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In classical test theory the reliability of a test can be estimated by test-retest
correlation models. These models do not apply to data of the lowest or nominal
measurement level. Instead, models for latent Markov chains may be used to
correct for measurement error in panel data from three or more waves. In this
article it is shown how to use the E-M algorithm for estimating the parameters of
a latent Markov chain. Where previous algorithms performed badly on variables
with more than two categories this algorithm performs better, although con-
vergence is often slow. The method is applied to two trichotomous questions from
the Dutch civil servants panel survey. Generally the assumptions of the model,
that is, a latent stationary Markov chain, are reasonably well met by the data. The
probability of a correct answer, which can be interpreted as the reliability of a
latent response category, is high in most cases (about .8). Also transition tables
are presented that are corrected for measurement error according to the model.
Standard errors of model parameters are approximated by a finite difference
method.

A Latent Markov Model

to Correct for Measurement Error

FRANK VAN DE POL
Netherlands Central Bureau of Statistics

JAN DE LEEUW
University of Leyden

1. INTRODUCTION

In the social sciences many phenomena are measured with a
certain amount of error. This includes opinions, attitudes, and
personality traits. Several circumstances may give rise to measure-
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ment error. The respondent may be tired, little interested, or just
in a bad mood. Also the respondent may not be sure what his
opinion or attitude is in the matter concerned. Furthermore, in
the case of an interview, the interaction between the respondent
and the interviewer may be an important disturbing factor as well
as the presence of others during the interview. Finally, errors may
occur during the coding and typing process. Measurement errors,
both random and systematic, can hardly be avoided. The prob-
lem has been stated and illustrated already often before, both for
tables (Petersson, 1974; Schwartz, 1985) and for measures of
association (Kraemer, 1985).

Of course, the best thing to do is to prevent measurement errors
whenever possible. A measurement model describing the error
generating process will never be able to produce perfectly “true”
data. On the other hand, results that are corrected by a correctly
specified measurement model will generally be less biased than
the uncorrected results.

When several consecutive measurements are available for the
same respondent, that is, in the case of panel data, there are
simple models available that enable the researcher to sepa-
rate random measurement error and true change (Heise, 1969;
Joreskog, 1970; Van de Pol, 1982). Henry (1973) pointed out that
if these models are applied to a dichotomous variable some
parameters will be unintentionally fixed because the mean and
the variance are not independent for adichotomy. Moreover, one
does not obtain a very detailed account about the location of
measurement error by these methods. Just one reliability coeffi-
cient is produced, indicating the proportion true score variance.

When data are measured at the nominal level it is necessary to
use another approach. In the fifties and sixties, latent structure
analysis was developed by Lazarsfeld and Henry (1968). These
authors, as well as Wiggins (1955, 1973) applied this class of
models also to panel data. In one of their models they assumed a
latent Markov chain that was connected with the observed,
manifest data by certain probabilities to give a correct or a wrong
answer. The model produces a latent discrete probability distri-
bution for every panel measurement that may differ from the
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manifest probability distribution if the latent classes are measured
with unequal reliabilities." The turnover tables of consecutive
measurements are corrected for measurement error. Because
random measurement error inflates the measured change, this
usually means that on a latent level less respondents are found in
the “change” categories than on the manifest level.

Until recently the estimation of the parameters for these models
was a problem. Lazarsfeld and Henry (1968) proposed an eigen-
value approach for the latent Markov chain that could produce
negative “probabilities” as model parameters. Goodman (1974)
used a generalization of the iterative proportional fitting proce-
dure for latent structure analysis. In this procedure probabilities
are bound in the 0-1 range. Dempster et al. (1977) wrote a thor-
ough mathematical exposition about this procedure for missing
datathey called the E-M algorithm (expectation—maximization).
They proved that this algorithm produces maximum likelihood
estimates. The first application of the E-M algorithm avant la
lettre is due to Wolfe (1970).

Goodman’s fitting procedure is implemented in a computer
program for latent class analysis according to Goodman, LCAG
(Hagenaars, 1985). The model behind this program allows for a
log-linear model structure at a latent level. This implies that some
latent Markov chain can be specified. An older computer pro-
gram for Maximum-Likelihood Latent Structure Analysis is
MLLSA (Clogg, 1977; Clogg and Goodman, 1985). This pro-
gram allows for all kinds of factor-analytic structures in one or
more populations, but not for a nonsaturated latent log-linear
model. So in applications to panel data the analyst using MLLSA
is forced to assume that the latent variable does not change in time
(Dayton and Macready, 1983), whereas the analyst using LCAG
is not inhibited in this sense (Hagenaars, 1978). However, not all
Markov models that are described in this article are compatible
with LCAG.

Another approach for which a program exists is the one by
Coleman (1964). Starting out with a beautiful theory about atti-
tude particles governed by a Markov process in continuous time,
he eventually reaches a simple expression for a matrix of relia-
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bility coefficients. This matrix can be estimated using only bi-
variate tables of panel measurements in a way that is very similar
to Heise’s formula for the reliability of an interval-level variable.’
An application of the method can be found in Markus (1979).
However, the Coleman approach cannot be easily put into the
general framework of latent structure analysis.

The manifest Markov chain is introduced in the next section
and the latent Markov chain in section three. The fourth section
deals with estimation methods. Then the model is applied to two
variables from the Dutch civil servants panel survey. We focus on
questions on satisfaction with rank and with economic position.
Finally the main conclusions are given.

2. THE MANIFEST MARKOV CHAIN

Before turning to the latent Markov chain we will first consider
the manifest Markov chain in discrete time. Suppose there are
consecutive measurements of the same variable. The first mea-
surement is denoted by x', the second by x*, and so on. Each
variable x* has the same response categories (1, ...,c,...C).

A Markov chain is described by an initial distribution vector
p’ of x* and a set of transition matrices R* for transitions from x°
to x' (s < t). The elements of this matrix will be denoted as riy if,
forexample,s=1and t= 3. Anexample of an observed transition
matrix is given in Table 1. The relationship between the turnover
table P*, with elements pj; adding to 1, and p’ and R" is given by

Pst = Ps Rst [1]

where P° is a diagonal matrix with the elements of p* on the
diagonal and zeros elsewhere. The main assumption of a Markov
model is that a transition matrix R" is independent of the past
states through which the process has passed. So a process without
memory is assumed. As will be explained below, this implies that
the transition matrix of two consecutive periods (s, t) and (t, u)
satisfies
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R = RS R™ (s<t<u) [2a]
or, in scalar notation

su _ st tu
e = 25 Ty Tk [2b]

The probability of a respondent being in some latent cell p;; was
already given in equation 1 as the probability of being in category i
attimes, p;, times the probability of a transition from categoryi at
time s to category j at time t, rj. Now equation 2 states that
transition probabilities rj; for a respondent in category j at time t
are independent of his past state i at time s; pj; = p;j; has the same
parameters for any category i at a previous time s. So the proba-

stu

bility of a respondent being in some cell pj; is obtained by multi-
plying pjj by rj; for corresponding values of j,

isjtku - ?jt r:;‘ =p; r?jt :1? (3]

The model isillustrated by a causal diagram in Figure 1. Tables

of higher dimensionality may be described by multiplying with

transition probabilities for more periods. Tables of lower dimen-

sionality may be obtained by summing the pj; over nonrelevant
dimensions.

In the present article the length of the periods (s, t) and (t, u) is

taken to be the same as the time between consecutive waves of the

TABLE 1
Transition Probabilities r?k3 and Marginal Probabilities p? and ps:
Civil Servants’ Satisfaction with Their Economic Position, 1979-1981

March 1979 March 1981 marginal
distribution
1. 2. 3. total March 1979: pl
1. (very) satisfied .62 .27 L11 1.00 .55
2. rather satisfied .29 .42 .29 1.00 .30
3. neither/ not satisfied .15 .27 .58 1.00 .15
marg.distr. March ’'81, p3 .45 .32 .23 1.00
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Figure 1: Causal Diagram of a Manifest Markov Chain in Discrete Time

panel-data collection, but this assumption is not necessary. Singer
and Spilerman (1978) have pointed out that choosing some arbi-
trary time unit that is not a whole multiple of these periods may be
incompatible with assumption 2. For half the time period (s, t) for
instance there should be a transition matrix R* such that
R* = R* R*, They gave an example of a matrix R* that cannot be
decomposed in this way. This problem will not occur if the model
is not based on transition probabilities for some discrete time unit
but on transition rates for an infinitesimal small elapse of (con-
tinuous) time (Tuma et al., 1979; Carroll, 1983). However, one
will not be inhibited by this drawback of discrete time models as
long as one sticks to the observation periods of the panel.

Much of the theory on Markov chains (Anderson, 1980) is
derived under the restriction of stationary transition probabilities
in time—for periods (s, t), (t, u), and so on, of equal length.

R¥*=R"™=,..=R (4]

When fitting manifest Markov chains to empirical data the
stationarity assumption is often met by the data. The assumption
of a process without memory (2), however, is very often not in
accordance with the data. Wiggins (1973) and Logan (1981)
pointed out that reversion effects may take place. An advertising
campaign, for instance, may only have a temporary effect,
influencing the transition probabilities R'>. When the campaign
stops at time 2 people will tend to return to their old brand
preferences at time 1. So the transition probabilities in the
following period R (x' = i) will be different for every preference i
at time 1. This is called a second-order Markov chain.

Other authors interpreted the violation of assumption 2 in a
different way. Blumen et al. (1966) studied labor force dynamics
and observed that after many periods the change predicted from a
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first-order Markov chain was larger than the actual change. This
was caused by the fact that different individuals satisfied different
Markov processes. They proposed to distinguish two distinct
latent categories: movers and stayers. The first group has no
transitions at all. The second group satisfies the assumptions of a
Markov chain.

The approach that is adopted in this article is to relax the
Markov assumption in a different way. In classical test theory the
observed (interval level) scores are decomposed in true scores and
error. In this tradition, Heise (1969) and Joreskog (1970) adapted
the Markov simplex, which describes test-retest correlations, by
introducing a quasi Markov simplex, which is an unreliably
measured, and therefore latent, Markov simplex. For discrete
data Wiggins introduced in his dissertation (1955) the latent
Markov chain, which is an unreliably measured Markov chain.
Henry (1973) treated both approaches in one article.

3. THELATENT MARKOV CHAIN

In order to formulate a latent Markov model some latent
variables have to be defined. Corresponding with every manifest
variable x' one latent variable y'is assumed. We will treat the case
where the latent variables y' are assumed to have the same
number, c, of latent classes as the manifest x'. The probability
distribution of a manifest variable x', p', depends on the prob-
ability distribution of the corresponding latent variable y', v', and
a matrix of transition probabilities from latent to manifest, the
conditional response probabilities Q",

p=vQ [5]

The sequence of latent response classes is made such that a
diagonal element from Q' denotes the probability of a correct
answer, which may be interpreted as the reliability by which a
latent class is measured.

On the latent level there is a three-way table of the consecutive
variables y’, y', and y". It is assumed that the latent variables y' are
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interrelated by a Markov chain, as described in the previous

section. The latent transition matrix is denoted by M™ (for the

manifest Markov chain by R™) and the latent initial distribu-

tion by the diagonal matrix V* (manifest P°). The probability of

being in latent class (a, B, ), Vi3, is described by the latent
= v, My, my.

Markov chain that was assumed: v,

When observed, this three-way table generates a six-way table
of three latent variables times three manifest variables. About
their relation the usual assumption of local independence is made.
A manifest variable at time t, x', is only dependent on the latent
counterpart y', or, stated otherwise, x' is independent from all
variables in the model except y'. Thus for a respondent in latent
class (e, B, v) the probability of answering i, j, and k is @3, qj; 4},
Hence the probability of beingin cell (e, 1, B8, j, v, k) is obtained by
multiplying this response probability with vi3. .

stu _ s s st t tu u
Piik = Za g%y Vo Yai Map i Mpy Dyk el

Summing over the latent dimensions «, 8, and 7 the expected cell
proportions p;; of the manifest three-way table are obtained.
A causal diagram of the latent Markov chain is given in Figure 2.

4. ESTIMATION

Lazarsfeld and Henry (1968) proved that the parameters of the
latent Markov chain in principle can be identified. They found an
expression for (Q")™ A;Q' in terms of observed bivariate and
trivariate tables. Here A is defined to be diagonal with one
column j from Q', that is, the elements Q> on the diagonal.

Aj = Pst(Psu)—l Psu(xt=j) (Pst)~1 - (Qt)—lAtht [7]

The product of observed matrices is called A;. Hence the charac-
teristic equation A{(Q")™ = (Q') ' A may be solved.
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Figure 2: Causal Diagram of a Latent Markov Chain in Discrete Time

However, several difficulties may be encountered when apply-
ing this method. First, the study of a small sample and a variable
with three or more categories may result in unprecise estimates of
the cell probabilities, p;. Because of this, or because the model
does not fit, some of the eigenvalues may be complex; the eigen-
value polynomials may not pass through the zero-axis as often as
they should. Then some of the elements in Q' are not defined by
this algorithm. Furthermore, even if Q' is completely identified,
negative probabilities may be found in the parameter matrices
V’, Q', or M* and M"™.

The above mentioned problems make it desirable to look for
another estimation method. This is done below. Nevertheless,
from equation 7 it may be seen that only the matrix Q', that is, the
middle Q-matrix of three measurements, is identified in the latent
Markov chain model, just as in Heise’s model (Henry, 1973;
Van de Pol, 1982). For latent Markov chains of four or more
points in time, the first and the last matrix with reliability coeffi-
cients, Q° and Q% are not identified. This forces us to make an
assumption like

Q*=Q"! and Q'=0Q"" [8]

The first reliability matrix is equal to the second and the last
reliability matrix is equal to the previous one. For three consecu-
tive measurements (8) reduces to Q° = Q' Q".
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Looking for a better algorithm one might attempt to maximize
the likelihood of the latent Markov chain. The log-likelihood for
athree-wave latent Markov chain may be obtained from equation
6 that gives the expected proportions pjj of the manifest three-
way table in a population where the model holds. The likelihood
of a multinomially distributed discrete random quantity is given
by the product of the proportions that are reproduced by the
model parameters, Py to the power fj, the observed frequencies
arandom sample (Edwards, 1976). Because the natural logarithm
of the likelihood function attains its maximum for the same
values fj as does the function itself, the log likelihood, In (L),
which has convenient additive properties, may be maximized

instead.

_ stu
In(L) = 2,25, i/ 2 2.2 Vg miaumyar,  [9]

Maximum-likelihood estimates for the model parameters may
be obtained by putting the first-order derivatives to every pa-
rameter to zero. The resulting system of equations may be solved
using the iterative Newton-Raphson method that furthermore
requires second-order derivatives. This approach is advocated by
Haberman (1979) for latent structure analysis. Hagenaars (1985),
however, reports that the Haberman algorithm needs very good
starting values; otherwise the iterations do not converge. So this
algorithm should not be used to find maximum-likelihood esti-
mates of the model parameters, but may nevertheless be useful in
estimating their variances, as will be shown later.

Optimization of the log likelihood via the E-M algorithm is
much simpler. Suppose that the full table of both latent and
manifest variables could be observed. Then the log likelihood for
the model would be

s s st
2 2%, 2 T 0 Oy I, 40mepagmg) d,) [10]

where the probability of a respondent being in cell (a, 8, v, 1, ], k)
is 0,4, and n is the sample size, 3. fiy.
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The E-M algorithm consists of two steps. In the E (expectation)
step the missing or latent observations are replaced by their
expectations given the parameters of the model and the data
observed. In the M (maximization of the likelihood) step new
estimates of the model parameters are computed. So one iteration
of the E-M algorithm consists of finding auxiliary maximum-
likelihood estimates for the model parameters according to 10 in
the M-step and subsequently finding a new estimate of the full
table 6,5, from the parameters and the observed data in the
E-step. It can be shown that the auxiliary maximum-likelihood
estimates of the model parameters are directly estimated by sum-
mation over nonrelevant dimensions of

afyijk*
S
Vo = Oy it /9++++++ [11a]
st tu
st tu af + Vﬁ'y 6016++++ t 0+ﬁ'y+++
Map ™My = "5t " g ) [110]
v, T \ Q-+ttt +B++++
s _ t _ u _ 6a++i++ +0+ﬁ++j+ t 8++'y++k 11
qai_qﬁj-qjk— 0 +0 +0 [ C]

att++++ +Bt+++ Fyttt

If no stationarity assumption (4) is to be made equation 11b
should be replaced by two equations, m; = vys/v;, and mg, =
Vi, [ V. As stated above these model parameters would be the
maximum-likelihood estimates if the full table 6 5. ;;, was known.
Because this is not the case, we should find the expected values of
0,5, given the new model parameters and the data. This is done
in the E-step. In the first part of the E-step the full table is
computed on the basis of the model parameters. This inter-
mediate result is called ¢

afyijk®
—_ .S s st t tu u
Eapyiik = ValaiMap 95 Mpy Dyk [12]

These probabilities £, ., are not identical with 6,5 ..; equation
12is not areversion of 11. The second part of the E-step is to bring
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tu

into £, the information on the observed frequencies fj . This is
done by proportional fitting. From 6 and 12 it may be seen that
the estimated proportions by the model are P = &,1vij- SO the new
expectations of the full table given the model parameters and the
observed data is given by

stu
e
afyijk stu aByijk
Pijk

6 [13]

thus completing one cycle of the E-M algorithm. Reasoning along
the same lines the algorithm may easily be extended to more
points in time.

[terations may start with equation 11, substituting some plau-
sible estimates for the model parameters. In order to ensure that
the latent classes are ordered in the same way as the manifest
classes the Q-matrices should have high starting values on the
diagonal. The M-matrices should have the same structure. Zeros
should be avoided as starting values. Once the full table contains a
zero in some cell this value will not change anymore during the
iterations that follow. For a variable with C categories we mainly
use as starting values for diagonal elements d and nondiagonal
elements nd:

d=/1/C nd = (1 —d)/(C-1) [14]

Iterations should continue until the improvement of the likeli-
hood per iteration does no longer exceed some convergence cri-
terion, €, or until no parameter changes more than some very low
value like 10”. Dempster et al. (1977) and Wu (1983) gave general
conditions for convergence of the E-M algorithm. In our experi-
ence with the E-M algorithm on the latent Markov chain there
was always convergence, although convergence was rather slow.
For a variable with 3 categories usually some 200 iterations
were required to obtain accuracy up to the second decimal
for all parameters; in some extreme cases even more iterations
were needed. For a variable with 2 categories considerably less
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iterations were required. Furthermore, the algorithm proved to
reproduce exactly a latent three-way table from a manifest three-
way table that was artificially constructed from known model
parameters.

It is unknown whether or not the likelihood of a latent Markov
chain can have local maxima. If so, the algorithm might run, or
better: walk, into one of these maxima when bad starting values
are used. But, using several sets of starting values, no local maxi-
mum has been recognized in the empirical data sets we used,
except the artificial one that is caused by zeros in the starting
values.

In order to evaluate the fit of the model one may look at the
likelihood ratio (LR). For three measurements the LR as com-
pared to the unrestricted model may be written as

LR =2 2,22, £ In(f /(n p;1)) [15]

This LR is x> distributed with C(C* - 2C + 1) degrees of freedom
for a stationary latent Markov chain (4) and C(C* - 3C + 2)
degrees of freedom for a nonstationary latent Markov chain.
Hence no goodness-of-fit statistic is available for three measure-
ments of a dichotomous question, when no stationarity is as-
sumed: 2(2* - 6 + 2) = 0. If one does assume stationarity in the
dichotomous case the LR is only a test on stationarity (with 2 df).
For variables with C = 3 the LR is also a test on the Markov
assumption (2) for the latent variable. A better rest on this
assumption can be obtained by analyzing more than three mea-
surements. Then also the assumption of stationarity of the reli-
ability matrices, Q, (formula 8) may be tested.

Once the maximum-likelihood estimates of the model param-
eters have been computed their variances may be found from the
information matrix, which we call B. This is the matrix of second-
order derivatives of the likelihood toward all parameters. Stack-
ing all independent parameters from v;, qj;, m}; (and in case of
nonstatlonarlty also from my} ) into one vector ¢, the covariance
matrix’ of these parameters 1s according to likelihood theory
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_ 83 In (L(Y)) \ "
_B1=<_ ;lw(afpw))) 6l

This result can be found among others in Andersen (1980). In the
present article the second-order derivatives have been computed
numerically. For those who are not familiar with this simple
method the formula will be given below. By definition the second-
order derivative of the In(L)-function (LN-function for short) to
some parameters ¥; and ;is given by the derivative of ILN (i) / dy;

to ¥

WINW) 9 (LNWJ tey)- LN““)

O&ii)d/‘ Y,

IN(W. te g te v ) - INW +e v) - INW. +e v )+ LNW)
i i i i j i 17

€

Here ¢ denotes all elements from ¢ except . The symbol iy
denotes all elements from ¢ other than both s and ;. Using
double precision € = 10™ turned out to be small enough. For the
computation of first-order derivatives € = 107 is to be preferred.
As a by-product of these computations also the first-order deriva-
tives are obtained, which should be near zero for maximum-
likelihood estimates.

When no stationary of the M-matrices is assumed (4) it is not
necessary to use the algorithm that was given here. In that case the
latent Markov structure may be specified as a latent log-linear
model. Because a nonstationary first-order Markov model will
reproduce exactly only the bivariate subtables of consecutive
measurements, V* and V", one should only assume bivariate
interactions between consecutive y-variables (y*, y') and (y', y°)
and so on, and not interactions between y-variables that lie
further apart in time like (y°, y*) and so on, or higher order
interactions (y', y', y*), and so on (Bishop et al., 1977). Compu-
tations may be carried out using LCAG (latent class analysis
according to Goodman), a program for latent class analysis,
suitable for models with several latent variables that are related
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by some latent log-linear model (Hagenaars, 1985). This program
also uses the E-M algorithm. Unfortunately no estimates of the
variances of model parameters are produced.

Application of this form of the E-M algorithm may become
problematic for variables with many response categories and for
data on more than three points in time. First, there should be
enough observations (respondents) to obtain reasonably precise
estimates of the frequencies in every cell. fi (or fiy" for four
points in time). Second, the full table, 6., for three measure-
ments, may be so big that a computer program performing the
algorithm cannot be loaded into the central memory.

5. AN APPLICATION TO A PANEL OF
CIVIL SERVANTS: TWO QUESTIONS
ON INCOME SATISFACTION

As an example the method will be applied to questions on
income satisfaction from a panel survey among civil servants.
On request of the Ministry of Internal Affairs, the Netherlands
Central Bureau of Statistics has carried out for several years this
panel survey that was aimed at the measurement of well-being.
The questions on income satisfaction are worded as follows.

e Are you satisfied with your rank?
{very satisfied, satisfied, rather satisfied,
neither satisfied nor dissatisfied, not satisfied}

e Are you satisfied with your economic position?
{very satisfied, satisfied, rather satisfied,
neither satisfied nor dissatisfied, not satisfied}

The response categories were made nonsymmetrical because, at
the beginning of the panel, in 1979, most civil servants were (very)
satisfied.

Three consecutive measurements were available on about 3,000
panel members. In order to avoid empty cells in the three-way
table the number of response categories has been brought down
to three: (1) (very) satisfied (2) rather satisfied (3) neither satisfied
nor dissatisfied/ not satisfied.
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TABLE 2
The Fit of the Latent Markov Chain for Three Panel Waves
(6 Degrees of Freedom): Two Income-Satisfaction Questions
from the Dutch Civil Servants Panel

likelihood probability number

ratio x level of cases
Satisfied with rank? 4.8 .56 2989
Satisfied with economic position? 5.0 .54 2981

In Table 2 the fit of the latent Markov model is given. For both
questions the fit is very satisfactory. It should be noted, however,
that this is only a partial test of the Markov assumption (2). Using
only three consecutive measurements this assumption will only
restrict the three way interaction (if the variable has three or more
categories). A test that also poses restrictions on bivariate inter-
actions can only be obtained using four or more consecutive
measurements. No stationarity assumption has been made be-
cause the three measurements were not spread evenly in time. The
first measurement was in March 1979, the second in November of
the same year, and the third in March 1981.

In Table 3 the probability distribution of the latent classes is
given for the first measurement, p'. For the latent Markov chain
model these classes may be given the same labels as the corre-
sponding manifest classes. Furthermore, Table 3 displays the
response probabilities Q. If all latent classes are measured with
perfect reliability this matrix should be the identity matrix with
1’s on the diagonal and zeros elsewhere.

Table 3 shows that the reliabilities of the extreme latent classes
are high, about 90% of the answers are on the diagonal. There is,
however, more response uncertainty for respondents pertaining
to the middle latent classes, “rather satisfied,” where only some
60% of the answers are on the diagonal. There are two explana-
tions for the lower reliability of the middle latent class, both
of which may be relevant for the present data. First, there is
a boundary effect for respondents in extreme latent classes:
response uncertainty can manifest itself only in the direction of a
less extreme answer.

Second, the extreme latent classes correspond to manifest cate-
gories that were taken together and the middle class does not.

Downloaded from smr.sagepub.com at UCLA on December 5, 2011


http://smr.sagepub.com/

134 SOCIOLOGICAL METHODS & RESEARCH

TABLE 3
The Latent Distribution at Time 1 (March, 1979), v!, and the
Response Probabilities, Q. Two Income Satisfaction Questions
from the Dutch Civil Servants Panel

Are you satisfied Are you satisfied with
with your rank ? your economic position ?

lat.dist. 1. 2. 3. lat.dist. 1. 2. 3.

1. (very) .32 .91 .08 .02 .50 .80 .09 .01
satisfied (.02) (.02)(.02)(.01) (.03) (.02)(.02)(.01)

2.rather .32 .24 .54 .22 .36 .29 .62 .09
satisfied (.03) (.03)(.03)(.04) (.03) (.03)(.03)(.03)

3.neither/ .35 .02 .10 .88 .15 .02 .19 .79
not satisf. (.03). (.01)(.02)(.03) (.02) (.02)(.04)(.05)

NOTE: n =~ 3000 (with standard deviations).

Some respondents belonging to, for instance, a latent class “very
satisfied” presumably will incorrectly have answered “satisfied.”
This is, however, not translated into a lower reliability of the
collated latent class “very satisfied” and “satisfied,” because the
corresponding manifest categories were taken together.

When the latent classes of a question are measured with
unequal reliabilities the latent marginal probability distribution
will presumably differ from the manifest one because of the
relation that exists between these two (see equation 5).

Table 4 shows that the middle category, “rather satisfied,” is
better filled on a latent level than on a manifest level. This is
because the middle latent class is less reliably measured than the
other latent classes. The respondents in this class spread more
evenly over the manifest response categories than the respondents
in other latent classes do.

Table 4 also shows that the income satisfaction of Dutch civil
servants has decreased between 1979 and 1981. This decrease is
probably due to the decrease of their real income during the 1980s
(Vande Stadtet al., 1985). That explains why the decrease is more
clearly visible in the question on the economic position than in the
question on the rank (which did not change dramatically).

Finally, also turnover tables may be corrected for measurement
error. From Table 5 latent and manifest transition matrices can
be compared. Only the transitions for the second period (from
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TABLE 4
The Latent and Manifest Distribution, v and p, at Time 1
(March, 1979) and at Time 3 (March, 1981): Two Income
Satisfaction Questions from the Dutch Civil Servants Panel

135

Are you satisfied Are you satisfied with

with your rank ? your economic position ?

latent manifest latent manifest

1979 1981 1979 1981 1979 1981 18979 1981

1. (very) .32 .31 .38 .36 .50 .38 .56 .45
satisfied (.02) (.01) (.03) (.01)

2.rather .32 .29 .23 .22 .36 .37 .29 .31
satisfied (.03) (.01) (.03) (.01)

3.neither/ .35 .40 .39 42 .15 .25 .15 .23
not satisf. (.03) (.01) (.02) (.01)

NOTE: n = 3000 (with standard deviations).

TABLE 5
The Latent and Manifest Transition Probabilities from
November 1979 to March 1981, M2 and R23, Together
with the Initial Distribution, vZ and pz: Two Income
Satisfaction Questions from the Dutch Civil Servants Panel

Are you satisfied with your rank ?

latent manifest
init.dist. 1. 2. 3. init.dist. 1. 2. 3.
1.(very) .32 .82 .17 .00 .38 .66 .21 .13
satisfied (.03)(.04)(.02) (.01) (.01)(.01)(.01)
2.rather .33 .08 .62 .29 .24 .27 .31 42
satisfied (.04)(.06)(.04) (.01) (.02)(.02)(.02)
3.neither/ .35 .04 .09 .87 .39 .12 .18 70
not satisf. (.02)(.05)(.04) (.01) (.01)(.01)(.01)
Are you satisfied with your economic position ?
latent manifest
init.dist. 1. 2. 3. init.dist. 1. 2. 3.
1.(very) .50 .77 .20 .03 .55 .64 .26 .09
satisfied (.03)(.03)(.02) (.01) (.01)(.01)(.01)
2.rather .35 .00 .76 .24 .29 .29 44 27
satisfied (.04)(.06)(.03) (.01) (.02)(.02)(.02)
3.neither/ .16 .05 .02 .93 .16 .11 .27 .62
not satisf. (.04)(.09)(.07) (.01) (.01)(.02)(.02)

NOTE: n ~ 3000 (with standard deviations).
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November 1979 to March 1981) are displayed because only this
period was long enough to have considerable changes taking
place on a latent level. Table 5 shows that the stability, the
diagonal elements, would be underestimated if the manifest tran-
sition probabilities were taken for the truth. When measurement
error is accounted for according to the latent Markov model the
stability appears to be a lot higher. Stated differently, the change
is much smaller on the latent level than on the manifest level. Part
of the change may be labeled as regression to the mean or regres-
sion to the modal category. This applies for the middle column
of the transition matrix, change from 3 to 2 and from 1 to 2.
According to the model, about one-third or one-half of the regres-
sion to the modal category is “true,” the rest being caused by
measurement error.

As to the precision of the parameter estimates one may observe
from Table 5 that some of the standard errors in the latent
transition matrix are quite high. This occurs especially when the
corresponding latent class is small. Here is another argument not
to analyse the full 5 X 5 X 5 table but only the smaller 3 X 3 X 3
table.

In the first section it was stated that the E-M algorithm will
behave nicely if the maximum-likelihood estimates of probabil-
ities are outside the 0-1 range. An example of this may be found
in the latent transition matrix of the question on the economic
position. This matrix contains a parameter, r2;, that is estimated
by the E-M algorithm to be zero. The first-order derivative (not
displayed in a table) is quite high, —18. Here a Newton-Raphson
algorithm would have produced a negative parameter estimate,
which is clearly undesirable for a transition probability.

Atlast a word of caution about the comparison of distinct rows
in a transition matrix may be useful. The decrease in satisfaction
cannot easily be seen from the transition matrix unless the initial
distribution is taken into account, thus obtaining an ordinary
turnover table. In the transition matrix every row has the same
weight; in an ordinary turnover table the transition probabilities
are weighted with the initial distribution. The turnover table may
be computed by applying formula 1.*
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6. DISCUSSION

The latent Markov chain is a measurement model. It is a model
that describes the turnover in some characteristic from the point
of view that the turnover is governed by a process without
memory and that this characteristic is measured with error. There
are parallels with certain models for interval data. Although the
quasi Markov simplex (Heise, 1969; Joreskog, 1970) may be used
for interval data, the latent Markov chain is to be used when the
measurement level is clearly lower, that is, ordinal or nominal.

This model may be especially suitable for analyzing the relia-
bility and turnover concerning opinions, attitudes, preferences,
and the like, when panel data are available. Reliabilities are
obtained for every latent class. More precisely: the probability of
a correct answer is obtained, given the latent class that corre-
sponds to some response category. Furthermore, the marginal
distribution at a specific point in time is corrected for measure-
ment error and “latent” turnover tables are computed, which are
corrected for attenuation due to measurement error. Thus relia-
bility and stability are separated.

The latent Markov chain was first formulated by Wiggins
(1955). Lazarsfeld and Henry (1968) used an algorithm based
on the computation of eigenvalues. The main drawback of this
algorithm is that negative estimates of probabilities might be
produced especially when analysing variables with more than two
categories. In this article an alternative algorithm, which does not
have this drawback, was treated and applied. This algorithm,
which is a version of the E-M algorithm, produces maximum-
likelihood estimates. The new algorithm appeared to be slow but
trustworthy when applied to a trichotomous question that is
measured three times.

For adichotomous question that is measured three times there
is no test on the goodness of fit of the Markov property, only for
the stationarity of the chain. However, when a trichotomous
question is analyzed, a test on the Markov property does exist,
although the power seems to be small. An extension of the anal-
ysis to four measurements would probably increase the power of
the goodness-of-fit test. The first order Markov property could
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be tested upon more thoroughly then, also for dichotomous
variables.

Computations on test data gave some insight into the standard
deviations of the model parameters that may be expected. For a
random sample of 3,000 cases the standard error of latent pro-
portions ranged from .01 to .09. Of course the probability of a
transition from a small latent class will be estimated with a high
standard deviation, .03 being a typical value for this sample size.
As a rule of thumb, the response categories of the variable to be
analyzed should contain at least 500 cases. So a sample of at least
1,000 cases should be recommended for a dichotomous variable
and a sample of some 2,000 cases for a trichotomous variable.
These are large sizes compared to the size of the data sets that
were analyzed by, for instance, Wiggins (1973).

To sum up, the new algorithm performed reasonably well’ and
the application of the model gave valuable insights in the weak
points of the variables that were analysed, especially in the
(un)reliabilities of the latent classes. Also latent marginal distri-
butions and transition tables were obtained that should be con-
sidered as better than the manifest marginals and turnover tables.

NOTES

1. Aswill be shown in section 5 (Tables 3 and 4), the latent probability distribution will
differ from the manifest probability distribution if there is a substantial difference between
the reliabilities by which the latent classes are measured. The number of people in
unreliably measured latent classes will be underestimated on the manifest level and the
number of people in more reliably measured latent classes will be overestimated on the
manifest level.

2. Heise’s formula for the reliability r. at time t can be written in terms of correlations
between consecutive measurementss, t, and u as Iy = Iry (rs.,)‘1 r«.. Coleman’s matrix P" for
the turnover at time t with a time lag approaching zero can be expressed in terms of
bivariate turnover tables P as P* = P (P™)™" P*. This analogy was also noted by Henry
(1973).

3. Of course there are dependencies in the model parameters like 35, v! = 1, that
prevent the direct computation of variances of all model parameters. Leaving out for
instance the last latent class vi from the computation of the information matrix, the
variance of v may be obtained from the covariances of the other v'-parameters as follows.
Because v = 1 - 35! v! we find
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C—1 t})2 C—1 t)[2
E(I—ZC=1 vc) ——[E (1 -2, vc)]

C— C—
= 3yt cov(v;,v:)).

var (VE)

a=1 " b=1

4. Analogousto formula I one may write for the latent parameters V' = V' M", where
V'is a diagonal matrix with v' on the diagonal.

5. A (ISO) PASCAL computer program was written that uses the E-M algorithm.
Stationarity (equation 4) may be assumed and tested upon by a likelihood ratio test.
Three, four, or five measurements can be analyzed of a variable with two or more cate-
gories. First-order derivatives and standard errors of the model parameters are computed
by numerical differentiation of the likelihood. The program, called LATMARK, runsona
CDC-Cyber and uses the NAG-library for the computation of standard errors (matrix
inversion) and for the evaluation of X’ values. A tape may be obtained at cost from the
Netherlands Central Bureau of Statistics, F. van de Pol, P.O. Box 959, 2270 AZ Voorburg,
the Netherlands. A user guide is in preparation.
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