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In this paper consistent and, in a well-defined sense, optimal moment- 
estimators of the regression coefficient in a simple regression model with errors 
in variables are derived. The asymptotic variance and other asymptotic proper- 
ties of these estimators are given. As is known for a long time, serious estima- 
tion problems exist in this model. There are two ways out of this problem: using 
either additional assumptions or additional information in the data. A lot of 
attention has been paid to the use of additional assumptions. However, quite 
often this leads to rather unrealistic models. In this paper we use additional 
information in the data. That means here that, besides first and second order 
moments, third order moments are formulated as functions of the model 
parameters. Besides theoretical derivations a small study with generated data is 
discussed. This study shows that for samples larger than 50 the estimates we 
consider behave nicely. 

Key Words & Phrases: estimation by higher order moments, BAN estimates. 

1. INTRODUCTION 

In this paper we discuss regression with errors in variables. This somewhat 
peculiar terminology refers to the following problem. We deal with a number 
of random variables, which we call observed. The basic notion in the models 
discuJsed in this paper is that there exists, upproximu@y, exactly one linear 
relation between these observed variables. The notion of an approximate linear 
relationship is modelled by assuming that the observed random variables are 
error-perturbed versions of unobserved or latent Variables, between which there 
exists one exact linear relationship. Thus relations between unobservable vari- 
ables lead to inexact relationships between observables. 

We shall treat in this paper the bivariate case only, although generalizations 
to the multivariate case are obvious from our treatment. Related work is 
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reported in BEKKER, WANSBEEK, and KAPTEYN (1985), and BEKKER and DE 
LEEUW (1986). 

First of all we shall, briefly, discuss the model and show the kind of prob- 
lems that arise in this model. This model was discussed in the literature for the 
first time by GINI (1921), but it did become well known from the work of 
FRISCH (1934). Thus we refer to it as the Frisch-model. This part of the paper 
doesn't give anything new, but merely serves as an introduction to error in 
variable models. See for an overview of the theoretical properties of the Frisch 
model MADANSKY (1959), MORAN (1971), AIGNER et al. (1984), T.W. ANDER- 
SON (1984) and DEISTLER (1986). For the multivariable case, not discussed in 
this paper, we refer to SCHNEEWEISS (1976), KALMAN (1982) and KLEPPER and 
LEA~MER ( 1984). 

2. THE FRISCH MODEL 

Consider the following simple regression model. We have two observed ran- 
dom variables x and y, which have a representation in terms of unobserved 
random variables of the form 

x =  [ + a  ( 1 4  

y = a + p S + c  ( lb)  
Thus error is additive. The unobserved random variables 6 and E all have 
expectation zero, and they are independent of each other and of the random 
variable 5. We write px,c'y and hl for the expectations of x,y and 5, respec- 
tively. Further, we write p3, for the expectation E((x-px)S(y-c'y)') if 
s+t>2,Xs for E(([-Xly) if s>2,w, for E(#), and 6, for E(8). We assume 
that all moments that occur in our formulas exist. For the moments around the 
origin of order one we find 

P x  = XI 
c'y = a + 

Clearly these equations do not suffice to identify the three unknowns. Thus we 
must also look at higher order moments. The moments around the mean of 
order two are 

P20 = A2 + w 2  (24  

Po2 = P 2 X 2  + 8 2  ( 2 4  

Pll = P A 2  (2e) 
Now (2) defines 5 equations with 6 unknowns. Again there is no identification, 
but because variances are nonnegative, we must have 
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and it also follows from (2) that admissible pairs (q&) are in the intersection 
of the rectangle defined by (3) and the hyperbola 

(p20-Q2)(h2-e2) = (Pll)*. (4) 
This is illustrated in figure 1, with p20 =.4,h2 =.6, and p11= q . 0 2 .  

010 = 2 

FIGURE 1. Frisch hyperbola (.4-~)(.6-8)=.02 

Without additional information the only result we have about 0 so far is sim- 
ply that 

l ~ l I ~ c ( 2 O I ~ I P J ~ 1 ~ 2 ~ C L I I I ,  (54 

sgnP = Sgnclll (5b) 
(pI1 /p20 is the classical regression coefficient for the regression of y on x and 
h 2 / p I I  is the reciprocal of the regression coefficient for the regression of x on 
y in the usual regression model without errors in variables.) 

We can easily estimate the bounds on the left and the right by using sample 
variances and covariances, but more precision than the inequality ( 5 )  is not 
possible. In this paper we shall investigate if increased precision is possible by 
using either additional assumptions or additional information in the data. 
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3. ADDITIONAL ASSUMPTIONS AND PREJUDICES 

There is no reason to choose any particular point in the hyperbola. K ~ L M A N  
(1982, 1983) discusses this in terms of prejudice. In our context a prejudice is 
an additional assumption which makes it possible to select a point on the 
hyperbola, but which is not forced on us by the nature of the problem. We 
simply assume something in order to get rid of the uncertainty. This does not 
imply that each additional assumption we make is an example of prejudice. 
Some assumptions could be based on prior knowledge, or on physical con- 
siderations of symmetry. 

The best known of these additional assumptions is o2 =0, i.e. x is measured 
without error. This may be a good approximation in the context of designed 
experiments. It follows from (2) that A2 =p20, /3=p11 /p l0 ,  d2 =b2 -(pll)2/p20: 
A1 =p, and a=p, -(pll /p2O)px. Kalman calls this the Least squares prejudice. 
Similarly we can also assume that d2=0.  Then 
A2 = ( ~ ~ ~ ) ~ / p , , ~ ,  fl=p,,2/pII,AI =p, and a=Ccy -&2/pll)p,. This is another 
least squares prejudice, far less common than the first one. 

Another common additional assumption is that the ratio d 2 / 0 2  is known. 
The intersection of the line and the hyperbola in figure 1 then gives the desired 
answer. We can also assume that the two error variances are equal. This 
defines orthogonal regression, first described by ADCOCK (1 878) and KUMMEL 
(1879), but most well-known from the work of PEARSON (1901). 

The important thing is, of course, that these methods are just prejudices if 
they are only intended to force identification. If they incorporate true prior 
knowledge, the situation is different. 

4. ADDITIONAL INFORMATION IN THE DATA 

Besides an additional assumption which often is some kind of prejudice, as dis- 
cussed above, one can use additional information in the data. Two well-known 
methods in the case of normally distributed variables are the method of instru- 
mental variables and the grouping method 

Using the method of instrumental variables we need an instrumental variable 
(IV). An IV is a random variable z, which is coqelated with x and is not 
correlated with v=r-/38(y~fix+v). The estimator ~ l ~ = ( S z , ) - l S z y ,  where S,, 
and Szy are sample covariances, is called the IV-estimator of fi  and is con- 
sistent under weak assumptions. 

If z is uncorrelated with x the sampling. variance of the IV-estimator is 
infinity large. Even a small correlation between z and x causes a very large 
sampling variance. So, the variable z has to be fairly strongly correlated with 

In practice, there is no means for checking whether Iv’s are really uncorre- 
lated with v. An instrumental variable, based on x’s, is likely to be correlated 
with s’s and v’s also. The corresponding IV-estimator may not be safe even for 
consistent estimation of parameters. Obtaining “good” Iv’s is very difficult. 
SARGAN (1958), PAL (1981) and BEKKER et al. (1985) pay more attention to 

X. 
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instrumental variables. 
The method of grouping divides the data into two groups - those with above 

and those with below median observations on x - and then fits a line through 
the group means. Sometimes the method of grouping divides the data into 
three groups, throwing out the middle one, and fits a line between the means 
in the upper and the lower groups. If the grouping of the observations on the 
basis of x could be guaranteed to be the same as the grouping of the observa- 
tions on the basis of Q this estimator is consistent for p. This condition does 
not hold under most plausible distributional assumptions, for instance under 
normality of 5 and 6. 

PAKES (1982) concludes that under non-normality we can generaly do better 
than grouping. Further he notes that under normality the inconsistencies of the 
grouping estimator and the OLS-estimator are the same. 

R E I E R S ~ L  (1950) derives conditions for the identifiability of p. He shows 
that p is identifiable if there exists a nonzero (finite or infinite) cummulant K,, 
of the joint distribution function of x and y, with r >  l , s>  1, and either r or s 
but not both equal to 1. So, we have the result that p is identifiable if 6 is not 
normally distributed. When 5 is normally distributed, a necessary and sufficient 
condition for the identifiability of p is that neither the distribution of c nor the 
distribution of 6 is divisible by a normal distribution. 
(If three variables a,b and d are such that for every tcR c , ( t )=cb(t)*cd(i) ,  
where ca(.),cb(*) and c d ( * )  are the characteristic functions of a,b and d, we say 
that the distribution of a is divisible by the distribution of b and divisible by 
the distribution of d) 

BEKKER ( 1986a) formulates necessary and sufficient identification conditions 
for the multiple regression model with errors in the variables. Assuming nor- 
mality of the errors he shows that the p X 1 vector /3 of regression coefficients is 
identified if and only if there does exist a non-singular p X p  matrix 
A =(a I ;A 2 )  such that t r u  I is distributed normally and independently of ( ’ A 2  
(5 is here a p-dimensional random vector). So non-normality of 5 keeps 
identification and so consistent estimators of p based on second and higher- 
order moments, for example, can be constructed. The same argument was used 
by MOOIJAART (1985) for finding a unique solution in factor analysis. 

In the next part of this paper we assume 5 to be not normally distributed 
and we deal with the problem of estimating the regression coefficient p. This 
idea is closely related to the work of .GEARY (1942) and PAL (1980). Their 
approach yields consistent and reasonably efficient estimators of regression 
coefficients based on uni- and bi-variate moments of third or higher order. 

Using thjrd orde; sample moments we derive in the next section a consistent 
estimator fl of p. fl  has asymptotically minimal variance in the class of con- 
sistent P-estimators which are functions of the sample moments of x and y up 
to order three. 

After that we assume the errors 6 and c to be symmetrically disjributed. In 
that special case we also derive an “optimal” third-order-estimator pop‘ of p. 
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5 .  THE USE OF THIRD ORDER MOMENTS 

We shall now take thrd  order moments into account. Thus we have the five 
equations (2a) - (2e) and in addition 

(If 5 is symmetrically distributed then A3 =O. In that case instead of system (6) 
we use equations of fourth order moments.) 
Now (2) and (6) are nine equations in nine unknowns, and they can be solved 
uniquely for the parameters. The solution is 

Recall that up to now we have assumed nothing about the distribution of the 
variables, except that it is assumed that the means of the error variables are 
zero, while 6 is not normally distributed and [,E and 6 are independent of each 
other. These assumptions are enough to estimate the parameter P, the parame- 
ter of our main interest, and the other parameters. These estimates are given 
simply by substituting the sample moments ms, for the pJ, in (7). Note that it 
is no longer guaranteed that the estimates of*A2,* and f12 are non-negative. 

It follows from these considerations that j3=rnl2 /rn21 is optimal in the sense 
of minimum variance, in the class of all consistent estimators which are func- 
tions of the moments up to order three. A proof can be found in Appendix 2. 

6. THE CASE OF SYMMETRIC ERRORS 

We now assume, with PAL (1980), that the error variables are symmetrically 
distributed. This ‘prejudice’ makes the junction of system (2) and ‘(6) 
overidentified, which means that we can look more closely into the problem of 
optimal estimates. Use of additional assumptions also makes it possible to 



Sfatistica Neerlandica 4 7 (7987), nr.4 229 

improve our previous 'best' estimate of p. 
If o3 =03 =@ then (6a) - (6d) is equivalent to 

fi  = cb3/pl2 = pI2/p21 = p21 /p30* 

Expression (8) gives us three estimators of /3 

b = m3/m12 

P.2 = m12/m21 (9b) 

P 3  = m2l/m30, (9c) 
where m,, is a consistent estimator of prs(0<r+s<3).  Observe that (9b) is the 
same as the estimator from (7a) and is consequently our earlier optimal estima- 
tor. Further (9a), (9b) and (9c) are three estimators of PAL (1980). 

It is shown in Appendix 2 that an optimal estimator in the class of con- 
sistent estimators which are functions of the moments up to order three, is 

p = (u 'V- ' t ) / (u 'V- 'u ) ,  (10) 
* A 1  

where t'=(PI,&,P3),u' = (1, 1, 1) and V the asymptotic covariance matrix of 
t. Becaye V is unknown, in expression (10) we replace V by a consistent esti- 
mator V of V. The resulting estimator is no longer a fynction of moments up 
to order three only, but is asymptotically equivalent to Pop' given by (10). 

REMARK 1. If 5 is also symmetrically distributed then p30 =p21 =pI2 =k3 =O.  
In that special case consistent third-order-estimators of /I do not exist. Then 
we could instead of deriving an optimal third-order-estimator of p, deduce an 
optimal fourth-order-estimator of 8. This estimator has asymptotically minimal 
variance in the class of consistent P-estimators which are functions of the 
moments up to order four. In this paper we do not pay attention to this sym- 
metrical case. 

REMARK 2. In this paper we assume the errors c and 6 to be independent of 
each other. However, we can relax this assumption. See Appendix 1. 

7. THE ASYMPTOTIC VARIANCE OF P'' 
The asymptotic variance of pp' has the form ( ~ ' V - l u ) ; l . ~ I f  we have expres- 
sions for the asymptotic covariances and varianceqof PI,& and f13 then we 
are able to compute the asymptotic variance of Pop'. These variances and 
covariances can be derived by using the delta-method. See also e.g. KENDALL 
and STUART, vol I, chapter 10 (1963) for a derivation of variances and covari- 
p c e s  of ratio's of random variables. Bi$ow we give the asymptotic variance of 
P I  and the asymptotic covariance of 81 and &. The other asymptotic vari- 
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ances and covariances are analogous. 

var (bl) = ( 1/p?2 >(var (mo3 ) - 2 b v ( % 3  7ml2) -k P2var(m12 >) 

cov ( 1 3 1  ,b2) = - (1IP;l bv (W3 7 m2l) + I )cov (ml2 I m2l) 

- (P/P2l PI2 )var (m12) + ( 1 /A421 PI2 >cov ( m o 3  ,m 12 ). 

We can estimate the variances and covariances of m30,m21,m12 and mo3 in 
the sample consistently with formulas given in Kendall and Stuart, Vol. 1. So 
y e  have copistent estimators of the asymptotic covariances +nd variances of 

,p2 and p3, and we can estimate the asymptotic variance of flop‘ consistently. 
Instead of using sample staiistics for estimating the asymptotic variances 

and covariances of the three ps, we also can express them in terms’of the 
model parameters. This makes it more easy to investigate special cases. For a 
detailed discussion and (awkward) formulas we refer to VAN MONTFORT 
(1986). Some of his asymptotic results will be given here: 

If 6=0 or P z O  then p”p’ and b3 are identical. 

* op‘ If c = O  or then p and fll are identical. 

8. EXAMPLE WITH GENERATED DATA 

In this example scores on c,6 and 5 are drawn independently from a standard 
normal distribution for E and 6 and from a chi-square distribution with one 
degree of freedom for 5. p is set equal to 1. From the x and y scores the 
parameter p is estimated by the method discussed before. The number of repli- 
cations in this study is set equal to 1000. We give the results [or two different 
sample sizes: N=50 and N=200. In table 1 thc es,tirqate> (the ordinary 
least squaces estimate, i.e. a p m i n g  02 =O), pI,&,&,pop and the Pal- 
estimates p4 =(1~4-,3/m30)’/~, p~ =(mo3/m21)’/2 and f l6  =(ml2/m30)’/~ are 
given. 
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TABLE 1. 
Different estimates of P 

para- Value Theor. Asympt. Means Stand.dev. Means Stand.dev. 
meter Stand.Dev. (50 (50) (200) (200) 

(200) 
P O  .67 .076 .639 .151 .656 .077 
PI 1 .lo6 1.004 .570 .998 .114 
P 2  1 .098 1.116 1.426 1.002 .I08 
P 3  1 .lo6 1.323 4.775 1.009 .125 

1 .097 .996 .294 .995 .lo6 
P4 1 .097 1.064 .383 1.002 .lo3 
Ps 1 .099 1.043 .48 1 0.999 .lo4 

P20 3 .566 2.94 1 1.123 2.979 .565 
PI I 2 3 2  1.966 1.099 1.980 .558 
P o 3  8 4.186 7.482 10.197 7.705 5.864 
PI2 8 4.124 7.439 9.810 7.710 5.784 
P2 1 8 4.143 7.385 9.675 7.739 5.800 
P30 8 4.675 7.374 9.778 7.791 5.909 

PP' 

P 6  1 .099 1.123 .594 1.009 .110 

DISCUSSION 

From Table 1 we see that the e$imates of P behave reasonably well, even for a 
sample size of 50. ,We,se; ttat & is bia>ed, as it should be. Further we see that 
the six estimates pI,&,p3,p&$,ps and are diFerent with different standard 
deviations. For a sample size of 50 the estimate pop' is better than the other six 
estimates, because it has smaller standard deviation. 

For the sample size of 200 we see that all the third-order-estimates behave 
very well. Their standard !deviations are near to 0.100. Further the standard 
deviation pf ihelestima\e pop' is smaller than the standard deviations of the 
estimatgs P I , f i r P 3  and p6, and bigger than the standard deviations of the esti- 
matrJ p4 and Ps.  From the second and the sixth column of Table 1 follows 
that for N = 200 our third-order-estimates behave not asymptotically yet. 

The same study was done for a sample size of 25. In this case our third- 
order-Pstimates were very bad: negative estimates of P were frequently found 
anu the standard deviations qf the e:timates were extremely large, e.g. larger 
than 20. Often the estimates p~ and p 6  were not defined because the sample- 
estimates of h 3 / ~ 2 l  and ~ 1 2 / / . ~ 3 0  had negative values. 

Also we estimated P by an IV-estimator, with instrumental variab1e.z: =cog. 
For the sample sizes of 25, 50 and 200 the means of the estimates of /3 were 
1.108, 1.035 and 1.006, and the corresponding standard deviations were 0.876, 
0.245 and 0.106. However, in practice there is no obvious procedure to find 
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instrumental variables. 

behaves very well, in particular for samples with size larger than 50. 
The conclusion from this small study is that our procedure of estimating /3 
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APPENDIX 1 

In this paper we assume the errors c and 6 to be independent of each other. 
However, we can relax this assumption. We can postulate: 

(All  c = AS + w, 

where X is a scalar, 6 and w are independent and o is symmetrically distri- 
buted. X=O corresponds with the case that c and 6 ace independent. 

Replacing the independence of c and 6 by (Al), flop' is still optimal for all 
consistent estimators of fl  which are funcgons of the moments up to order 
three. Further the asymptotic properties of flop' don't change. 
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APPENDIX 2 

In this Appendix we derive some general results on best asymptotic normal (or 
BAN) estimation from whch the specific results in the text are easy conse- 
quences. We deal with the situation in which we have a sequence x, of random 
rn-dimensional vectors, which are asymptotically normal in the sense !hat there 
exist a vector h and a positive semidefinite matrix 20 such that n i ( x , - h )  
converges in law to N ( 0 , Z o ) .  In general h and 20 are unknown. The problem 
that interests us is the optimal estimation po. 

The problem becomes interesting if we have prior information of the form 
h c Q ,  with Q a differentiable manifold of dimensionp. In fact we shall assume 
that Q is an open submanifold of RP. This means that Q==(0), with 0 an 
open subset of some RP, and with q differentiable (9 is defined on RP). We 
suppose there is a unique 80 in 0 such that h ==(80) .  We study estimators of 
the form @(x), mapping R"' into 0, where @ is differentiable, and Fisher- 
consistent for 8, which means that @(7(8))=8 for all O0E0. Under these condi- 
tions it follows immediately from the general delta method type of argument 
(RAo, 1973, section 6a.2) that n'(@(x,)-Bo) is asymptotically N(O,Go'&Go), 
where Go is 6@/Sx evaluated at h. But, more importantly, it also follows that 
G o Z o G o ' ~ ( H o ' Z ~ ' H o ) - ' ,  where Ho is the matrix of partial derivatives 6q/68 
at 8,. This is a general result on BAN-estimation, given for example by WIJS- 
MAN (1959a, 1959b). Estimates for which the above inequality is satisfied as an 
equality are called BAN. If q is one-to-one, then Fisher-consistency already 
implies that Go = Hf I ,  and all Fisher-consistent estimates are automatically 
BAN. 

Now let us transform x,, by the one-to-one differentiable transformation I' 
to yn = T(x,,). Consider estimates of the form 'k(y), which are Fisher-consistent 
for 8 in the sense that 'k(r(q(?)))=O for all 8 in 0. Suppose To=61'16x, 
evaluated in k. I t  follows that nT(\k(y,,)-&) is asymptotically N(O,Wo), with 
W o ~ ( H o ' T o ' ( T o ~ T o ' ) - ' T o H o ) - '  =(Ho'Zo 'Ho)- ' .  The lower bound on the 
variance thus remains the same. A BAN estimate 'k(y,), for the model I?(@)), 
is at the same time a BAN estimate @(x,,), with @=\k(I'), for the model ~(0). 

Let us now apply the general results discussed above to the example treated 
in this paper. Take h equal to the nine moments of order less than or equal to 
three, x,, equal to the corresponding nine sample moments m, 8, equal to the 
vector with nine parameters, and define 17 by equations (2) and (6). It follows 
that q-'(m) is BAN for 80,  and these are exactly the estimates computed by 
using sample moments in (7). This implies that ml2/rnzl is BAN for p. 

The second result again uses the one-to-one transformation q-'. We have 
seen that the model is that the two coordinates (70 and (7h) of q - ' ( h ) ,  
corresponding with w3 and B 3 ,  are zero. This result can be used quite simply to 
derive BAN estimates of the remaining parameters. Suppose y~ estimates the 
seven nonzero parameters of the system, and y2 estimates the two parameters 
(70 and (7h) which are supposed to be zero. Partition the dispersion matrix 
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Wo of q-'(m), and its inverse, correspondingly. Then yI  + ( W l l ) - ' W I 2 y 2 ,  
where W estimates Wo consistently, is BAN for the remaining seven parame- 
ters. This follows from the general minimum chi square theory for computing 
BAN estimates discussed by FERGUSON (1958), CHIANG (1952), and WIJSMAN 
(1 959). 

A third method in the symmetric error case transforms (6) to X3=p30 
together with the three determinations of /3 in (8). This defines the one-to-one 
transformation I', and now we require that three coordinates of r are equal. 
As in VAN DER POL and DE LEEUW (1987) it follows that the linear combina- 
tion, with coefficients that add up to one, of the three estimates of /3 given by 
(9), which has the smallest possible variance among such combinations, gives 
the BAN estimate of /I. This is (10). In general the two BAN estimates we dis- 
cussed for the symmetric error case will be different, because the one-one 
transformations r and q-  ' are not related linearly. 

REFERENCES 

ADCOCK, R.J. (1878), A problem in least squares, The Analyst 5, 53-54. 
AIGNER, D.J., C. HSIAO, A. KAPTEYN and T. WANSBEEK (1984), Latent vari- 

able models in econometrics, in: Z. Griliches and M.D. Intrilligator (Eds.), 
Handbook of Econometrics, North Holland P.C., Amsterdam. 

ANDERSON, T.W. (1984), Estimating linear statistical relationships, Annals of 
Statistics 12, 1-45. 

BEKKER, P.A. (1986a), Comment on identification in the linear errors in vari- 
ables model, Econometrica 54, 2 15-2 17. 

BEKKER, P.A. (1986b), Essays on identification in linear models with latent vari- 
ables, Dissertation, Wibo, Helmond. 

BEKKER, P.A., T. WANSBEEK and A. KAPTEYN (1985), Errors in variables in 
econometrics: new developments and recurrent themes, Statistica Neerlan- 
dica 39, 129-141. 

BEKKER, P.A. and J. DE LEEUW (1986), Rank of reduced dispersion matrices, 
Psychometrika, in press. 

CHIANG, C.L. (1952), On regular best asymptotically normal estimates with an 
application to a stochastic process, Doctoral Dissertation, University of Cali- 
fornia. 

DEISTLER, M. (1986), Linear errors-in-variables systems, to appear in: S .  Bit- 
tanti (editor), Springer Lecture Notes, Berlin. 

FERGUSON, T.S. (1958), A method of generating best asymptotically normal 
estimates with application to the estimation of bacterial densities, Annals of 
Mathematical Statistics 29, 1046-1062. 

FRISCH, R. (1934), Statistical confluence analysis by means of complete regres- 
sion systems, Publication No. 5 ,  University of Oslo, Economic Institute. 

GEARY, R.C. (1 942), Inherent relations between random variables, Proceedings 
of the Royal Irish Academy, Sec. A 47, 63-76. 

GEARY, R.C. (1943), Relations between statistics: the general and the 



236 Statistica Neerlandica 4 1 (1987), nr.4 

sampling problem when the samples are large, Proceedings of the Royal Irish 
Academy, Sec. A 49, 177-196. 

GINI, C. (1921), Sull’interpolazione di una retta quando i valori della variable 
indipendente sono affetti da errori accidentali, Metron I ,  63-82. 

KALMAN, R.E. (1982), System identification from noisy data, in: A.Bednarek 
and L. Cesari (Eds.), Dynamical System ZI, a University of Florida Interna- 
tional Symposium, Academic press, New York. 

KALMAN, R.E. (1983), Identifiability and modeling in Econometrics, in: P.R. 
Krishnaiah (Ed.), Developments in Statistics, Vol. 4, Academic Press, New 
Y ork. 

KENDALL, M.G. and A. STUART (1963), The Advanced Theory of Statistics, 
Vol. 1, Griffin, London. 

KENDALL, M.G. and A. STUART (1967), The Advanced Theory of Statistics, 
Vol. 2, Griffin, London. 

KLEPPER, S .  and E. LEAMER (1984), Consistent sets of estimates for regres- 
sions with errors in all variables, Econometrica 52, 163- 183. 

KUMMEL, C.H. (1879), Reduction of observed equation which contain more 
than one observed quantity, The Analyst, 6, 97-105. 

MADANSKY, A. (1959), The fitting of straight lines when both variables are 
subject to error, Journal of the American Statistical Association 54, 173-205. 

MOOIJAART, A. (1 985), Factor analysis for non-normal variables, Psychome- 
trika 50, 323-342. 

MORAN, P.A.P. (1 97 l), Estimating structural and functional relationships, 
Journal of Multivariable Analysis 1, 232-255. 

PAKES, A. (1982), On the asymptotic bias fo the Wald-type estimator of a 
straight line when both variables are subject to error, International Economic 
Review 23, 491-497. 

PAL, M. (1980), Consistent moment estimators of regression coefficients in the 
presence of errors in variables, Journal of Econometrics 14, 349-364. 

PAL, M. (1981), Estimation in errors in variables models, Unpublished disser- 
tation, Indian Statistical Institute. 

PEARSON, K. (1901), On lines and planes of closest fit to systems of points in 
space, Philosophical Magazine and Journal of Science 2, 559-572. 

REIERSaL, 0. (1950), Identifiability of a linear relation between variables 
which are subject to error, Econometrica 18, 375-389. 

RAO, C.R. (1973), Linear statistical inference and its application, Wiley, New 
York. 

SARGAN, J.D. (1939, The estimation of economic relationships using instru- 
mental variables, Econometrica 26, 393-4 15. 

SCHNEEWEISS, H. (1976), Consistent estimation of a regression with errors in 
the variables, Metrika 23, 10 1 - 1 15. 

VAN DER POL, J. and J. DE LEEUW 91987), Aspects of estimation of the 
polychoric correlation coefficient, Psychometrika, in press. 

VAN MONTFORT, K. (1986), Third order moments in regression with errors in 
variables, Research Note, Department of Psychology, University of Leiden. 

WIJSMAN, R.A. (1959a), On the theory of BAN estimates, Annals of 



Statistica Neerlandica 4 1 (1987), nr.4 237 

Mathematical Statistic 30, 185-1 9 1. 

Annals of Mathematical Statistics 31, 1269-1270. 
WIJSMAN, R.A. (1959b), Correction to "On the theory of BAN estimates", 

Received November 1986, Revised March 1987 




