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In this paper some easily applicable estimators of the regression coefficient in a simple regression 
model with errors in variables are derived. Usually one uses sample moments to estimate the 
regression coefficient. However, we use empirical characteristic functions in several points. Besides 
theoretical derivations a small study with generated data is discussed. This study compares our 
method with estimating methods which use higher-order moments, 

1. Introduction 

In this paper we discuss regression with errors in variables. We shall treat 
the bivariate case only, although generalizations to the multivariate case are 
obvious from our treatment. The observed random variables x and y satisfy 
the following relations: 

y=(Y+p[+&, x=t+i?, 

where 6, E, and 6 are unobserved random variables which are independent of 
each other, EE = 0, and ES = 0. We have assumed nothing about the distribu- 
tion of the variables, except that it is assumed that the means of the error 
variables are zero, while 6, E, and S are independent of each other. 

Expressing the first- and second-order moments of x and y, if they exist, in 
model parameters, we generate five equations. These five equations contain six 
unknowns. The regression coefficient fi is not identified from these first- and 
second-order moments of x and y. Van Montfort et al. (1987) discuss in detail 
the identifiability of the regression coefficient /3 in our model. Using third-order 
moments of x and y, they identify fi. Furthermore they derive an optimal 
estimator in the class of consistent j3 estimators which are functions of the 
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moments of x and y up to order three. Reiersol (1941), Geary (1942) and 
Pakes (1979) also use third- and fourth-order moments for estimating the 
regression coefficient /3. 

Reiersol (1950) shows that fi is identifiable if there exists a nonzero (finite 
or infinite) cumulant K, of the joint distribution of x and y, with r 2 1, s 2 1, 
and either r or s but not both equal to one. So we have the result that /3 is 
identifiable if [ is not normally distributed. In this paper we assume that 5 is 
not normally distributed, and we estimate fi with the use of empirical 

characteristic functions. Of course a link exists between characteristic functions 
and higher-order moments. If c(.) is a characteristic function of the arbitrary 
stochastic variable u, then the moments m, = Eu’ (r = 1,2,. .) of u satisfy the 
following relation: 

m, = (-i)‘{ dc(t)/atr} ll_O. 

From the formula mentioned above follows that the moments of a stochastic 
variable, if they exist, represent the information of the corresponding charac- 

teristic function in the point t = 0. 

In this paper we identify /? with the use of the values of the characteristic 

functions of x and y in more than one point. So we don’t use the information 
of the characteristic functions of x and y in the point t = 0 only. We also use 
the information of the characteristic functions of x and y in other points on 
the real line. 

Our estimation method has two advantages over methods which use higher- 
order moments. In the first place we can apply our method for a larger class of 
distribution functions of x and y. This is because every distribution function 
has a characteristic function, even if the higher-order moments do not exist. 
For instance, the Cauchy distribution has no second- and higher-order mo- 
ments, while the characteristic function exists. In the second place, for small 
sample sizes higher-order moments estimation methods get bad estimations. 
This is a corollary of the fact that higher-order sample moments have very big 
variances for small sample sizes. 

In the past Darmois (1940) already used empirical characteristic functions 
for estimating coefficients in some simple statistical models. For instance, he 
estimates the regression coefficients in the classical multiple-regression model 
( y = 01 + /3,x, + &x2). Some others also use empirical characteristic functions 
for estimating /3 in simple regression models with errors in the variables. 
Neyman (1951) gives a consistent estimator when 5 is not normally dis- 
tributed. Assuming the model is identifiable, Wolfowitz (1952) gives an esti- 
mating method for fl. This method is often reasonable if the distributions of S 
and E belong to a known small finite-dimensional class, for instance when they 
are normal. Rubin (1956) gives an estimate of ,8 when the errors 6 and E are 
normal and 6 is not normal. This estimate converges to /I with probability 



one. Assuming 5 is not normally distributed, Spiegelman (1979) gives a class 
of estimators of /3 which are asymptotically normal with mean p and variance 
proportional to n ~ ‘I’, under weak assumptions. He shows how to choose a 

good estimate of j3 from this class. 
In the second section of this paper we approximate the logarithm of the 

characteristic function of [ by an algebraic polynomial of order three. With 
the help of this approximated characteristic function in several points we 
derive some easily applicable estimators of the regression coefficient ,8 in our 
model. In section 3 we use algebraic polynomials of order four, five, six, etc. to 
deduce estimators of p. Furthermore, in section 4, we consider the characteris- 
tic functions of our variables in points which tend to zero. In this case the 
logarithms of the characteristic functions of x and y are ‘approximately’ 
polynomials. It follows that the estimators of the second and third section are 
‘approximately’ functions of bivariate cumulants of x and y. 

Using our estimating method, in section 5 we discuss some examples with 
generated data. Furthermore, we compare our method with estimation meth- 
ods which use higher-order moments. Finally, in the appendix we discuss some 
elementary properties of empirical characteristic functions. 

2. Estimators of the regression coefficient /3 with the use of empirical 
characteristic functions 

In this section we derive some simple estimators of the regression coefficient 
p with the use of empirical characteristic functions. In the first place we define 
the simultaneous characteristic function c(s, t) of y and x and the character- 
istic functions e(t), a(t), and b(t) of [, E + (Y, and 6. For every s and t on the 
real line, we get 

(2) 

From (2) it follows that 

lnc(s, 1) - lnc(s,O) - lnc(0, t) = lne(Ps + t) - lne(ps) - lne(t). 

(2’) 

The left-hand side and the right-hand side of (2) are multiple-valued functions. 
The single-valued interpretation of (2) is true for the real part, but for the 
imaginary part we have equality modulo 27r. Thus, for instance, we have for 

eq. (2) 

Im[lnc(s, t)] = Im[ln a(s) + In b(t) + lnc(Ps + t)] + 2aK. 

with K an arbitrary integer. This is a bit inconvenient to work with numeri- 
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tally. Therefore, we assume that the logarithms of the characteristic functions 
in system (2) are real-valued. This assumption causes no loss of generality. 
If the logarithms of the characteristic functions a(.), b(.), c(.,.), or e(.) are 
not real, we can replace them by their real parts, for instance Re[lnc(s, t)] = 

* ln{(Rec(s, t))* + (Imc(s, t)) } 1/2. In that case the derivations of this paper 
do not change and we can derive analogous results. 

Now we want to derive an expression for j? with the use of (2’). We have 
two possibilities: 

- choosing an explicit expression for the density function of [, 
- approximating the characteristic function e(.) of 5 by a ‘simple approxima- 

tion function’. 

Because we don’t want to make assumptions about the distribution of 5, we 
choose the second possibility. In this paper we approximate lne(t) by an 
algebraic polynomial function. 

We prefer the algebraic polynomial approximation to the approximation by 
trigonometric polynomials. Theorem 16.5 of Powell (1981) shows that for 
every continuous function e(.) on an interval [a, 61 the trigonometric polyno- 
mial approximation of order r has a bigger ‘approximation fault’ than the 
approximation by algebraic polynomials of order r. Furthermore approxima- 
tion by splines leads to technical complications. If e(.) is a real-valued 
function on the interval [ - 1, l] that is k times continuously differentiable, 
then the corollary on p. 197 of Powell (1981) says that 

p~~plle-~rllm 5 (((r-k)!(~/2)k/r!)Ile(k)llm], , 
where AP,. is the class of all algebraic polynomials of order r and k = 0,. . . , r. 
Defining e(.) on another interval, we can derive a similar result. So on every 
interval [a, b] we can approximate e(.) as closely as we want. 

Now we approximate lne(.) by the algebraic polynomial p3(.) of order 
three: 

p3( t) = a,t + a,t* + a,t3. 

With the help of approximation (3) we can approximate the right-hand side of 
eq. (2’) by the polynomial 

P3(s, t) = u,2pst + a,(3pYt + 3pd). (4 

From (2’) and (4) it follows that, for s, t E R, 

lnc(s, t) - lnc(s,O) - lnc(0, t) 

= P,(s, t) = u,2pst + u,(3/wt + 3Pd). (5) 



If we choose in (5) for (s, t) the values (si, tl), (sz, t2), and (So, tj), then we get 
the system 

C-Ah, (6) 
with 

c= (C(s,, fi)? C(s,, f2>, C(J,> #, 

C(s, t) = lnc(s, r) - lnc(s,O) - lnc(0, r), 

2s,r, 3s,rf 3sfr, 

M= 

i 

2s2r2 3s,r,2 3s$, 

2s3r3 3s,r,2 3s,2r, 

v= (4 ud u,B’)‘. 

If det A4 = 18 s1s,s,r,r2r, (s,r, + s$, + sir, - slr2 - szr, - sg,) # 0, then the 
matrix M is nonsingular and the vector v is identified by system (6). Because 
p is the quotient of the third and second component of the vector v, assuming 
a3 +k 0, p is also identified. 

In system (6) we have to choose the values of si, s2, sX, rl, r,, and r, in such 
a way that the matrix M is nonsingular. Furthermore, we have to choose si, 

s2, S3r r,, r,, and r, in the neighbourhood of zero. If we approximate lne(r), 
lne(ps), and lne(fis + r) by polynomials with the help of small values of s, 
and r, (i=l,..., 3), for instance s,, r, E [ - 0.1; 0.11, then the higher-order 
terms are negligible. Finally, we can estimate C(s, r) consistently by the 
estimator C(s, r) = In 2(s, r) - In cI(s, 0) - In c^(O, r), where cI(s, r) is the simul- 
taneous empirical characteristic function corresponding to c(s, r). So with the 
help of (6) we can estimate p. We can even find a set of estimators of /3 by 
choosing several sets of points (sr, rl), (s2, r2), and (So, r3). Generally the 
above-mentioned estimators are not consistent. 

Remark 1. If 4 is normally distributed, then Reln e( r) = - ( r2at)/2 and 
u3 = 0. In that special case it follows from system (6) that the second and the 
third component of the vector v are zero, and our method cannot be used to 
estimate p. 

Remark 2. Assuming the polynomial approximations to be perfect, estima- 
tors can be derived for the asymptotic variances of our estimators. With the 
use of the delta method we can express the asymptotic variances of our 
estimators in terms of asymptotic variances and covariances of the simultane- 
ous empirical characteristic function of x and y in some points. The formulas 



for the asymptotic variances and covariances of simultaneous empirical char- 
acteristic functions in several points are given in the appendix. Because the 
expressions for the asymptotic variances of our estimators are very awkward, 

we don’t present them in this paper. 

3. Approximating by polynomials of order four and higher 

Instead of approximating lne(t) by a polynomial of order three, we can 
approximate In e(r) by polynomials of order four and higher. Let lne(.) be 
approximated by the following polynomial of order four: 

p4( t) = u,t + a,t2 + a,t3 + a,t4. 

Now we find 

P,(s, t) = a,2pst + a,(3/wt + 3fi.Q’) 

+a4(4P3s3t + 6P2s2t2 + 4pst3). 

In the same way as in the previous section we can derive 

C=Mv, 

with 

C= (C($ tr> >...’ C(S,, tJT, 

(7) 

1 2s,t, 3s,t,2 3& 4s& 6s;t; 4&j 

u = ( a2PT a,P, a$‘, a4P, a4P2. a,fi’)’ 

zzz 
bl,l~ v1.29 u2.17 u1,37 02.29 u3J. 

P = c’2,1/%2 = v2,2/vl,3 = ‘3 1/‘2x: - (,u3Jvl 3)1/2. We define the estimator 

(,~i,i, 01,29 u2+ u1,3, 02,2, q,i)r= MPC of (ul,lY u1,2, u2.1, u1.3, u2,2, u3.,)rP with 
C a consistent estimator of C. Now ~Ju~,~, o~,~/u~,~, 4,i/q2, and 

(u3.1/~1,3)“2 are four estimators of p. We can prove that the following 
estimator fi has asymptotic minimal variance in the class of consistent 
estimators of p which are a linear combination of the j3 estimators qi/~i,~, 

t’2.2 /VI.37 ‘3.h2.2’ and (03.1/2)1.3)“2: 

/3 = ( UTV~l?)/( d-v-q, 
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with 

tr= ( %1/V,.* %,2/%37 t’S,1/4.2~ (V,,,/~,,Y2)~ 

and I/ the asymptotic covariance matrix of 1, while u has four elements equal 

to one. 

Proot /3 is of the form drr. In order for p to be consistent, we must have 
drz4 = 1, because each component of t is a consistent estimator of /? (at least 
as far as the approximation goes). Now it follows dr = (urV_I)/( urVP ‘u) + 
hr, with h a (4 X 1) vector that satisfies the condition hru = 0. Using this 
expression and the delta method, we find varp = drVd = ( u~Y~‘u))~ + h’Vh. 
Since V is positive definite, this is minimal for hr= (O,O,O,O). Q.E.D. 

Approximating In e(t) by polynomials of order five and higher we can 
derive analogously ‘optimal’ estimators. Due to the approximations used, the 
estimators so found are not consistent in a strict sense: they are only 
approximately consistent. The approximation can be improved, however, by 
applying higher-degree polynomials. 

Remark. In the previous section we could also find a set of estimators for /3 
by choosing several, sets of points (sr, tl), (s2, tz), and (s3, f3). Similar to the 
proof stated above it is possible to derive from such a set of p estimators an 
‘optimal’ combination. 

4. The case that s and t tend to zero 

In this section we use the method of the preceding sections. However, we 
choose ‘very small’ values for 1.~1 and It/. If s and t tend to zero, then the 
characteristic functions of x and y are ‘approximately’ algebraic polynomials. 

Let us approximate In c(s, t) by a bivariate polynomial of degree r. Thus, 

lnc(s, t) = i r~g(~~j((g+j)!/(g!j!))ssll). 
g=o /=o 

bg, (g=O ,..., r, j=O ,..., r - g), multiplied by ((g + j)!( - i)g+‘), is a bi- 
variate cumulant of x and y. It follows that 

C(s,t) = 2 rig(b,,((g+j)!/(g!j!))spr’). 
g=l /=I 

(9) 

Furthermore, we approximate the logarithm of the characteristic function e(r) 
of 6 by a polynomial of order r (r 2 1). 
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Substituting (9) into (7) we get the following system: 

Mb=Mu. 

Matrix M and vector u are defined in (7); replacing vgr by bg, in vector v, we 
get the vector b. Because the matrix M is nonsingular, from system (10) it 
follows now: 

b=v =+ v =b lCJ gJ forevery g=l,..., r, j=l,..., r-g. (111 

So in this case our estimators are functions of bivariate cumulants of x and y 
asymptotically. In particular, for r = 3 asymptotically it follows that our 
estimator is the consistent moment estimator & of Pal (1980) [& = 

m,i/mi,; m2i and ml2 are consistent estimators of E( y - Ey)‘(x - Ex) and 

E( y - Ey)( x - Ex)~]. 

5. An example with generated data 

In this example we discuss, by means of some generated data, several 
estimation methods. Because sample size may play an important role with 
respect to the accuracy of the estimates, both sample sizes of 50 and 200 are 
used. For the method discussed in this paper, the degree of the polynomials 
varies from three to five. We analyzed the simple regression model as given in 
the introduction, with (Y = 0 and /I = 1. Further the variables E and S come 
from a standard normal distribution. Four different types of distributions are 
defined for the 6 variable. These four distributions are all cl-&square distribu- 
tions, with degrees of freedom one, two, five, and ten. These distributions 
differ, among other things, in their degree of skewness. The higher the number 
of degrees of freedom, the more symmetric the distribution is. To make the 
variances of the x and y variables equal in all situations, the variances of the 
5 variables are set equal to one. 

We use the estimation method discussed in this paper. The simultaneous 
characteristic functions of x and y are computed in the arbitrary points 
( - 0.211,0.183), (- 0.111, - 0.123), and (- 0.083, - 0.143) for approximating 
polynomials of degree three, in the arbitrary points (-0.211,0.183), 
(-O.lll,- 0.123) (-0.083,- 0.143) (0.189,0.067), (-0.029,0.113), and 
(0.023, - 0.057) for approximating polynomials of degree four, and in the 
arbitrary points (- 0.211, 0.183) (- 0.111, - 0.123) (-0.083, - 0.143) 
(0.189,0.067), (-0.029,0.113), (0.023,- 0.057), (0.101,0.087), (0.147,- 0.091), 
(0.037,0.121), and (0.133, - 0.051) for approximating polynomials of degree 
five. Two other methods are used. These methods are given by Van Montfort 
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Table 1 

Empirical characteristic function method, number of replications_= 100 [means and standard 
deviations (in parentheses) of estimates fl]. 

DF 

1 

2 

5 

10 

II = 50 ,2 = 200 

Degree Degree 

3 4 5 3 4 5 
-~ 

3.42 1.29 0.95 1.24 1.02 1.05 
(15.27) (1.05) (0.09) (0.64) (0.26) (0.11) 

1.03 1.05 0.97 1.54 1.07 1.31 
(7.74) (0.58) (0.20) (3.47) (0.46) (0.09) 

-0.34 1.47 1.00 2.94 1.18 1.03 
(18.83) (1.37) (0.18) (9.42) (1.27) (0.15) 

3.23 1.19 1.03 2.29 1.23 1.06 
(18.19) (0.85) (0.16) (23.18) (0.97) (0.15) 

et al. (1987) and Aigner et al. (1984). The basic idea of these methods is that 
estimation of the parameters is carried out not by using first- and second-order 
information from the data, but also third- and/or fourth-order information. 
This means that in those methods also third and fourth moments of the 
variables play a role. The estimator of Van Montfort et al. has asymptotically 
minimal variance in the class of consistent estimators which are functions of 
moments up to order three, The Aigner estimator is a function of moments up 
to order four. 

For the results of the empirical characteristic function method see table 1, 
and the results of the moments method are given in table 2. These tables 
consist of the means and the standard deviations of the estimates over the 100 
replications. 

Discussion. From table 1 we see that the estimates of /3 become better for 
increasing degree of the polynomial. In particular for degree five the estimates 
and the corresponding standard errors behave rather well. It also seems that 
there is not a big difference between the case n = 50 and n = 200 for degree 
five of the polynomial. So we suggest that a polynomial of degree five will fit 
the empirical characteristic function quite well. Further it holds that the four 
types of distribution do not have a great influence on the estimates and the 
standard errors. 

In table 2 we see that the difference in sample size plays an important role; 
sample sizes of 200 will give better estimates. In the case of fitting by 
third-order moments, estimates are better for the most skew-distributed vari- 
ables, i.e., whenever DF = 1. This is quite obvious, because in the case of 
symmetric distributions, third-order moments are zero and so they play no 
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Table 2 

Moment method, number of replications = 100 [means and standard deviations (in parentheses) of 
estimates /3]. 

n = 50 n=200 

DF 

1 

2 

5 

10 

Order of moments 

3 4 

0.84 3.19 
(1.15) (17.70) 

1.50 1.20 
(2.30) (6.21) 

1.30 0.90 
(5.20) (2.27) 

0.96 - 7.87 
(4.52) (93.30) 

Order of moments 

3 4 

1.02 1.06 
(0.17) (0.62) 

1.05 1.52 
(0.24) (8.10) 

1.07 0.80 
(0.33) (3.27) 

0.80 1.66 
(0.96) (10.15) 

role in estimating the parameters. In this latter case fourth-order moments 
could give better estimates. However, as we see from the table this is not the 
case. The reason for this is that the standard errors of fourth-order moments 
are very large, in particular with small sample sizes. So if we want to use 
fourth-order moments sample sizes should be larger. The most interesting 
result from tables 1 and 2 is the comparison of the two tables. From this small 
study (sample size n = 50 and n = 200) it is quite obvious that our method of 
characteristic functions, with polynomial approximations of order four and 
five, gives better results than the methods of moments. The superiority of our 
method of characteristic functions crucially depends on the degree of the 
approximating polynomial. Approximating polynomials of order three causes 
worse estimators than approximating polynomials of order four and five. 
Finally we mention that our estimators with empirical characteristic functions 
are biased asymptotically, while the estimators with sample moments are 
consistent. 

Appendix 

In this appendix we discuss briefly some elementary properties of empirical 
characteristic functions. Csorgo (1981) Feuerverger and Mureika (1977), 
Feuerverger and McDunnough (1981a, b), Kent (1975) and Ramachandran 
(1967) discuss in detail empirical characteristic functions and their properties. 

Suppose c,(t) = n-l F’J=i exp(itx,) is the empirical characteristic function 
corresponding to an arbitrary characteristic function c(t). Feuerverger and 



Mureika (1977) prove that, for fixed T < co, the convergence sup,,, < TIc,,(t) - 
c(t)] + 0 is almost surely as n + 00. Furthermore, the empirical characteristic 
function process cn(.) is seen to be an average of n independent processes of 
the type exp(itx). By means of the central limit theorem it follows asymptoti- 
cally that y,,(t) = n1i2( c,,( Z) - c(t)) is normally distributed. has mean zero. 
and the covariance structure 

-Rec(s)Rec(r), 

cov(Rey,,(s),Im y,,(t)) = $[Imc(s + t) + Imc(s - r)] 

-Rec(s)Imc(r), 

cov(Imy,,(s),Imy,,(t))=$[-Rec(s+t)+Rec(s-t)] 

-Imc(s)Imc(r). 

We can generalize the formulas above to the simultaneous characteristic 
function c( s, t) and the corresponding empirical characteristic function 
c,,(s, t) = ~‘C~=,exp(isy, + 2x,). If J?,,(s, t) = nl/‘(c,,(s. t) - c(s, t)). then it 
follows asymptotically that 

=f[Rec(s,-s,,t,-t,)+Rec(s,+s,,t,+t,)] 

-Rec(s,,t,)Rec(s,,t,), 

= f[Imc(s,-s2.t,-~t,)+Imc(s,+~2,~I+tZ)] 

- Rec(s,, tl> Imc(s2. t2), 

cov(Im Y,~(s,, t,),Im y,:,,(s,. fz)) 

= 1, [Re c(sr - s2, f, - t2) - Re c(sr + s2, r, + r,)] 

-Imc(s,. t,)Imc(s,. rz). 
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