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SUMMARY 

In this paper it is argued that all multivariate estimation methods, such as OLS regression, simultaneous 
linear equations systems and, more widely, what are known as LISREL methods, have merit as geometric 
approximation methods, even if the observations are not drawn from a multivariate normal parent 
distribution and consequently cannot be viewed as ML estimators. It is shown that for large samples the 
asymptotical distribution of any estimator, being a totally differentiable covariance function, may be 
assessed by the 6 method. Finally, we stress that the design of the sample and a priori knowledge about 
the parent distribution may be incorporated to obtain more specific results. 

It turns out that some fairly traditional assumptions, such as assuming some variables to be non- 
random, fixed over repeated samples, or the existence of a parent normal distribution, may have dramatic 
effects on the assessment of standard deviations and confidence bounds, if such assumptions are not 
realistic. The method elaborated by us does not make use of such assumptions. 

KEY WORDS Multivariate estimation Large-sample theory Population-sample decomposition 
&method Curve-fitting 

1. INTRODUCTION 

Multivariate statistical data analysis is built around the linear model. In econometrics linear 
models are studied for the dependence of a variable on a number of other variables; in 
psychometrics linear models for the interdependence of variables get more attention. 
Historically the role of the linear model is even more preponderant in agricultural science and 
biometrics. Although the specific variants differ, it is sensible to speak about a general structure 
underlying linear statistical relationships. As Anderson shows, there is a common structure 
which can be used either for linear regression models popular in econometrics of for factor- 
analytical approaches popular in psychology. In all cases the parameter estimators in these 
models are functions of the covariance matrix of the observations, so we shall call them 
covariance functions. 

This then is the common structure of the techniques discussed in this paper. We are interested 
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in statistics which are functions of the covariance matrix. These can be regression coefficients, 
factor loadings, eigenvalues, canonical correlations, and so on. According to our definition 
these are all covariance functions. In order to study their statistical properties it is necessary 
to specify some properties of both the sample covariances and the specific functions involved. 
Statistical analysis of data is, of course, usually based on  a number of assumptions. In our view 
these assumptions are often unnecessarily restrictive. In this paper we shall try to  show that it 
is not at all necessary to maintain all of these assumptions in order to derive statistically mean- 
ingful results. 

By way of intuitive introduction let us consider a simple case first. Suppose that [ (yf, a ) )  f’ I 

is a set of T bivariate observations in RZ. A first question in this context is how we can draw 
a straight line y = b ~ z  + bo through the observations, represented as points in the plane, such 
that the line reasonably fits the observations. The standard answer to this question was propos- 
ed at the beginning of the 19th century by Lagrange, Gauss and Laplace. As a criterion of fit 
it uses the sum of squared residuals 

which is minimized with respect to  the vector b = (bo, bl) .  The minimizing solution is denoted 
by 6. The ‘calculated’ counterpart of yt is jf = 61zr + 60, and the calculated residual is (yf - j f ) .  
The fitted line is traditionally called the regression line. 

So far, we have not placed the problem, as presented above, in a statistical context. We were 
merely solving a fitting problem, and 6 described the line of best fit. The vector 6 was a descrip- 
tive statistic. From the beginnings of mathematical statistics, early in this century, it was 
understood that observed variations in the values of the statistic 6, when they were derived from 
distinct samples dealing with the same phenomenon, indicated the random character of such 
a statistic. It was realized that these statistics were functions of the first- and second-order 
sample (product)-moments. If the distribution of these sample moments was known, the 
distribution of both intercept and slope could be computed. Initially Karl Pearson’s approach 
to  this problem, and to  similar problems, was to  use approximate results for large samples. But 
from the thirties on, notably under the influence of Fisher’s work on exact sampling distribu- 
tions and on the method of maximum likelihood, the emphasis shifted to  assuming very specific 
stochastic models, and to  deriving the distribution of the statistics from the a priori assump- 
tions defining the model. This is also the approach used in classical econometrics. 

Elementary textbooks of econometrics often start by assuming the so-called linear model’ 

Yf = blZf + bo + Ef 

where the E f  are independent normal variables with zero expectation and constant variance. 
The regressor z is supposed to be non-random. The model is supposed to  be an exact description 
of reality, that is to say in our subsequent analysis we act as if all the underlying assumptions 
are true. The assumptions imply, for instance, that 60 and 61 are linear functions of the normal 
variables E r  and are consequently normally distributed as well. The impact of this set of 
assumptions, which we shall call the basic postulates in this paper (see, for instance, Reference 
3, pp. 80 and 81), should not be overstated. Many textbooks show that the traditional t and 
F test statistics can be used without change if z is a value taken by the random variable 2, 
provided cf and Zf are independently distributed and the sample size is sufficiently large. White 
(Reference 4, p. 109) has extended the analysis to  cover cases where the assumption of 
independence between a random Zf and Ef is not necessary, provided that certain restrictions 
on  the fourth- and second-order moments are fulfilled. We consider that case in section 6.  
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In the literature a lot of space has been devoted to relaxing the basic postulates by replacing 
some assumptions by more realistic ones. But always covariance matrices, confidence limits, 
etc. are assessed on the basis of some set of restrictive assumptions. 

The alternative approach, where we assume that [ ( Y [ , Z [ ) ] T = I  is a random sample of 
independent observations from the same population (i.i.d.), is more natural and more general, 
at  least in the analysis of cross-sections, but the exact distribution of 6 cannot be derived except 
i f  the distribution of ( Y,, Z , )  is known. However, large-sample results may be obtained without 
such knowledge. In order to assess the large-sample distribution of 6, we may make use of the 
central limit theorem, which specifies that sample moments are asymptotically normally 
distributed under mild conditions. We combine this with the so-called delta method (References 
5 ,6 ,  7 (section 28.4), 8 (section 6a.2) and 9). According to the delta method, differentiable func- 
tions of asymptotically normal variables are also asymptotically normal, with a dispersion that 
can be computed by using the linear terms of the Taylor series around the population value. 
We can expand, for instance, 61 around its population value bl. Here 61 = ~ Y Z / ~ Z Z ,  the sample 
covariance divided by the sample variance of the independent variable. It is a function of the 
sample covariance matrix. We define the population counterpart as bl = a~z /ozz .  The result 
given by the delta method is that the asymptotic distribution of T:”(61 - 61) is the same as the 
asymptotic distribution of 

T x ( s ) ( 3 y z  - I J ~ Z )  + T” - ( C Z Z  - azz) 
( : a 3  

with the partials evaluated at the ‘true’ values. But the asymptotic distribution of this linear 
approximation is normal, by the central limit theorem, with variance 

This is consequently also the variance of the asymptotic normal distribution of T x ( &  - b,).  
Observe that in this case we do  not make strong assumptions about the generating model of 
our observations. Of course the derivation makes sense only if the central limit theorem applies, 
and if ~ Y Z  and 3zz have finite variances. Thus we must assume that fourth-order moments exist. 
If successive observations are independent and identically distributed, then this is also the only 
assumption we need. 

This non-parametric large-sample approach t o  the simple linear model can be extended to 
arbitrary covariance functions, such as the ones that occur in factor analysis or canonical 
correlation analysis. It has two obvious disadvantages. Firstly, it is only valid for large samples; 
secondly, it involves the calculation and storage of fourth-order (product)-moments. Both 
features made this approach unpractical until the beginning of the computer era, for there were 
virtually no samples which were ‘large’ enough, and computations involving more than a 
(4 x 4) matrix were practically impossible. At this point in time there are, however, reasons to  
consider the non-parametric large-sample approach, outlined above, as a promising alternative 
to the parametric approach based on specific stochastic models. 

Logically, a method based on a smaller set of assumptions seems preferable to  one based on 
a more restrictive set of postulates. This remark must be qualified somewhat, however. In 
general, weak assumptions mean a large dimensionality of the parameter space and strong 
assumptions mean a small dimensionality. Large dimensionality means little bias due to 
misspecification, but possibly a great deal of sampling variance. Small dimensionality means 
precision in terms of sampling variance, but this precision may be spurious because of 
biasedness and inconsistency. It seems to us that in many situations in econometrics and other 
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behavioural sciences there is not enough prior knowledge to justify the introduction of sharp 
models. This means that models are used mainly for data reduction and exploration, because 
trying to confirm something you do  not really believe in seems a somewhat futile exercise. Thus 
most precision in the estimates must be taken with a grain of salt, because specific assumptions 
may be widely off the mark. We must take the 'curse of dimensionality', i.e. an increase in 
variance, as a consequence of our lack of prior knowledge, and we must make our models 
relatively weak (and our sample sizes very large). 

We have already seen that the large sample approach is now technically feasible, because we 
often have large samples and powerful computers available. In statistics this is slowly leading 
to an important revolution in the choice of techniques. ' O S 1 '  The new computer-based non- 
parametric techniques 'replace standard assumptions about data with massive calculations' 
(Reference 11, p. 96). As we shall see in the following sections, the above approach will lead 
to a number of unexpected and convenient results which are difficult to find in the framework 
of established econometric or psychometric methodology. In short, we believe that the 
approach using the central limit theorem and the delta method is an attractive method for large 
samples. Finally, and this is most important, the delta method gives true asymptotic dispersions 
and confidence bounds under minimal assumptions. The 'basic' postulates give correct results 
if the model that is postulated is strictly true. In cases where these postulates are not satisfied, 
we do  not know what confidence we should place on standard errors, t-values etc. 

In this paper we will investigate the large-sample approach in more depth. We continue to 
use the classical central limit theorem and delta method, but we emphasize that in addition we 
could use permutational central limit theorems in combination with tools such as the bootstrap 
and the jackknife. These alternative tools are even further removed from classical statistical 
modelling, because they substitute even more computer power for small-sample assumptions. 

Although this introduction focuses on one example, namely the simple linear model and 
ordinary least squares regression, the same considerations hold for the whole body of classical 
multivariate analysis. Of course multivariate analysis is used in many other empirical sciences 
besides econometrics. Therefore our paper does not deal with a problem that is exclusive to 
econometrics. Our discussion applies equally well to  the use of multivariate analysis in 
sociometrics, psychometrics, biometrics, and so on. Indeed in many of these fields similar 
reorientations on statistical techniques are going on. 

Before we go on to the next section we give some references to related work. The problem 
of regression estimation under non-standard assumptions was studied in the econometric 
literature by White. 14915 He investigated the behaviour of quasi-maximum likelihood estimators 
if  the underlying distribution is misspecified. Van Praag'6,'7 applied the approach outlined 
before. ChamberlainI8 proposed a related approach to simultaneous equations models. In 
psychometrics similar developments are going on in the analysis of covariance and correlation 
structures. Browne'' studied the adaptations that were necessary if the assumption of 
multivariate normality was relaxed to  multivariate ellipticity. Since 1982 the assumption of 
ellipticity has been relaxed further to  merely assuming finite fourth-order product- 
moments. 20- 26 

We try to unify aspects of all this work by using, from section 4 on, a general principle which 
we call the population-sample-decomposition principle. Applications of this general principle 
can also be found in References 27-29. This principle may be summarized as follows: we are 
interested in the consistent estimation of a population parameter vector f (C), where C is the 
population covariance matrix of a random vector X. The calculation of f ( . )  is a problem of 
calculus and optimization techniques. The value of f (C)  depends on C. It is estimated by E. 
If E is a consistent estimator and f is continuous, f (E)  is a consistent estimator of f (C).  The 
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distribution of f(2) depends on the distribution of E. Hence we obtain two aspects of any 
multivariate problem involving covariance functions: 

(a) devising a calculation procedure to calculate f (C)  for given C; this is the population 

(b) finding a consistent estimator of C and assessing its distribution; this is the sample aspect. 
In this introductory section we have tried to give the reader an intuitive idea of the main idea 
of this paper. For illustration we have used the classical linear regression model. In section 2 
we shall give a formal description of a fairly broad class of multivariate analysis techniques. 
In section 3 we shall derive the common statistical properties of our estimators, which all have 
the form of so-called covariancefunctions, under minimal or almost minimal assumptions. In 
section 4 we consider the modifications that result if it can be assumed that the observations 
are a random sample from a normal or elliptical population. In section 5 we study the case of 
controlled experiments and of repeatable samples. In section 6 we consider the classical situa- 
tion where a linear model is assumed to be true, and where the regressors are non-random. In 
section 7 a numerical example is considered. Section 8 concludes. 

aspect 

2. THE COMMON GEOMETRIC BACKGROUND OF PROBLEMS O F  BEST FIT 

In this section we shall concentrate on the so-called population aspect. This boils down to 
bringing to the fore the common geometric background of most covariance functions used in 
multivariate analysis. Statistical properties will be considered in the following section. 

Given a set of T observations of a k-vector X E R k ,  say { X , )  := I ,  natural curiosity dictates 
that one looks for regularity in the observations. For convenience we assume E(x) = 0. Such 
regularity may be described by a linear model BTX=O,  where BT is a ( p x  k)-matrix. It 
describes a (k - p)-dimensional subspace S(B) in R k .  Geometrically it implies that we hope that 
all observations are in a subspace S(B) of R k .  In reality this will not occur except for trivial 
problems. In that case we may look for a space that does not fit perfectly but best. Let a 
distance function d o n  Rk be given, then we may define the point ?B(X) C S(B) with minimum 
distance to X (see also Reference 30, p. 54). We define the average squared minimum distance 
of the observations (X , )  T=l to the subspace S(B) as 

The general problem of looking for a best fitting S(B) may then be succinctly described as 
min Ad(B). 

Let us restrict ourselves now to  the traditional case, where the distance function is of 
Euclidean type, i.e. 

B 

d Z ( x , ~ ) = ( x - ~ ) T Q ( ~ - ~ )  ( 5 )  

where Q is a positive-definite matrix. In that case it is well known that ?B(x) = PB(x) where 
Pg = I - Q-lB(BTQ-'B)-'BT is a projection matrix, depending on  the distance-defining 
matrix Q and the space BT? = 0 on  which x is projected. The mapping %B(x) = PB(x) is a linear 
mapping. This linearity is evidently caused by the special choice of d 2 ( . ,  .) in (5). 

It follows then that (4) may be written as 
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Expression (6) is a quadratic form in the xi's. Let us write A = (I - PB)TQ(I - PB), then (6) may 
be written as 

where 

Using the explicit expression for PB, (7) may be written as 

AQ(B; 2) = tr [B(BTQ-'B)-'BTE] (8) 

It follows then that minimization of (7) for given Q with respect to B yields a solution 
B = B(g), that is the solution B is a function of the sample-covariance matrix. We call such 
a function a covariance function for short. The vector %i,(X) is called the calculated counter- 
part of X and the vector X - %B(X) is called the calculated residual. 

The most familiar case is of course that where S is a hyperplane ( p  = 1) and Q = I. That case 
is known as orthogonal regression. If S is of dimension p < k ,  and Q = I it is also clear that 
S is spanned by the first p principal components, i.e. the p eigenvectors of 2 with largest eigen- 
values. If S is described by a set of (k  - p )  equations b:x = 0, bTx = 0, . . . , bX-,x = 0, the 
(k - p )  eigenvectors of g with smallest eigenvalues may be used for bT, . . . , bl-p .  It follows 
also from this argument that the matrix B is frequently not uniquely determined, but that the 
geometric set it describes, the subspace S ,  is mainly uniquely determined. We may say then that 
S is geometrically identified, although not algebraically. 

It is also possible to describe a subspace not by a set of equations but in its 'parametric' form 
by writing each point 2 E S as a linear combination % = rf of the columns of I". If r consists 
of p linearly independent column vectors, those vectors, constituting a basis for S ,  are called 
the 'factor loadings' and f the 'common' factor scores. It is then possible to  reformulate the 
above problem from its equation form into its parametric form. Then it follows that the 
optimal f is a covariance function as well. 

A case that frequently occurs in econometric practice is that some elements of B are known 
to be zero or one, or that functional relationships between elements of B are supposed to exist. 
In that case (6) has to be minimized with respect to B under the additional constraints on  B. 
The resulting B is again a covariance function B@), although not composed of eigenvectors 
of 2.29 

Now we want to make a few additional remarks that will not be pursued explicitly in 
the following sections. They deal with some complications referring to  the distance-defining 
matrix Q. 

1. If the matrix Q happens to be singular, it may be written after diagonalization as 

The set of points with equal distance p to the origin is given by xTQx = p 2 .  Geometrically 
such a locus is not an ellipsoid but an elliptical cylinder. Consider then a hyperplane S 
described by the equation 

Ct'rxl+ . . .  + ( Y r X r + C Y r + I X r + l +  . . .  + ( Y k x k = y  
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There is not a unique point in S with shortest distance to the origin. If z E S is such a point, 
( z  + w), where w = (0, . . . ,O, wr+ I ,  . . . , w k )  and ( c Y ~ + I w , +  I + . . . + a k w k )  = 0 is such a 
point as well. It follows that PB is not uniquely defined. Geometrically this is solved by 
projecting all observations parallel to the cylinder axis to a space of dimension r before 
doing any fitting. Algebraically this boils down to replacing (B*Q-'B)-' in PB by a 
Moore-Penrose inverse. As before the optimizing B will be a covariance function B(E). 

2. Exogenous and endogenous variables. The case which may be viewed in some sense as the 
opposite extreme of the previous case is implicit in the traditional econometric assump- 
tion, that there are exogenous and endogenous variables. This is clarified by comparing 
the case of orthogonal regression with OLS regression. In orthogonal regression the 
minimum-distance projection of X on the plane BTX = 0 is found by perpendicular projec- 
tion, as dictated by Q = I. In the OLS case the minimum-distance projection X on the 
plane is realized by vertical projection. In the first case all co-ordinates of X differ from 
the corresponding ones of %(X). Let us write X = ( Y ,  Z )  where Z is a ( k  - 1)-vector. In 
the second case only the co-ordinate of the endogenous component Y of X is changed 
while the (k  - 1) exogenous components Z are not changed in the projection. 

If n(X) = ( f ,  2) it follows that 2 = Z. Such a projection may be seen as a limiting case 
where 

(cf. also Reference 30, p. 96). 
In a similar way we may consider a space of dimension (k  - p) defined by the system 

of p linear equations, Y = BTY + B:Z or (I - BI)'Y + BT2Z = 0 where X is decomposed 
into a p-vector Y and a (k  - p)-vector Z. In the case of a general Q matrix the Q projection 
of Z on S will be n(X), where all components of X differ from their corresponding ones 
in n(X)  = (f, 2). Consider now the case where 

Q =  lim [ Q p  OT ] 
A-rm 0 X I k - p  

3 

In that case there holds 2 # Y and Z = Z. This is the case of simultaneous equations, 
where it is assumed that z is exogenous and where Qp'  is the covariance matrix of the 
disturbance terms. 

Frequently some additional constraints on BT are added t o  ensure algebraic identifia- 
bility of BT. If BIT = 0 we have already the reduced form or we are faced with a case of 
'seemingly unrelated regressions'. 3 1  In all cases, however, it is obvious that a minimizing 
solution is a covariance function B = B(E). 
Iterative improvements. The choice of the fitting criterion, specified by the symmetric 
weighting matrix Q ,  implies a value judgement on  the size of the residuals we like to  
tolerate. The result of applying a specific Q may be rather large residuals on  one dimension 
and rather small on others. A special example is the case, described above, where Q is 
specified in such a way that on  ( k - p )  dimensions, corresponding to the exogenous 
variables, only a zero residual is tolerated. 

Sometimes there may be a firm apriori  basis in choosing a specific Q as fitting criterion. 
In most applications, however, there is no firm basis to  choose a specific Q, and one uses 
the identity matrix I to  begin with. Then the result may be rather unfortunate. Let X be 
a 2-vector, and let var(X1 -a l (X) )  = 100 and var(X2 -&(X)) = 1. If X I  and XZ are 
roughly comparable in variation and are measured on comparable scales to begin with, 
a researcher may be rather unhappy with this fitting result. The natural inclination may 
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be to  repeat the fitting after a new scaling of the variables, where the natural choice is to 
divide the X1 component by 10. More generally let the covariance matrix of the residuals 
in the first stage be 

(10) 

then we rescale the observations as X'" = (R'")-"X and apply the same fitting procedure 
with Q = I as before on the rescaled observations. An alternative interpretation is that the 
rescaling of the observations is equivalent to  a change of the weighting matrix from I into 
Q"' = (R('))-' and applying a fitting with Q(') on the observations measured on their 
original scale. 

This fitting procedure may be repeated until R("), the covariance matrix of residuals 
resulting from the nth trial, has approached the identity matrix I sufficiently close. This 
rescaling or reweighting procedure is essentially the gist of the 'third stage' in three-stage- 
least-squares procedures. Except for an a priori fixed Q and a variable Q there are also 
intermediate cases where Q is neither completely predetermined nor completely free. In 
such cases Q may be postulated to be diagonal, or tridiagonal or block-diagonal or other- 
wise patterned. These special cases are treated in more detail in Reference 32. In the case 
of iterative improvement it is obvious that R(') is a function of 2, as the first-stage 
residuals are 

with B = B(')(g) the estimation result of the first fitting stage. Hence it follows that 
minimization of (6) with respect to B, where Q") = (R('))-', yields an improved estimate 

Summarizing the results of this section, we have shown that a wide variety of so-called 
multivariate problems, the main tools of analysis in econometrics, psychometrics and 
sociometrics, may be reinterpreted as fitting a linear subspace to  a set of observations according 
to a specific criterion. The second and most important result is then that both the best-fitting 
B( 2) and the corresponding sum of squared residuals A(B; 2) are functions of the observa- 
tions' covariance matrix 2, where the functional specifications of B ( 2 )  and A(B; 2) vary with 
the specific fitting problem. 

1 R " ' = ? C  [Xt-%(Xt)] [(Xt-%(X,)IT 
I 

x - sl(x) = Q-'B(B~Q-'B)-'B~X 

B(') = B@)(€). 

3.  STATISTICAL PROPERTIES OF MULTIVARIATE ESTIMATORS UNDER 
MINIMAL ASSUMPTIONS 

In the previous sections we considered the regression problem and later the general multivariate 
best-fit problem to  introduce the concept of a covariance function. 

In this section we consider the situation where we have different sets of observations and ac- 
cordingly different estimates B(') and B('). Then immediately the problem arises how to  recon- 
cile these two different findings if we feel that the two phenomena studied are not different. 
The answer is to  assume a statistical context. The two sets are two different samples of the same 
population and B(') and B(') are two different estimates of the same population value B. This 
calls for the definition of a best-fit problem in population space.' Consider (6). If the xi's are 
assumed to be i.i.d. and E(X) = 0, it follows that the population counterpart of (6) is 

(1 1) A ~ ( B )  = E ( X ~ ( I  - P&Q(I - P~)x) 
= tr [B(BTQ-'B)-'BTC] 

where C = E(XXT). 
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The best-fitting linear subspace BTX = 0 is then found by minimization of (1 1) with respect 
to B, yielding B = B(C). We notice that the function B(. )  solving the population problem is 
analytically identical to the function B(.)  solving the sample problem (8). The difference 
between B(') = B(Z1), B(') = B(&) and B(C) is only caused because 21 # €2 # C. Hence, it 
follows that any descriptive statistic, such as the ones considered in the previous section, can 
be reinterpreted as an  estimate of a population parameter. By definition B ( 2 )  is an estimator 
of the corresponding population parameter B(C). 

We notice at this point two things. In the first place, although the estimators we are studying 
are frequently identical to  those appearing in traditional multivariate theory, the way in which 
we derive them is different from the usual procedure. We started with a criterion function based 
on a geometric approximation problem. This gave us descriptive statistics of the form B@),  
which can be subsequently interpreted as estimates of the corresponding parameter in the 
population best-fit problem. In classical theory one starts usually with a parametric model, say 
with parameter B. Then we find a function B(.), such that B(C) = B, and it is estimated by 
B@). Although the outcomes of the two approaches may be the same there is a considerable 
shift in emphasis. We start from the geometry and make minimal assumptions, namely that C 
exists. Classical theory starts from a postulated model and makes much stronger assumptions. 

In the second place we note that our statistics are formally identical to ML estimators under 
the assumption that the X t s  are sampled from a multivariate normal distribution. However, 
they continue to  make sense in our frame of reference if there is no multivariate normal parent 
distribution. As already pointed out the statistical properties of B(E)  depend on those of 2. 
Now we shall derive the asymptotical properties for B ( 2 ) .  Therefore we have to assume that 
not only second-order but also fourth-order moments exist. This will be called from now on 
the 'minimal' assumption. The theory presented here is thus a large-sample theory. 

Let us assume in this section that ( X , ) L l  is a random sample, i.e. the Xrs are drawn 
independently from an identical distribution (i.i.d.). Let us also assume that E(X) = 0. Then 

1. vec(2) 

2 .  T" vet@ - C)%N(O,II), iff II < Q) 

vec(C), iff c < Q) 

where 

n =  TE[vec(E - C)]  [vec(Z - C)IT (12) 

The matrix (1/T) Il is the approximate covariance matrix of second-order sample moments for 
a sample of size T. It is also called the kurtosis matrix. 1 9 9 2 ' - 2 3 2 3 3  

The first statement is an application of the law of large numbers on second-order moments. 
The second statement is an application of the Lindeberg-Levy version of the central limit 
theorem, which states that T" times a sum of i.i.d. variables tends asymptotically to be 
normal if that vector has a finite covariance matrix. 

The elements of n are Tij ,k/  = T COV(Cij, &I). There holds, 

Cov(C;j, 6kl) = E(Gij, 6kl) - E(G;j)E(&kl) or, ignoring smaller-order terms in this large-sample 

a i j , k l  = Pi jk l  - Uijgkl  (13)  

with Pijk/ the fourth-order central product moment of the distribution of X. Hence, as the 
existence of fourth-order moments implies that second-order moments exist, we find that 
T" vet@ - C)  is asymptotically normal if the fourth-order central moments of X exist. The 

context 
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matrix ll can be consistently estimated by replacing in (13) p;&I and a;, by their sample 
analogues. 

As C is symmetric, it follows that there are many identical elements in vet@ - C).  To  be 
precise there are ) ( k -  1)k equality constraints of the type a;,= aji. It follows that the 
covariance matrix ll is singular with a defect )(k - 1)k. However, as we shall not need to invert 
ll (except in section S), this will be no problem. It is possible to  replace vec(2) of dimension 
k2 by a vector of dimension k 2  - ) ( k -  l )k ,  being the vectorization of the lower half of the 
symmetric matrix C, but the notational complication does not seem worth while. 34,35 

Consider now B(2) .  If B is a continuous function 

B(f : )Y '  B(C), iff C c 00. 

Let us now consider the distribution of T%(B(E) - B(C)), and let us assume that B(.) is 
differentiable in a neighbourhood of C. It is asymptotically equivalent to  its Taylor expansion, 
i.e. 

(14) 
where [B(C)]  stands for the matrix of first-order derivatives of B with respect to  the elements 
of C. Its dimension is ( p k  x k 2 ) .  From (14) it is seen that the left member equals asymptotically 
a linear transform of an asymptotically normal vector. Hence, it follows that 

Tx [ B ( 2 )  - B(C)] $N(O, BTll B) 

The method employed is called nowadays the delta method (see section 1 for some references). 
Thus we have derived the large-sample distribution of our best-fit statistics, but actually of 
course of any covariance function. Nothing else is assumed than independent and identically 
distributed observations with finite fourth-order moments on  one side, and continuously dif- 
ferentiable covariance functions on  the other side. These assumptions are far more general than 
the assumptions classically used in multivariate statistical analysis. 

There are only two ingredients. In the first place we need to specify the function B(C), for 
instance as the function which provides the solution to a minimization problem. We also must 
prove that B(C) is continuously differentiable, and we have to  compute its derivative. This 
problem can be solved in population space; it does not involve the sample. It is, in general, a 
problem in analysis or mathematical programming to  define B(.) and study its properties. It 
is even not necessary to  find an explicit expression of B, when its derivatives with respect to 
C can be derived from a system of implicit differentiable equations. 

Our second ingredient is an  estimate of C in terms of the sample. We also need a form of 
the central limit theorem that applies to this estimate. But this second ingredient does not 
depend in any way on the particular function we are minimizing or its resulting solution B(.); 
it only depends on the statistical properties of the sample covariance matrix 2. By carefully 
distinguishing between these two components, we have split up the computation of the asymp- 
totic distribution into two subproblems. The first one, which has to  do  with calculating B(.) 
and its derivative, we call the population problem. The second one, which is the calculation 
of 2 and its asymptotic distribution, is called the sample problem. Studying these two com- 
ponents separately for each problem, and combining them afterwards to a single result is called 
the population-sample decomposition approach. We shall exploit this idea in the sections to 
follow. 

T" vec(B(2) - B(C)) = TX[B(C)lT vec(E - C)  
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4. STATISTICAL PROPERTIES OF B ( 2 )  IF THE DISTRIBUTION OF X IS 
KNOWN TO BE ELLIPTICAL 

In the previous section we derived a general large-sample result on the distribution of B(E), 
where our only assumption was that XI, . . . , X T  were i.i.d. with finite fourth-order moments. 
The matrix II was estimated by equation (13). In the coming sections we shall assume that we 
have some additional knowledge on the data-generating process. 

Let us assume that we know the common distribution of X, then it is evident that we can 
use that additional knowledge. The general theorem remains true (of course), but we may find 
an  expression for II by making use of our knowledge of the data-generating process. 

Let us assume that the parent-distribution of X is ekipticai, where an elliptical distribution 
is described by a density function C’(X~C-~X) and C a normalizing constant. The normal 
distribution is a special case with f(xTC-Ix) = C exp( - rxTC-’x). This distribution family, 
extensively studied by Muirhead, 33 among others, is very rich and nevertheless only slightly less 
tractable than the multivariate normal subfamily. In this special case we have 

n = [ X h i , j / l  

with 

?Thi,j l  = X ( U h i U j /  + UhjUi/ + U h l U i j )  + UhjUi /  + Uh/Ui j  (15) 

where x is the common kurtosis parameter. In the case of normality x = 0. It can be shown 
that the marginal distributions of XI, . . . , Xk have the same kurtosis defined by 3x = x $ ( x i ) ’  
( j  = 1 ,  . . . , k )  where xi and xi are the second- and fourth-order cumulants of A’;. 

The estimation of x and the test whether X is elliptically distributed can be based on the 
identities’ 

J 
2 - ~ 2 -  O1:I2(=uJJ) 

x: = p; - 4 p ; 4  - 3&32 + 1 2 4 ( 4 ) 2  - 6(4)4 

where p: = E(X: ) .  
As in our example p1 = 0 we find as sample estimate of 3 x  

jii/(ji$ - 3 = 3 2 ,  j = 1, . . . , k 

We see that, if X is elliptically distributed, then 

Tyzvec(B - B )  -+ N(0, V ) ,  with V = BTnB 

and Il defined by (15). It can be shown that x > - 2/3 (Reference, p.143), in order that the 
integral of the density converges. We ignore the case x = - 2/3 which yields a two-point 
distribution (see Reference 36, p.88). 

The advantage of the elliptical assumption is clear. If x is known, we do  not need to  estimate 
any fourth-order moments of X, as (15) may be evaluated by second-order moments only. 
However, for a sample not positively known to  be from an elliptical population, it will not give 
the correct estimates of the standard deviations of B, for (15) will not equal (13) (see section 
7 for empirical comparisons). Let us denote ( 1  5 )  as 

(1) (2) 
?Thi , j l  = ‘“hi , j I  -k =hi,jI  

where II(’) and II(” are defined by the first and latter two terms of (15), respectively. 
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Accordingly we may write 

n = *n(’) + n(2) 

The matrix Il is a positive semi-definite (p.s.d.) matrix for all x > - 2/3. Let us define for two 
p.s.d. matrices Al,  A2 the matrix inequality as A1 2 A2 if and only if xTAlx 2 xTA2x for all 
x c R k .  Then it is easy to see that n is a p.s.d. matrix, increasing in K .  This leads to an  important 
corollary, namely that the covariance matrix of any covariance function B(E) is also 
monotonically increasing in x .  This may be seen as follows. 

Consider CTAC with A positive semi-definite and C an arbitrary matrix, such that the vertical 
dimension of C is equal to  that of A. Then CTAC is symmetric and it is also positive 
semi-definite. It follows that i f  A1 2 A2 then CTAIC 2 CTA2C. Applying this on II and BTIIB 
it follows that the covariance matrix 

(19) 

is increasing in x as well. Notice that the second term on the right hand side of (19) is the 
covariance matrix when x =0, that is under the assumption that X is drawn from a normal 
population. 

v = xBTn(’)B + BTn‘2)B 

5 .  CONTROLLED EXPERIMENTS AND REPEATED SAMPLES 

Another bit of prior knowledge may be that some dimensions of the observations may be con- 
trolled, e.g. by a quota design, or that the same set of objects may be observed repeatedly. Up 
to  this point we have assumed that the data-generating process could not be influenced by the 
researcher. In this section we shall study two situations where the researcher may influence the 
data-generating process. 

The first situation is that of the laboratory experiment. Let X = (Y, Z )  where Z is a vector 
of (k  - p) explanatory input variables to be determined by the researcher for each observation, 
and the p-vector Y is the resulting output to be measured and to be explained. In such a case 
Nature is partly replaced by the researcher; and as a consequence the marginal distribution of 
Z in the sample is determined by the researcher as well. The distribution of Y in the sample 
is conditioned by the marginal distribution of Z. This situation is not only prevailing in 
laboratory or agricultural experiments but also in samples that are drawn according to a quota 
design; for instance, a household sample may be designed to  include 60 per cent one- 
breadwinner and 40 per cent two-breadwinner families or to  have a specific income distribution. 

The second situation of the repeated sample is related to  the previous one but different. Again 
X = (Y, Z )  and the marginal distribution of Z with density fz(.) is assumed to be fixed over 
repeated samples. However, in contrast with the controlled experiment, in this case fz(.) is not 
determined by the researcher but by Nature. This situation is found if we start with a random 
sample [X!’) ] f= 1 = [ (Y!’), Z,(’)] f= 1 and then re-observe the objects where the Z is kept un- 
changed but Y is changed subject to  random influences. Repeated observations then yields a 
sample [X,‘”) = [Y!’), Z,(’)]. This situation is frequently assumed in econometric theory, when 
we speak of non-random explanatory or exogenous variables Z or of ‘fixed in repeated 
samples’. 

Both cases have something in common. If (2,) is fixed, it follows that ZZZ is fixed, i.e. non- 
random. The elements E:UU and EYZ of the covariance matrix E are random. This has implica- 
tions for ll, the covariance matrix of the asymptotic distribution of 

T %  vec(A2) = T”[vec(E) - vec(C)] (20) 
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For convenience we strip 2 of its non-distinct elements and take vec(2) to  be a vector of length 
f k ( k  + 1) and II a square matrix of the same order. Further, we partition rI as follows: 

1 rIYY,YY nYY,Yz IIYY,ZZ 

rIYZ.YY rIYZ,YZ nyz,zz 

rIZZ.YY rIZZ,YZ rIzz,zz 

where the submatrix ~IYY,ZZ corresponds to  the asymptotic covariance matrix of 
T” vec(A&y) and T” vec(A&) and the other submatrices are similarly defined. Owing to 
the non-randomness of &Z it follows that IIZZ,ZZ = 0 and actually the whole third row and 
column of (20) vanish. It is this property that is rather attractive if we look, for instance, for 
the distribution of the linear regression coefficient 6 = f2id EYZ in the simple case p = 1, 
k = 2. If && is non-random, 6 is just a linear function of &z. 

Let us partition Bg = (B:Y, BFz, Biz), then 

IIYY,YY 
nyy,yz] [ 4;;] [ rIYZ.YY rIYZ,YZ 

v = [BCY, BL] 

At this point we have to  deal with the two situations separately. We start with the controlled 
experiment. The question is whether T” A ~ Y Y  and T ”  A& tend asymptotically to normal- 
ity. Consider 

I F  
Tr=1 

where Y,, Z f  are scalars and Zf is determined by the research design. It is explicitly observed 
that in this context Zf is non-random. The factors YfZf in this sum may be mutually independent 
and drawn from Tdifferent distributions. In the simple and popular case that Yt - N(PZf, a’), 
it can be seen that 

l T  
Tf=i 

var(T%uz) = u* - c Z :  

However, even in that case, it is not ensured that T” A ~ Y Z  and T” A ~ Z Z  tend to normality. 
Cases may be constructed where the Lindeberg-Feller condition does not hold, for instance let 
Zt = t(t = 1, . . . , T) and let var(Yf) = u2.  Then var(ZfY,) = t2uZ  and the Lindeberg-Feller 
condition does not hold. It follows that T” A ~ Z Y  does not tend to normality and the 6 
method cannot be applied either. 

Let us suppose, however, that asymptotic normality of T” A E Y Y  and T” ACYZ may be 
assumed. Then the elements of the middle factor in (22) are assessed by (13). It is obvious that 
the choice of our sample design IZ,) is basic. It determines CZZ and the distribution of &Z 
and ~ Y Y  will vary with the choice of the sample design (except if we hypothesize the existence 
of  a linear model, describing the relationship between Y and Z; this case will be considered in 
Section 6).  

Let us now consider the case of the repeated sample. To  obtain more insight into this case 
we define a primary sample [Xi’)) T= 1 = (Y;’), Z?] T= 1 and a repetition of it in some sense, 
namely [X,(2)) r=l = [Y1‘2),Z!1)] ?=I. The Z f s  are kept equal in the repeated sample to  their 
counterparts in the primary sample. If XC1) is a sample of i.i.d. drawings, the corresponding 

ayz=- c YfZ, 

E C U Y Z )  = - c (PZ,)Zf 

l T  
T ( = I  
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sample covariance matrix E(') is a consistent estimator. In a repeated sample framework the 
question is now what will be the distribution of B(f;) over repeated samples, that is samples 
where Z(" = Z(2) a nd consequently z&= E$&. The answer is found by considering the 
distribution of vet@) given that EZZ is constant and equal to E$&. First we notice that if 

vec(2) tends to  be normal if T is large, then, under some continuity conditions, the conditional 
distribution of vec(2) given that ~ Z Z  = €$& will be asymptotically normal as well. 37 Let us now 
partition the covariance matrix (20) of the asymptotic distribution of T" vec(AC) as 

*= [2 21 
where I I 2 2  corresponds to EZZ. Then the conditional distribution of T" vec(AC) is asymp- 
totically normal, and if the sample size is sufficiently large the conditional expectation of vec(2) 
is approximately given by 

However, asymptotically ZZZ is unbiased, so the second term on the RHS vanishes. It follows 
that CYY and EYZ are asymptotically unbiased in repeated samples. 

In a similar way we find for the conditional covariance matrix that it equals 

nf? = n,, - n12n2n21 (25) 
where we notice that n22 is non-singular, as we use in this section vec ( t )  in its reduced version, 
stripped of its non-distinct elements. Consider now the distribution of B(E) under the condition 
that CZZ is fixed, that is B(f:'2)). It is approximately normal in large samples with expectation 
B(C) and covariance matrix (1/T) times as defined in (22) where the middle matrix is ll;? as 
given in (25). Partitioning Bg = (Bf, Bz) like we partitioned ll in (23) we find 

v(2) = BTnpBI (26) 
for the conditional analogue of V,  i.e. if ll!? is used rather than l-Ill. 

imate large-sample distribution of B and the unconditional one by rewriting (26) as 
Now we may make a comparison between the conditional covariance matrix of the approx- 

where lT(2) stands for the middle factor in (27). The unconditional covariance matrix is 
evaluated as before by 

It can be shown that V(2) 5 V, which implies for the diagonal elements, that all standard devia- 
tions of B(2) are estimated smaller than their unconditional counterparts. That V(2) I V follows 
by comparison of 11(2) with n. Consider the difference (n-l-I(2)); it can be shown to  be 
positive semi-definite. We have 

It follows that (n - 11(2)) 2 0, if the middle factor in the last matrix product is positive semi- 
definite. & is positive definite as it is a covariance matrix of &. Let m = i ( k  - p ) ( k  - p + 1) 
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so that the matrix I I 2 2  is of order rn x rn. Then 

d,] 
is a 2rn x 2rn matrix with rn positive eigenvalues and rn zero eigenvalues. Its eigenvalues and 
eigenvectors depend in a simple way on the eigenvalues and eigenvectors of I I 2 2 .  Let X be a 
(positive) eigenvalue of IIzz, with corresponding eigen(row)vector tT, then (tT, i tT)  is an 
eigenvector of (30) with eigenvalue X + X - ’  > 0 and (ET, - ( l / X ) i T )  is an eigenvector of (30) 
with eigenvalue zero. If follows that II - II(’) z 0 and hence that II(’) 5 II. The difference is 
zero if and only if [ B r l l 1 2  BF] is in the null space of (30). This is a serious restriction, an 
example of which will be given in the next section. In all other cases we have to end with the 
rather disturbing but intuitively plausible result that assuming variables to be constant over 
samples, when they actually vary over samples, yields too small, that is too optimistic, standard 
deviation estimates for multivariate estimators of the covariance function type. From the 
numerical example in section 7 it will be seen that this underestimation may be quite serious. 

6. THE MODEL ASSUMPTION 

In this section we shall look for the difference between the best-fitting approach outlined above 
and the classical approach. We consider at first the most simple case of OLS regression. 

We have a sample of i.d.d. two-dimensional observations, measured as deviations from their 
means, [X,) = [ Y,. Z,)  f= 1 and we look for a linear regression line through the observations that 
gives the best fit to the sample in the sense of the OLS distance definition given in section 2 ,  
i.e. (I/T)CT=l ( Y ,  - PZ,)’ is minimized with respect to p, yielding an estimator b = C Y,Z,/CZ:. 
Its large-sample distribution has been derived in the introductory section. 

Let us write X, = (BZr,Z,), then the residual vector is XI- X, and we may write 
Y, = 6Z, + ( Y, - p,) = 6Zt + e,. So by the definition of the residual e, any Yr may be written as 
the sum of a structural part and a residual. Minimization of the sum of squared residuals entails 
the normal equation (l/T)Cf=l (Y ,  - f f ) Z f  = 0,  or in words the residual is uncorrelated with 
the explanatory variable Zr. A similar argument may be pursued for the population space. 

It follows that for any random vector X = ( Y ,  Z )  with zero mean we can maintain that there 
is a such that in the population space 

1. Y = p Z + &  
2. E ( E ’ )  is minimized 
3.  E(&)  = 0, E ( & Z )  = 0 

It follows also that for any random sample (X,) = [ Y,, Z,) 1 f= 1 we may find a 6 such that 

1. Yf = 6Zt + er 
1 2 .  - C e: is minimized 
T 
1 1 3.  - C (e,Z,) = 0,  - Ce, = 0 T T 

(32) 

The properties 1 ,  2 and 3 are the traditional assumptions of OLS regression. Logically they 
appear not to  be assumptions or postulates for they hold always. What then is the difference 
between classical OLS regression and the approach outlined above? That there is a difference 
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is clearly demonstrated by the fact that we found in section 1 an expression for var(6) different 
from the classical expression. The difference with the classical model has to  do with the nature 
of the disturbance term E .  

Consider formula (3).  We may write ~ Y Z  = 6 ( p ~ + ~ ) z  = P ~ Z Z  + ZEz. Using this expression we 
obtain for the variance of the normal approximation of the large sample distribution 

[ P * var(6zz ) + 2~ COV(~ZZ,  6zE) + var(6zC)l 1 

After reordering this expression it simplifies to  

1 
uzz 

var(6) = 2 var(6zC) 

The classical formula is 

(34) 

The question is now when var(3zC) may be written as UZZU~~/T. This is possible if A and E are 
mutually independent. To be sure, cases may be constructed of ‘higher-than-fourth-order’ 
dependence where var(&,) = U Z Z U ~ ~  still holds, but for all practical purposes the distinction 
between those cases and independence is irrelevant. 

In the present context where we give special attention to  the covariance matrix of the sample 
moments it is interesting to realize that equality of (34) and (35) implies a restriction on ll. 
Writing A0 = b - P ,  we have 

A/3 = - 1 (AUYZ - PAOZZ) 

uzz 

The variance of the expression between brackets equals var(6zE). Equality of (34) and (35) 
implies 

(37) ~ Y Z , Y Z  - 2 P n ~ z . z ~  + P2nzz.zz = ~ - u z z / T  

with 
2 P = UYZ/UZZ and ucc = UYY - O Y Z / U Z Z  

The implication of (37) is a rather strong restriction on the second and higher moments of 
( Y , Z ) .  

For intuitive reasons we would prefer to speak of a true model to  exist if Z and E are 
mutually independent. A straightforward generalization in terms of our general approach is 
then the following model definition: 

Definition of a model 

Let (X,] T= I stand for a random sample in R k  with existing fourth-order moments, then we 
say that [X,] obeys a model if there exist a proper linear subspace S and a metric Q on R k ,  
such that the random observation X may be written as 

X = X + E  
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where X = h ( X )  is the projection of X on S according to the Q-metric, and where X and E 

are mutually independent. This is clearly the case if X is drawn from a multivariate normal 
distribution N(0, C )  where Q = C-I. 

7.  A NUMERICAL EXAMPLE 

Our database consists of a cross-section of 2206 observations of households. For each 
household we know family size fs, its household income after-tax yc and an estimate by the 
head of the household of the minimum income ymin ‘he would need to make ends meet for his 
household’. Obviously this amount y m i n  depends on fs, while it is ‘anchored’ to current income 
yc. So a relation 

ln Ymin z Po + 01 In fs + P z  In yc (38) 

lies at hand. For the theoretical background, which is evidently psychologically flavoured, we 
refer to References 38-40. Our regression estimate is 

lnymin=4-563+0.157 Infs+0-5081nyc ,  R Z = 0 . 5 2 7 , N = 2 2 0 6  

The standard deviations of the regression coefficients are evaluated under various assumptions. 
We compare in Table I the following assumptions: 

1. ymin, fs, y ,  are i.i.d. random observations (section 3). 
2.  ymin, fs, y ,  are drawn from an elliptical parent distribution with 3x = - 1,  0, 2 ,  4, 6 (this 

3. The sample is a controlled experiment with respect to fs, yc. 
4. ymin, fs, yc are drawn from a sample, repeated with respect to fs, yc (section 5 ) .  
5 .  The sample is drawn from a population for which the approximating model is the true 

includes the case of a normal parent distribution ( x  = 0), section 4). 

model, that is there holds 

In Ymin = PO + P I  lnfs + 0 2  lny,  + E 

with E a normal error, not depending on the random variables fs and y,, but fs and y ,  
are random. The joint distribution of fs, y ,  is unknown. 

6 .  The sample satisfies the traditional OLS assumption, i.e. a controllable experiment (fs, 
y ,  non-random) and the model holds with E - N(0,  u’) .  

7. Finally we repeated the minimal approach in (1) and investigated its sensitivity to the 
sample size. We partitioned the sample into 11 subsamples of 200 observations each 
(ignoring the last 6) and calculated the s.d.s for these samples. In line 7 we report the 
average s.d together with their sample deviation over the 11 estimators in parentheses. As 
hopefully expected, those s.d.s are about i l l  times as large, and the small-sample 
deviations indicate that even for relatively small samples the deviation about the mean is 
quite acceptable. 

The first rather striking result emanating from Table I is that the reliability assessment of 
estimates, as reflected by their standard deviations (s.d.), varies a great deal with the prior 
assumptions made. For instance, when we consider the elliptical assumption with a varying 
value of x we find that normality is just one parameter choice among many and that the 
reliability of the same estimator on the same sample decreases rapidly if we opt for greater 
values of X .  Not by coincidence do  the classical linear model assumptions yield standard devia- 
tions identical to that under the normal assumption ( x  = O).’ From the table it is also evident 
that cases 3 and 4 are different, but that 3 and 5 are equivalent. It follows that the reliability 
estimates of the classical linear model (or of the normal parent population) cannot have any 
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Table I. Standard deviations under various assumptions 

- 
1. 
2. 

3 .  
4. 
5. 
6. 
7. 

P O  P I  P Z  

Random sample 0.330 0.017 0.034 
Elliptical sample 
x =  - 1  0.075 0.007 0.008 
x = o  0.129 0.012 0-013 
x = 2  0.167 0.015 0.017 
x = 4  0.197 0.018 0.020 
x = 6  0,223 0.020 0.023 
Controlled experiment 0.262 0.017 0.026 
Repeatable sample 0.227 0.013 0.023 
Linear model with normal error 0,262 0.017 0.026 
Classical linear model 0.129 0.012 0.013 
1 1  subsamples 0.820 0.048 0.084 

(1.923) (0.043) (0.095) 

special claim as being more valid than other estimates presented in the table. This is especially 
relevant as most s.d. estimates presented in Table I are much larger, which implies that the OLS 
standard deviations may give a rather optimistic outlook on the reliability. The values of the 
t-statistics used for significance tests may be too high; similar considerations hold for other fre- 
quently used test statistics. The main conclusion is that all assumptions 2 to  6, also that of OLS, 
are arbitrary choices and consequently that all reliability estimates have an arbitrary basis as 
well. 

Obviously, there is only one reliability estimate which does not suffer from arbitrary assump- 
tions. That is the estimator under minimal assumptions investigated in section 3, of which the 
corresponding standard deviations are given in line 1. It is seen that for this example the stand- 
ard deviations under minimal assumptions are larger than for most other assumptions. 
However, this is not always true (cf. x = 6 ) .  The only fact that always holds is that the assump- 
tion of repeatability diminishes standard deviations compared to  the minimal assumption. 

In this paper we have only considered the stochastic properties of large-sample estimators 
of covariance functions. In classical statistics parameter estimation is the counterpart. 

In this paper we do  not touch o n  the extension to  the testing of hypotheses, primarily for 
lack of space. However, it is fairly easy to  test hypotheses for their credibility. Let us assume 
that our parameter of interest is B ( 2 )  and let our hypothesis be that the true B E A where A 
is a set in the parameter space. As the asymptotic distribution of B(E) is known, also the chance 
P(B(2)  E A )  may be assessed. If it is small, we have to  reject the hypothesis. For instance, we 
may construct 95 per cent confidence ellipsoids as 

(B I (B - B)TV-l(B - B) < ~ 6 . 9 s )  
using the fact that RHS in the inequality is X'-distributed. It does not seem relevant to  consider 
traditional F-tests, as they are based on the linear model assumptions with respect to  residuals, 
which we do  not employ in our approach. 

8. CONCLUDING REMARKS 

In this paper we consider multivariate estimators as estimators of approximating models in the 
population space. We explicitly do  not assume that those approximating models are the true 
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sfructure; we even do  not take a standpoint as to whether the observations are generated by 
a structural model of any kind at all. 

Under our minimal assumption multivariate estimators are just covariance functions 
B = f (k), where 2 is a consistent estimator of C and hencce f (2) of the population parameter 
B = f(C).  If T i s  large, it implies that vec(AB) = B E  vec(AC), where vecAC is asymptotically 
normal and B$ a gradient vector. It follows then that AB may be seen as a linear combination 
of a normal vector vecAC, and that 

T" vec(AB) -P N(0, V) with V = BTIIB (39) 
where II is the asymptotic covariance matrix of T" vecAz. The specification of the vector d 
depends on the specific multivariate estimator used. The distribution of AB depends on the 
stochastic properties of A E .  It follows that different multivariate estimators derived from one 
sample have basically the same stochastic properties, determined by II. The functional 
specification B does not depend on the sample, but only on the population. Its evaluation B(E)  
as a consistent estimate of B(C) requires only that 2 is consistent. 

If specific additional assumptions are made, either with respect to the population distribution 
of the observed vector X, or on  the sampling procedure, or on the existence of a true model 
generating X, they affect only II and not B and B. It follows that the stochastic properties of 
all multivariate estimators will be influenced in a similar manner. Only the middle factor in (39) 
changes. 

When looking at multivariate estimators it follows that there are two dimensions, the choice 
of the function B = f (C)  and the stochastic properties of z. We call this decomposition the 
population-sample decomposition (PSD). Compared to the established theory there seem to  be 
two major methodological advantages inherent in the method we advocate. 

1. Usually one derives the distribution of B under a model hypothesis Ho. The choice of HO 
is mostly loaded with arbitrary elements, one of the heaviest being the requirement of 
simple calculations. It follows, however, that the reliability assessment of an estimate 
depends on the arbitrary choice of Ho. 

2. The distribution of B is calculated under Ho. However, if one or all of the assumptions 
of HO are violated, we do not know the distribution of B (cf. however References 4 and 
14 under the alternative). In our approach we do not make use of a maintained hypothesis 
Ho and an alternative H I .  This implies that we do  not meet such difficulties. The result 
under minimal assumptions derived with respect to  the distribution of B holds always. If 
there is an additional structure, its impact will show up in the general result automatically, 
without making any analytical provisions. 
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