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Abstract: We consider a simultaneous equation model with measurement error.
Using characteristic functions and spline approximation we derive a class of asympto-
tically unbiased estimators of the unknown model parameters. The estimators are
functions of the empirical characteristic functions of the observed random variables.
Asymptotically, they are normally distributed and the values of their variances reach
the Cramer-Rao lower bound. Finally some numerical examples will be discussed.
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1. Introduction

Simultaneous equation models with measurement error are well-known in econome-
trics (see for instance Geraci (1976), Hsiao (1976,1983), Aigner et al. (1984),
Merckens and Bekker (1993)). In this paper we will deal with the reduced form,
where the matrix of parameters of the endogenous variables is equal tq the identity

matrix:
Y=AX+u (1a)
y=Y+e (1b)
x=X+d (1o
, where

y and Y are respectively (gx1)-vectors of

observed and unobserved endogenous random variables;

x and X are respectively (kx1)-vectors of

observed and unobserved exogenous random variables;

A is a (gxk)-matrix of parameters;

u and e are (gxl)-vectors of unobserved disturbances with mean
zero, and

d is a (kx1)-vector of unobserved disturbances with mean zero.
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Instead of the latent variables Y and X, we observe y and X, respectively. Assump-
tions about the distributions of the random variables will not be made. We only
assume, that all the disturbances have mean zero and are independent of each other,
and independent of Y and X.

Hsiao (1976) has developed a full information maximum likelihood method to
estimate the unknown model parameters for this model from the covariance matrix of
the observed variables. In addition, he assumes that all the random variables are
normally distributed and that the covariance matrices of the disturbances are known.
Of course such assumptions are quite restrictive and may not be satisfied in most
applications. Omitting these additional assumptions, the Ordinary Least Squares
(OLS) estimators of our model parameters, which use first and second order mo-
ments, are usually biased (see Van Montfort et al. (1987)). The differences between
the expected values of the OLS-estimators and the real values of A are linear
functions of the variances and covariances of the disturbances.

In this paper we use characteristic functions to estimate A asymptotically consistent.
Van Montfort et al. (1989) used already characteristic functions for estimating a
linear regression model with measurement errors, which is a special case of our
model (1).

The characteristic function of a random variable is a transformation of the correspon-
ding density function. As a consequence, using complete characteristic functions no
information of the distributions of the variables is lost. Using the mean and the
variance of a variable we only deal with a limited amount of information about the
characteristic function in the point zero. The mean of a random variable is the first
order derivative of the corresponding characteristic function in the point zero,
multiplied by i. The second order moment of a random variable is minus the second
order derivative of the characteristic function in the point zero. Furthermore, every
distribution has a corresponding characteristic function, even if the higher order
moments do not exist. For instance, the Cauchy distribution and the Student distribu-
tion with two degrees of freedom have no second and higher order moments, while
the characteristic functions exist. Finally, a third advantage of using characteristic
functions is the fact that empirical characteristic functions have small variances, even
for small sample sizes.

We can express the logarithms of the characteristic functions of the observed
variables x and y in terms of the logarithms of the characteristic functions of X, d

and ute:
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I y(ViseesVieWiseesWy) = I Cy(Vy + 25, WA e, Vi T2 WA +
5 In cP(vy) + 28, In clil(w) (2

, Where cff) corresponds with component i of d,
(i)
c

ute

corresponds with component i of u+e and
ViseesVioWy,...,W, arbitrary points on the real line.

Equation (2) represents a simple additive relation between the observed and the
unobserved random variables. We can eliminate the logarithms of the characteristic

functions of the unobserved errors d and u+e in (2):

In ¢, ((Viseeos Vi Wiseess W) =

In ¢, (v},0,..,0) = v - In ¢, (0,...,0,w,)
=1n cy(v, + 25, WA ,ernne. Vi T 25 WA -
In cy(v,0,...,0) = oo - In cx(WA, 1eeneeeee WAL L) 3)

The means of the disturbances are assumed to be zero. Therefore the first order
derivatives of "ln ¢,(.,...,.) - In cx(,,...,.)" and "ln c,(.,...,.) - Iny(,,...,.)" in the point
zero have to be zero. The appendix shows that under this condition the identification
of the matrix A in (1) also implies the identification of A by the set of equations (3).
In this paper we approximate the logarithm of the characteristic functions of the
unobserved random variable in system (3) by a tensor-product B-spline, which is the
product of several univariate B-splines. Next, the resulting system will be used to
derive estimators of the matrix A.

Section two discusses the approximation of an arbitrary function by B-splines. In
section three we approximate the logarithm of the characteristic function of the
random vector X, in equation (3) by a tensor-product B-spline. In section four we
derive a Best Generalized Least Squares (BGLS) estimator of the matrix A with the
help of system (3) and the results of section three. In section five using the Method
of Sieves (Geman and Hwang (1982)) we deal with some asymptotic properties of
our BGLS estimator of section four. Our BGLS estimators of the elements of A are
asymptotically normally distributed and their variances reach the Cramer-Rao lower
bound asymptotically. Finally we discuss some numerical examples.
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2. Approximation by splines

Spline functions have lately found great use as approximating functions. Ordinary
polynomials are inadequate in many situations. Wold (1974) mentioned that in many
situations the behavior in one region may be totally uncorrelated to the behavior in
another region. Polynomials along with most other mathematical functions have the
property, that their behavior in a small region determines their behavior everywhere.
Splines do not suffer this handicap since they are defined piecewise. Furthermore De
Leeuw and Van Rijckevorsel (1981) notice that the use of splines takes away the
disadvantage of the crudeness or discontinuity of the step functions at the break-
points, while maintaining the advantage of not approximating strictly linear functions

only.

Lets define a given, fixed partition of (n-1) subsets of an interval I with n knots.
Spline-functions, defined on an interval I, are piecewise polynomial functions,
because they consist of (n-1) s™ -order polynomials, one defined on each subinterval
of I. In each of the interior knots the polynomials are connected, and (s-1) times
continous differentiable (see De Boor (1978), Powell (1981), Schumaker (1981) and
Chui (1988)). The location of the interior knots is relatively unimportant if the curve
to be fitted is reasonably smooth, although it is helpful to have more knots in regions
where the non linearity is most severe (Winsberg and Ramsay (1980)). This insensiti-
vity to knot choice implies that in practice the knots may be chosen a priori and held
fixed during the analysis. If the curve to be fitted is not smooth and we know the
function to be approximated well enough knot optimization is mainly useful as a free
parameter. Wold (1974) and Van Rijckevorsel (1987) give some indications for knot
placement optimization. However, Van Rijckevorsel concludes that even if we would
accept a greater dimensionality, an uniform knot placement with a generous number
of knots would do just as well. Furthermore he warns for the realistic danger of

overfitting.

The set of spline functions on an interval I forms a linear space of dimensionality
(n+s). This means that each spline can be uniquely expressed as a linear combination
of (n+s) "basis splines" of order s. Often B-splines (see Powell (1981), page 229) are
used as "basis splines". B-splines are a special kind of splines. They are non-zero on
(st+1) consecutive intervals, and zero outside that interval.

Defining a spline function in terms of polynomials is convenient once the polynomial
coefficients are known. In the computational process of least squares curve fitting,
however, it is simpler to define a spline function in terms of B-splines. In this paper
we approximate a multivariate function by a linear function of products of several
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univariate B-splines (= a tensor-product B-spline).

3. Approximating the logarithms of the characteristic functions of the unobser-
ved exogenous random variables by splines

Consider the simultaneous equation model with measurement error of section one. In
this section we approximate the logarithms of the characteristic functions of the
unobserved exogenous random variables X in equation (3) by splines. Section four
will derive estimators of matrix A with the help of the results of this section.

We notice that the logarithm of the characteristic function of X is a multiple valued
function. The single valued interpretation of it is only true for the real part, which
corresponds with the logarithm of the distance between the complex value of the
characteristic function and the origin in the complex space (see Epps (1993)):

Re [In cy(Vy,-..,v)] = In {(Re cy(Vyy...,v)) + (Im cy(Vy,e. v )Y}

For the imaginary part, which is equal to the argument of the characteristic function
in the complex space, we have equality modulo 2n. Thus we have

Im [In cy(vy,eee.... V] = Im [In cy(vy,....... ,v] + 2nm, with m an arbitrary integer.
This is a bit inconvenient to work with numerically. We can ignore this numerical
problem if the arguments of the characteristic functions have to lie in the interval
[-w,m]. Of course, in the case X is symmetrically distributed with mean zero, the
imaginary part of In cy(.,...,.) is equal to zero.

Now, subdivide the interval [-m,n] in an arbitrary fixed number of disjunct subinter-
vals and define two approximation tensor-product B-splines of order three on the
space [-m,mt]x...x[-m,n] (see, for instance, Powell (1981), page 229). Approximating
the real and the imaginary parts of In cy(.,...,.) separately by these two multivariate
splines (call them B and C) we can reformulate equation (3):

In ¢y y(Viseess Vi Wisenes W) =

In ¢, )(v1,0,...,0) = oo - In ¢, (0,...,0,w,)
~ B(Vl + Z%:l WiAi,la ......... ,Vk + z%:l WiAi,k) -

B(v1,0,::1,0) - wevvvrrrre - BW A ppeveeveres WAy )

i * C(Vl + z%zl WiAi,l’ ......... ’Vk + Z%=1 WiAi,k) -
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i * C(v,0,00,0) = ooveoneee. 1 F WA s WA g ) (4)

The left hand side and the right hand side of (4) are functions of

(V-5 VioWys...,W,). For every different value of the combination of (ViseesVieWp5e s W)
relation (4) contains a different equation. So, relation (4) is a system of an infinite
number of equations. From Winsberg and Ramsey (1980) it follows that for fixed
values of the model parameters the unknown spline coefficients of the tensor-product
B-spline representations are determinated uniquely by (4).

In the following of this paper we ignore the imaginary part of (4) for reasons of
simplicity. However, if we keep this part the principles of our derivations remain the
same.

4. Derivation of a BGLS estimator of the matrix A

With the help of the characteristic function relation (4) and the Best Generalized
Least Squares (BGLS) method we derive estimators of the coefficients of the matrix
A. Therefore we define the following Best General Least Squares function BGLS:

BGLS=Z2"V'Z, 4)

, with Z a column vector;
» Z; = Ly(grid;) - Ry(grid)
, where Ly(.) is the empirical function of the left hand side of
equation (4)
and Ry is the right hand side of equation (4)
and grid; is an arbitrary point (v,,...,v,,Wy,...,W,) in the
(k+g)-dimensional space [-m,nt]x......x[-T,7]
, and V the asymptotic dispersion matrix of the vector Z.

BGLS is a function of the unknown spline coefficients and the unknown model
parameters A; (i=1,...,g;j=1,....k). We will find BGLS estimates of the model
parameters by minimizing the function BGLS. However, the number of components
of Z has to be equal or greater than the number of independent spline parameters
(="(s+nknots)*-1", where s is the degree of the piecewise polynomials and nknots is
the number of knots on the approximation interval (see Chui, 1988)). Otherwise the
spline coefficients are not determinated uniquely by the minimizing procedure.

Suppose the logarithms of the characteristic functions of the unobserved exogenous
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random variables can be exactly approximated by our splines. Assume furthermore
that the unknown model parameters are identified by the system of equations
Z'=(0,...,0) and that the asymptotic dispersion matrix of Z is invertable. In that case
Feuerverger and Mc Dunnough (1981a,1981b) prove the estimates from (5) converge
almost surely to their real values. In addition, the estimators are asymptotically
normally distributed with asymptotic variance 6Z V™' 8Z (0Z is the derivative from Z
with respect to the unknown parameters). Feuerverger and McDunnough (1981a,
1981b) also show that by using a sufficiently fine and extensive grid
(v, v w,. o w), i=1,....dimension Z} the asymptotic variances of the estima-
tors can be made arbitrarily close to the Cramer-Rao bound. So, our procedure can

attain optimal asymptotic efficiency.

An alternative of minimizing BGLS is minimizing some linearized form bgls of
BGLS:

bgls=UTV'U
, with U a column vector with the same dimension as Z
and U, = Z(0") - D(8")*(® - 8"

0" is an asymptotically consistent estimator of the vector 6 which contains all the
model parameters and all the unknown spline coefficients. D(0") is the matrix
containing the first order derivatives of the vector Z to all the model parameters and
all the unknown spline coefficients in the point 0",

This alternative has been proposed by Ferguson (1958), who showed that the
estimates have the same asymptotic properties as estimates found from minimizing
BGLS. De Leeuw (1983) and Bentler (1983) call this method a two stage ADF
method (the 2SDAF method): first find an asymptotically consistent estimator of 0,
say 0, next compute A(6") and find 8™ by minimizing bgls.

In this paper 8 will be the estimator which can be obtained by minimizing (5) with
V equal to the identity matrix. So, in step one of the above procedure we have to
minimize the function A = Z'Z. However, we will minimize A by minimizing it over
the unknown spline coefficients and the model parameters alternatingly. At one time
we fix the set of the spline coefficients and minimize over the model parameters, the
other time we fix the model parameters and minimize over the spline coefficients.
We continue to do so until no further improvement can be made. This principle has
worked very well in many related data analysis contexts (see for instance, Young
(1981) and Wold (1982)).
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Minimizing over the unknown spline coefficients for fixed model parameters is a
quadratic optimization problem with some linear constraints, because the means of
the disturbances (= the first order derivatives of "In C(-5eerse) = In cy(ss...,.)" and

"In ¢,(.,...,.) - Iny(.,...,.)" in the point zero) have to be zero. Furthermore the equation
Re [In c4(0,......,0)] = 0 has to be involved. On the other hand minimizing over the
model parameters is a nonlinear optimization problem without additional restrictions.
For instance, the Newton-Raphson method can be used (see Zangwill (1969)).

S. Some asymptotic properties of the BGLS estimator

Until now we partitioned the interval [-m,7] into a fixed number of subintervals. In
this section the number of knots for our approximation splines is not fixed but
depends on the sample-length sl. We will define a relation between the sample-length
sl and the maximum number of knots nk, on the interval [-m,m]. Using this relation
we will prove some asymptotic properties of our BGLS estimators.

Now, let the multivariate function In cy(.,...,.) be 4 times continuous differentiable on
the space [-m,m]x...x[-m,n]. Suppose also that the tensor product spline B(.,...,.) has
the knots -n=kn,<...<kny=n in the interval [-r,x] and satisfies the property
In cx(knj,,...,knjk)=B(knj,,...,knjk) for every jl,...,jk=1,...,N.
Then for every Vjis---sVj in the interval [-m,n] (see Schumaker ( 1981)):
0 e O(Vjp,...,v3)-BO(v,y,...,v, )l < O(d49) (6)
with d the maximal distance between two successive knots
and In ¢,9(.,...,.) the q™-order derivative of the function In Cxorerns).

System (4) contains the logarithm of the characteristic function of x and y, and the
tensor-product B-spline approximation of the logarithm of the characteristic function
of X. It is not necessary to make the approximation errors of the abovementioned
approximations smaller than the variances of the logarithms of the empirical characte-
ristic functions of x and y in different points (ViseesVisWy,...,W,). Using this condition
and expression (6), we can define the number of knots nky for a given sample-length
sl in the following way:

nk;, is the largest integer-valued number for which the following constrains

are satisfied:

d* >

MaX,; wi,. .we LVar In gx’y(v,,...,vk,w,,...,wg) ! VireessVigWiseo, W, in [-1,m] ) (7)

The left hand side of (7) represents the upperbound for the approximation of the
logarithm of the characteristic funtion of X. The right hand side of the above
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constraint represents the maximum of the variances of the logarithms of the characte-
ristic function of x and y in several points in the (k+g)-dimensional space
[-7t,7]X.....x[-T,n]. Dealing with an uniform knot placement the left hand side and
the right hand side of (7) are of order O((nk,)*) and O((sl)"). Because we assume
O((nk,)™) > O((sD)™) , nk,, is of order O((sh"™).

From (7) we can easily see that nk is an increasing function of sl. If sl --> o then
nk, --> oo. So for sl --> oo the logarithms of the characteristic functions of the
unobserved exogenous random variables will be approximated exactly. Now from
Feuerverger and McDunnough (1981a,1981b) follows that our BGLS estimators of
the model parameters are asymptotically normally distributed and their values for the
variances reach the Cramer-Rao lower bound.

In this section we used the principle of the nonparametric estimation Method of
Sieves (Geman and Hwang (1982)):
Suppose we have to estimate a parameter which takes values in an infinite
dimensional space. Then we can estimate this parameter if we first estimate
in a constrained subspace of the parameter space and next relax the constraint
as the sample size grows.

Finally we remark that the dimension of Z in expression (5), which is equal to the
number of different values for the combinations (V,,...,V,,Wy,...,W,), depends on the
number of spline knots. The dimension of Z has to be larger than the number of
knots nk on the intervals [-m,n]. If sl --> o and nk --> oo then dimension Z --> oo.

6. An example with generated data

Using an example with simulated data we can illustrate the influence of the number
of different values for the combinations (v,,...,w,) in (5), which is equal to the
number of components of the random vector Z. We deal with model (1) and only one
endogenous (g=1) and two exogenous random variables (k=2). In that case we have a
linear regression model with measurement errors.

Scores on the unobserved disturbances u, ¢ and d=(d,,d,)" are drawn at random from
normal distributions with the variances equal to the arbitrary values (0.4;0.2;0.2;0.2),
(0.2;0.4;0.2;0.2), (0.2;0.2;0.4;0.2) or (0.2;0.2;0.2;0.4) respectively. Scores on each
component of the unobserved exogenous random variable X are generated at random
by a chi-square distribution with one, two or three degrees of freedom, and by a
Student distribution with two degrees of freedom. The matrix of model parameters A
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is set on the values (1,1), (3,1) and (1,3) successively. The values of the observed
random variables x and y are calculated next on the basis of the above scores and the

chosen parameter values.

From Kapteyn and Wansbeek (1983) and Bekker (1986) it follows that this model is
identified. Using the generated x- and y-scores and the method of this paper, the
model parameters are estimated with sample size 50. We chose splines of order three
and an uniform knots placement with an arbitrary number of three knots on the
interval [-n,x]. The number of different values for the combination (v;,vp,Wy) in (5)
had to be equal or greater than the number of independent splines parameters
(=(3+3)?-4=32) and varied from 35 to 60 (35,40,45,50,55,60).

Every specific distribution setting, parameter setting and number of different
components of the random vector Z in (5) was replicated 300 times (16 x 3x6x
300 estimation runs). It followed that the number of different values for the combina-
tion (v,,v,,W,) in (5) didn’t influence the variances and the means of the estimates of
the unknown model parameters significantly. However, if this number was "too large"
(in this case lager than about 50) there was a realistic danger that the asymptotic
dispersion matrix V was not invertable.

The estimation results were reasonable well for each distribution setting, parameter
setting and number of different components of Z. The variances of the estimates were
maximal about 25 percent of the real model parameter values, while the means of the
estimates differed maximal about 10 percent of the real parameter values.

We also used Ordinary Least Squares (OLS) estimates. The simulation runs, where
the components of X had Student distributions with two degrees of freedom, gave
absurd estimates of the model parameters. For the other runs it followed, that their
variances had the same size as those of our characteristic function estimates. Addi-
tionally, increasing variances of the measurement disturbances caused increasing bias
of the means of the OLS estimates. Some parameter and distribution settings had an
estimation bias of nearly 30 percent of the real parameter values.

7. An empirical example

We have applied the estimation method of this paper to an empirical example. In this
example we deal with two endogenous and two exogenous random variables. Further-
more, we choose the approximation interval [-m,n], three spline knots on this interval
and forty different values for the combination (v,,v,,w;,w,). If the arguments of the
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logarithms of the characteristic functions of the endogenous random variables are
going beyond the above approximation interval, our method has some complications.
In that situation we drop out the values for the combinations (v,,v,,w;,w,) of which
the corresponding arguments are outside the approximation interval. However, using
this correction method we are changing the optimizing function.

The data analyzed here are collected by the Netherlands Central Bureau of Statistics
(CBS), measuring the average income of one-person families (input variable 1), the
average income of multi-persons families (input variable 2), the average basis house-
rent per month (output variable 1) and the average sale-worth of houses (output
variable 2) for forty separate regions in The Netherlands (1993). All the variables are
normalized (means equal to zero and standard deviations equal to one). The regres-

sion coefficients, estimated by the method of this paper, are presented in Table 1.
The standard deviations of these regression coefficient estimators are computed with
the bootstrap method and are drawn between brackets. The corresponding OLS
estimates, which were used as starting values for our regression coefficient estimates,

are also mentioned.

If the model is correct, the minimizing function BGLS (see (5)) is asymptotically chi-
square distributed with degrees of freedom equal to the number of different values
for the combination (v,,v,,W;,W,) (=40), minus the sum of the number of the
unknown regression coefficients (=4) and the number of the independent spline
coefficients corresponding with the characteristic functions of the two unobserved
exogenous random variables (=(3+3)%-5=31). So, the BGLS-function is approximately
chi-square distributed with 40-4-31=5 degrees of freedom. In this example the chi-
square minimizing function gets the value 0.7. The probability level is 0.98 and we
cannot reject the model on the basis of the data. In the first iteration step, where the
starting values of the unknown regression coefficients are set equal to the OLS-
estimates and the chi-square minimizing function BGLS is optimized by the unknown
spline coefficients, the value for this optimizing function is about 7.5 (probability
level 0.30).

The regression coefficients A, and A,, for the first output variable are all in the
neighbourhood of zero. Therefore we may conclude that per region the average
annually basis house-rent does not depent on the average income of families. The
second output variable has positive regression coefficients (A,, and A,,). This can be
interpreted that per region the average sale-worth of houses has a positive correlation
with the average income of one-person and multi-persons families. For multi-person
families is this correlation most positive.
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Appendix

Theorem:
Assume that the expectations of the disturbances are zero. Then the identification of
the matrix A in (1) also implies the identification of A by the set of equations (3).

Proof:
Suppose that A is identified by (1). Then A also satisfies relation (2) and (3).

Let the matrix B also satify relation (3) and let B differ from A.
In that case follows for every v,,...,Vj;Wy,..., W, on the real line:

In ¢y (v, + 2%, wiAi,l,..; ...... Vi T 25 WA -
In ¢y(v4,0,...,0) - e - In (WA feneennne WA, )
= In cp(v, + 25 WB s Vit 25 wiBgy) -
In ¢y (v},0,...,0) = erenienen. - In ey (W,B, p5eeneee. W,B, 1) 3"

,where ¢y.(.,...,.) is a characteristic function.

¢y (seonr.) is not necessarily equal to cy(.,...,.). Furthermore the first order derivatives
of "In ¢,(.,...,.) - In cx(ssues)” and "In ¢ (.,...,.) - Ing(.,...,.)" in the point zero have to
be zero. This condition follows from the assumption, that the expectations of the

disturbances are zero.

Substituting the above relation (3”) in (2) gives for the arbitrary points
ViseresVioWp5...,W, ON the real line the following expression:

In €, ((ViseesVioWiseees W) =

ln cX’(Vl + z%=1 WiBi,]’ ......... ,Vk + 2%:] WiBi,k) -
In ¢y (v,0,...,0) - e - In e (W,B, jseeiennnne W,B, ) +
In ¢y(vy,0,...,0) + e +In (WA, 15eeenenee WAL T+

Ii(=1 In Cc(ii)(vi) +2%, In cl(,ig,(wi)
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Table 1, Estimates of the regression coefficients.
(corresponding standard deviations between brackets)

AP0 10.03334
(0.02618)

A, P 0.18111
(0.00002)

df=5
X*=0.7

A% -0.02825
(0.02894)

A, %% 0.25560
(0.00002)

df =5
X*=175

AP -0.06361
(0.00666)

A,,%S 0.78229
(0.01102)

AL -0.04995
(0.00884)

A0 0.82389
(0.01024)
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= In cp(v; + 28, WBi e Vit 28 wiB) +
%, In CP(v) + X%, In CHAW) (2°)

, where C{)(.) and C{})(.) are characteristic functions

ute
(i)

not necessarily equal to c{)(.) and c{})(.).

Let C{%(.) and C{i)(.) correspond with the random disturbances d’ and (u’+¢’).

Obviously, the first order derivatives of C{’(.) and C{})(.) in the point zero are equal
to zero. This means that each distribution of (y,x), which is generated by the matrix
A and the distribution of (Y,X,u+e,d), can also be generated by B and the distribution

of (Y, X’,u+¢’,d"). So, the existence of B implies that A is not identified in (1).
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