matrix (one column for ages 12-13, and one for ages 14- 
15) with one column with values -1, 0, and 1 for ages 12-13, 14-15, 
and 16-17. Then, the age-group effect is assumed to be linear with 
age (Model 5). The difference between Models 2 and 5 is extremely 
small: G2 = 70.81, df = 73, X2 = 80.81. 

The models used in this analysis are very similar to simulta- 
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neous latent class models. The example shows how multinomial logit 
constraints on the column parameters can be used to model condi- 
tional independence of three manifest variables given a latent vari- 
able. Assuming a latent variable that accounts for the association 
between manifest variables is standard in latent class analysis, but 
using the multinomial logit model for this purpose is new. The analy- 
sis shows that there is no evidence for more than two latent types of 
crime (the interpretation of the latent variable) and that all age- 
ethnic-group combinations have these two latent types of crime in 
common. Using the multinomial logit model to constrain the row 
parameters is also new. This turns out to be fruitful when there is 
additional information for the row variable. Here we can conclude 
that there is evidence of an age-group effect and of an ethnic-group 
effect, but not of age-ethnic-group interaction effects in the use of 
the criminal budgets. Furthermore, the age-group effect turns out to 
be linear in age. 

4. CONCLUSION 

Latent budget analysis is closely related to latent class analy- 
sis. In latent budget analysis the observed variables are considered to 
be either explanatory or response variables. In this sense latent bud- 
get analysis is different from latent class analysis, because in most 
applications of latent class analysis, all observed variables play the 
same role. However, the unconstrained models are equivalent, as 
shown in section 2. Latent class analysis of a two-way table is most 
often used when a latent variable should explain the association 
between the two manifest variables. Latent budget analysis can be 
used when the observed budgets are considered to be generated by a 
number of unknown latent budgets (see the mixture model in Figure 
1) or when the latent variable is thought to intervene between two 
manifest variables (see the MIMIC model in Figure 2). 

We have discussed constraints on the parameters of the latent 
budget model. The most interesting constraints discussed in the pa- 
per are the multinomial logit constraints. Our presentation empha- 
sizes conditional independence of the rows and columns of a two-way 
table given a latent variable, and multinomial logit constraints im- 
posed on the relations between the row variable and the latent vari- 
able and between the column variable and the latent variable. We 
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showed that, just as for the unconstrained model, the constrained 
latent budget model can be understood as a loglinear model for the 
unobserved contingency table. 

This conclusion suggests that constrained latent budget analy- 
sis is very similar to the loglinear model approach of latent class 
analysis as presented by, for example, Haberman (1979) and Ha- 
genaars (1988, 1990). Indeed, although our models are different from 
the latent class models of Haberman and Hagenaars, our models can 
be fit using their methodology. However, the use of an explanatory 
variable for the rows and a response variable for the columns gives a 
specific interpretation to the parameters that is different from the 
interpretation in latent class analysis. In addition, the use of joint 
variables, and the exclusion of certain interaction effects, leads to 
interpretations that are different, and often more parsimonious, than 
those in latent class analysis. For example, Hagenaars (1988, 1990) 
discusses local dependence models as models with direct effects be- 
tween manifest response variables and allows for these direct effects 
to account for correlated response error. In this paper direct effects 
between explanatory variables are included in the latent budget 
model because a multinomial distribution is assumed for each of the 
joint levels of the joint row variable. Both approaches can lead to the 
same loglinear model with latent variables, but with a different inter- 
pretation. The models given here allow us to answer questions previ- 
ously unanswered by latent class models. 

APPENDIX: SOFTWARE 

The analysis in this paper has been performed with prototypes 
of programs written in APL. These prototypes can be obtained from 
the first author free of charge. However, it is also possible to use 
existing software. 

Unconstrained latent budget analysis can be performed with 
existing programs for latent class analysis, such as MLLSA (Clogg 
1977) or LCAG (Hagenaars and Luijkx 1990) or NEWTON, a pro- 
gram that replaces the earlier program LAT (see Haberman 1988). 
MLLSA and LCAG use the EM algorithm, while NEWTON uses a 
combination of the Newton-Raphson algorithm and the EM algo- 
rithm. After convergence of these programs, the row-parameter esti- 
mates of the latent budget model have to be derived using equation 
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(3). It is also possible to use the relation of latent budget analysis to 
simultaneous latent class analysis (see van der Heijden et al. 1989) or 
to mixed Markov latent class models (see van de Pol and Langeheine 
1990). In programs that use the EM algorithm, simultaneous latent 
class models are fitted by using latent class models with so-called 
quasi-latent variables (see, for example, Hagenaars 1988, 1990). Then 
the row-parameter estimates are found directly. The program PAN- 
MARK (van de Pol, Langeheine, and de Jong 1989), used for mixed 
Markov latent class analysis, can be used if the latent budget model is 
considered as a mixed Markov latent class model for one variable with 
only one time point (see van de Pol and Langeheine 1990). 

The above programs all allow for fixed-value and equality 
constraints in the latent budget model. Multinomial logit constraints 
can be fitted in NEWTON and LCAG by considering the latent 
budget model with multinomial logit constraints as a loglinear 
model with a latent variable. In NEWTON, design matrices are 
used to define the loglinear model for the unobserved matrix. Thus, 
all possible multinomial logit constraints can be fitted in NEWTON. 
In LCAG quasi-latent variables are used, and the program fits stan- 
dard hierarchical loglinear models to the matrix with latent class 
probabilities (see Hagenaars 1988, 1990). Thus, all multinomial logit 
constraints that constrain loglinear interaction parameters to be zero 
can be fitted. 
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