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In this paper we study the large-sample properties of method of moment estimators (MME) of 
population parameters /? that result as explicit or implicit solitions of equations f(p, fi) = 0, 
where p is a vector of moments. The distribution of the corresponding large-sample estimator h 
resulting from solving f (m, h) = 0, where m is a sample moment estimator of p, is shown to vary 
with the sample design. We study the case of a random sample, of a pooled sample, a sample from 
a known population distribution, and a so-called repeated sample. Also we provide a numerical 
example. Our main conclusion is that any seemingly harmless assumption on the sample design 
may have severe repercussions on the estimation of confidence bounds. Therefore we advocate to 
take a kind of minimal set of assumptions unless we have hard a prior1 knowledge. 

1. Introduction 

In econometrics, like in all sciences, scientific development may be char- 
acterized by the rise and decline of paradigms. The first statistical paradigm in 
econometrics had not much to do with statistics in the sense of econometrics 
today. Statistical methods were purely descriptive and involved taking aver- 
ages, sample standard deviations, and at the top of sophistication regressing 
one variable Y on one or several variables Xi,. . . , X,. Researchers did not care 
about the fact that the estimated measures would vary among data sets. No 
standard deviations of estimators, r-ratios, etc. were calculated. With the work 
of Haavelmo (1944) and the Cowles Commission it was realized that econo- 
metrics is not only data collection and measurement but also statistics. 
However, if we have a data set { y,, xl}:=, and regress y on x yielding a 
regression slope coefficient b = Cx,y,/Cx:, then its stochastic properties can 
only be derived on the basis of some assumptions on the data-generating 
process. The standard procedure became to assume that the regression line 
was the true model, i.e., the data-generating process is described by an 
equation y, = px, + (Y + et, where E, is a random error term with E(E~) = 0, 
u2( Ed) = u 2. Clearly, this is a very restrictive assumption. In later literature 
[e.g., White (1980, 1982), Hansen (1982)] this assumption has been relaxed by 
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assuming that the model to be estimated may be a misspecification of the real 
model. 

In all those situations there is of course a natural inclination to test 
hypotheses about the true model by constructing test statistics the distribution 
of which under the null hypothesis can be derived. However, all these results 
are conditional in the sense that they only hold if the basic assumption of the 
true model holds. More recently it seems that we are returning to the modest 
standpoint that any model is really only an approximation of reality and that 
we can never claim that we have the true model analytically specified [see 
White (1980), Van Praag (1981), Chamberlain (1982) Hansen (1982)]. This 
implies that we cannot derive the probability distribution of our estimators on 
the basis of a model assumption. This situation is well-known in statistics, but 
it is not a problem for large samples as we may use the Central Limit 
Theorem. It states that the sum T- “‘(CX, - I$.,) is asymptotically normal 
N(0, V) under mild conditions, which may be loosely summarized by the 
following three assumptions: 

(a) The X, are i.i.d. 
(b) The X, have finite expectation. 
(c) The X, have a finite covariance matrix. 

This assumption set (or some of its many variations, allowing for not too 
different distributions or slight interdependence) seems to be roughly speaking 
the minimal assumption set to make asymptotic statements about sample 
statistics without knowing the distribution of the XI’s itself. This idea may also 
be employed for many econometric problems. 

First let us sketch the idea in its most simple setting. We have a random 
variable Y to be explained by a constant a and a random variable X. A best 
explanation is given by minimizing E( Y - /3X - a) 2 yielding the population 

regression coefficients p^ and B. It is well known that fi = ~,,/a,,, where ?vx 

and axx are the covariance between Y and X and the variance of X, 
respectively. The natural sample estimator is 6 = sJs,, where syx and s,, 
stand for the corresponding sample moments. Now it is well-known that the 
second-order sample moments T’12(s - a) are asymptotically normal due to 
the Central Limit Theorem, if their variances, i.e., fourth-order moments exist. 
As 6 is a differentiable function in p^ = a,,/~,,, it can be derived after 
linearization that T1/*( 6 - p) is also asymptotically N(0, V( 6)). 

More generally, let ,us assume a population approximation yielding a 
population parameter @ that is the unique solution of a set of equations 
f(p, j3) = 0, where p is*a ve$tor of moments and f is differentiable in (p, p), 
then we may estimate /3 by b, that is the unique solution of f(m, b) = 0, where 
m is the sample analogue of p. Let p stand for a kth-order moment vector 
and p2 stand for the corresponding 2 k th-order moment vector and let us 
assume pFL2 < co, then it may be derived that T112(h - p^) is also asymptotically 
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normal N(0, I’). The specification of the covariance matrix V depends on the 
asymptotic distribution of m. 

Clearly looking at economic models as approximations implies a fundamen- 
tal change for hypothesis testing. If one assumes model A to be true, weArnay 
derive the distribution of the parameter estimators of model B, say 8(B), 
under the condition that A holds,*and inversely. In the present approach we 
may find the joint distribution of 0(A) and 8(B) given the same data set. For 
instance, let 8(A) be h,(m,) and 8(B) be h,(m,). If the joint distribution of 
(m,, mz) is known, the joint distribution of h,(m,) and h,(m,) may be 
derived as well. Notice that B is not necessarily nested in A. Secondly, we 
may study the joint distribution of h( m(l)) and h(m(‘)), where m(l) and rnC2) 
are referring to a vector of the same moments, calculated on two dierent 
samples. 

The structure of this paper is the following. In section 2 we consider the 
traditional random sample. In section 3 we study the heterogeneous sample. 
Section 4 investigates the case of a sample from a parent distribution that is 
known to be normal or elliptical. In section 5 we consider panels. Section 6 
gives a numerical example and section 7 concludes. The objective of this paper 
is not so much to strive for utmost generality as to provide some easily 
applicable formulae for the situations we encounter in practice. It should be 
emphasized, that we assume that our samples consist of i.i.d. observations, 
that is, we are not considering time series. We believe that the philosophy of 
this paper may be extended to that domain, but for reasons of space and 
exposition we do not make an attempt at this place. 

2. Method of moment estimators in a random sample 

Let us assume a random vector X on which we have T i.i.d. observations 
{ X,}T=i. We are interested in a population parameter vector p, that is a 
unique solution of an equation set f(p, /3) = 0, where p is a vector of moments 
and f a differentiable vector function in an open neighbourhood about (p, p). 
Let m be the sample analogue of CL, where T’i2(m - p) is asymptotically 
N(0, V) distributed. The estimator 6 is the solution of f(m, 6) = 0. So we have 
f(p, fi) - f( m, 6) = 0 and it follows that up to a first-order approximation 
there holds 

Vf,(m - P) + VfB( 6 - P) = 0, 

where of, and vfs are gradient matrices of f with respect to ~1 and /I. 
If the number of parameters p equals the number of equations f( .) = 0 and 

if of, has full rank, we get asymptotically 
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and consequently, if T’12(m - CL) is N(0, V), we get 

~‘/~(i - ,&) 2 N(0, V(i)), 

where 

m) = T(vffl)-lvfpv[(vffl)-lvfJ. (2.1) 

Here we applied the so-called delta-method [see, e.g., Rao (1973)]. Let us now 
consider how I/ is consistently estimated. Let M, = g( X,), p = E(M), m = 

(l/T)CM,. (We think of g as any measurable function of X with finite 
expectation.) Then we have plim(m) = /J, and 

I’= T.E(m-&n-p)‘, 

is estimated consistently by 

P=i 6 (M,-p)(Mt-p)‘= +il(M,-m)ot-~)‘. (2.2) 
r-1 

Actually (2.1) assessed by evaluating p^ by 6 and V by (2.2) yields a general 
formula for the covariance matrix of the asymptotic distribution of T’/2(6 - 

fi). If V does not exist, it follows that (2.1) is not finite as well. This formula 
(2.1) requires the calculation of sometimes formidable derivatives but it is a 
very general formula. In practice most estimators of linear models are func- 
tions of the sample covariance matrix S of X, while the covariance matrix of 
vet(S) depends on fourth-order moments [see also Wesselman (1987)]. 

Consider for instance two competing models A and B, where the estimators 
6A and 6, are solutions of f,(S, 6) and fs(S, 6), depending on the same 
covariance matrix S. Then we may derive the joint distribution of (iA,, 6,) by 
applying (2.1) on the function 

fA(St b) 
f(S, 6) = fs(s, b) . 

[ 1 
This may be an alternative approach to compare various non-nested ap- 

proximating models. In the literature Hansen (1982) considered the gener; 
alized method of moments estimators (GMME). The population paramtter /3 
is the solution of an equation set E,f( X, p) = 0 which is estimated by 6, the 
solution of 
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Here th5 distribution of the separate random elements depends on the 
unknown /3. It follows that we arrive at a formula similar to (2.1) where the 
matrix V however depends on p^ as well. This is caused by the difference 
between Ef( X, j3) and f(p, p) =f(EM, p). There are many cases where the 
operations f( .) and E( ) may be interchanged by suitable definition of M. 
For instance, in the regression case we switch from the natural variable X, to 
the cross-products X,,X,, = M,,, 1. There are other cases where such a change is 
impossible. An example is the Probit model. It follows that Hansen’s model of 
GMME includes the class of MME considered here. However, as the MME 
are so easy to handle we believe it worthwhile to consider the MME in its own 
right. 

3. Heterogeneous samples pooled together 

Let us assume we have q mutually independent samples { X,“)}Ti i, 
. . ..{X1(4)}.~i, d rawn from q different distributions each of which is a random 
sample itself, and let us define T = E.P=,7;, with T./T =pi. The mixture of 
those samples will be called a heterogeneous sample. This situation may be the 
case if several samples from different sources are pooled or if we only have 
aggregate figures of subgroups available. It also may occur if we do not have 
enough computer memory to store the whole data set. 

Let us assume the subsample moment vectors are m(l), . . . , m(q) and their 
covariance matrices are Y(l), . . . , V(q), respectively, where those matrices may 
be estimated by (2.2). In that case we may calculate the overall moment vector 

m = plm(‘) + . . . +pqmcq), (3.1) 

the expectation of which is p. This yields the consistent estimator 6, the 
unique solution of f(m, b) = 0. As m is a sum of q mutually independent 
vectors, the pooled covariance matrix is found to be 

TV= T: pi{v(‘)+ (m(i)-p)(m(i)-p)‘}. (3.2) 
r=l 

In the special case that the samples have the same rnci) = m the latter term 
vanishes. In practice the population parameter p is estimated by m. If T is 
large, (m - p)T’12 is approximately normal with expectation zero and covari- 
ante matrix (3.2). The asymptotic results on b(m), derived in the previous 
sections, may be derived where V in (2.1) is replaced by (3.2). 

The situation becomes different if the subsamples become so small that we 
cannot reasonably assume the vectors m(‘) to be approximately normal. The 
limiting situation is that where T = q is large and T = 1 (i = 1,. . . , q). In that 
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case (3.1) is just a sum of many independent but not necessarily identically 
distributed vectors; it is well-known that also in that situation (m - P)T’/~ 
may tend to normality, if the conditions of the Central Limit Theorem are 
fulfilled. We shall not elaborate that case. 

4. The normal and elliptical parent distributions 

A popular assumption in practical work is that the sample is drawn from a 
specific distribution that is known. This has two advantages. First the MME 
can be interpreted not only as a geometric approximation but mostly also as 
an ML-estimator. Second, the asymptotic distribution of b(m) can be analyti- 
cally specified in some cases. 

It is common to assume that the family of k-vectors { X,}T=, has been 
drawn from a normal distribution N(0, Z).’ It is well-known that in case of 
normality all higher-order moments are functions of 2, hence any moment m 
and the derived parameter b(m) is known as soon as _YS is known and we may 
replace all higher-order moments by suitable expressions in terms of second- 
order moments. Then b(p) = g(Z). Similarly, estimation of higher than sec- 
ond-order moments p by m boils down to estimation of 1 by S. As soon as 
the covariance matrix II of the sample covariance matrix S is known, we 

know the large sample distribution of any 8(S). It is nearly costless to 
generalize this result referring to a parent normal distribution for the case of 
covariance functions. Let us assume that the parent distribution of X is 
elliptical, where an elliptical distribution is described by a density function 
Cg(x’_Y’x) with C a normalizing constant. The normal distribution is a 
special case with g(x’Z’-ix) = exp( - 1/2x’Z-‘x). The Student distribution is 
another member. This distribution family, extensively studied by Muirhead 
(1982) and others, is very rich and nevertheless only slightly less tractable than 
the multivariate normal subfamily. In the elliptical case it can be shown that 
the covariance matrix II of the sample covariance matrix S, defined by its 
elements 

77 hr.j/= s,I>, 

equals 

nhr./l = K(“hru,It ‘hjaii+ ‘hl’~,) +  (Jh/o,I+ ‘hl’iJ? (4.1) 

where K is the common kurtosis parameter [see Van Praag, Dijkstra and Van 

‘This applies for the structural model, but also for the so-called functional model specification, 
where the stochastic element is introduced by means of a random error term. Prucha and Kelejian 
(1984) generalized the latter approach to assuming the error term to obey a multivariate 
t-distribution. 
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Velzen (1985)]. In case of normality, K = 0. It can be shown that the marginal 
distributions of Xi,. . . , X, have the same kurtosis defined by 3~ = K~/(K{)’ 

(j=l,..., k), where ~‘2 and KS are the second- and fourth-order cumulants of 
X/. The estimation of K and a test whether X is elliptically distributed can be 
based on the identities [see, e.g., Cramer (1946)] 

K:=)l~-4~;~:-3(p:)2+12~:(~i)2-6(~:)41 

where 

p;=E(X;). 

As in our example pi = 0 we find as sample estimate of 3~ 

mi,/( m;)* - 3 = 3l?, j=l ,..., k. 

(4.2) 

(4.3) 

[See for a less naive estimator Mardia (1970).] 
We see that, if X is elliptically distributed, then 

T1’*( 6 - PI) 2 N(0, V( 6)) with V(h) = [&,]‘.II. vh2, 

and II defined by (4.1). It can be shown that K > - 5 [Rao (1973, p. 143)] in 
order that the integral of the density converges. We ignore the case K = - f 

which yields a two-point distribution [see Kendall and Stuart (1977, p. SS)]. 

The advantage of the elliptical assumption is clear. If K is known, we do not 
need to estimate any fourth-order moments of X, as (4.1) may be evaluated by 
second-order moments only. If K is unknown, we need one fourth-order 
moment to be inserted in (4.3). However, for a sample not positively known to 
be drawn from an elliptical population, it will not give the correct estimates of 

the standard deviations of 6 (see section 7 for empirical comparisons). Let us 
denote (4.1) as 

=hhr,/l = K,#j, + r(2) hr.//, 

where II(‘) and IIc2) are defined by the first and latter two terms of (4.1) 
respectively. Accordingly we may write 

fl = ,&‘) + IIt2). (4.4) 

The matrix II is a symmetric positive semi-definite (s.p.s.d.) matrix for all 
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K > - $. Then it is easy to see that II is a s.p.s.d. matrix, increasing in K. This 
leads to an important corollary. Substituting (4.4) into [ vbB]‘IT[vbz] it 
follows that for given S the covariance matrix V(6) is increasing in K. Notice 
that the second term at the right-hand side of (4.4) is the covariance matrix 
when K = 0, that is, under the assumption that X has been drawn from a 
normal population. [See also Wesselman and Van Praag (1987).] We notice 
two caveats with respect to this extension to the elliptical distribution. First, 
higher-order moments than second-order ones may involve other parameters 
than _Z and K, depending on the shape of the elliptical density g(x). Hence, if 
higher than second-order moments are involved in m, knowledge of 7~ is not 
sufficient to establish the distribution of the MME. Second, K is the common 
kurtosis of the K marginal distributions of Xi,. . . , X,. If they are significantly 
unequal, then our data are certainly not drawn from an elliptical population. 
Testing this equality would involve eighth-order moments. 

5. Panels 

Finally let us consider a panel. There is a crucial difference betwen the first 
and the latter waves of a panel. The first wave is a random sample in the sense 
of section 2. The second wave is correlated with the first. For instance, 
consider two waves of a household panel, which we denote by { Xj’)}T=, and 

{ X,“‘>TZ,, respectively. In general we may assume independence between 
households, but most certainly X,(2) will depend in a stochastic sense on the 
earlier observation Xj’). Formally, we may assume that the first wave is a 
random sample of observations { X,“)}T_i with a corresponding vector of 
relevant sample moments m(l). Consider now the second wave { X,“)}r=, with 
corresponding m(*). And let us assume we are interested in an estimate of /?, 
solving the population equation f(p, p) = 0. It is estimated on the second 
wave by &c2) which solves f(m’*‘, b) = 0. We may call 6c2) the second-wave 
estimate. 

It is obvious that there is a dependency between 6(*) and 6(l), the corre- 
sponding estimator on the first wave. Their relation depends on that between 
m(l) and m(*). Consider the joint distribution of (mu), m(*)). If T is large, that 
distribution tends to the normal and this holds also for the conditional 
distribution of m(2)]m(‘) [see also Steck (1957)]. Let us denote the conditional 
covariance matrix by ,Z,,,(*) 
($2) _ P”@))Ti/2 

,,(u, then the conditional asymptotic distribution of 
is normal with expectation zero and covariance matrix as in 

(1.1) with V replaced by _Zm(~),m~~). The precise specification of Zm,2),m(~J 
depends on the intertemporal relationship between X:‘) and Xt(2). In this 
paper we shall consider the simplest specification. Let the vector m be 
partitioned as m = (ml, m,), where ml has length p1 and m2 has length p2, 

and let us assume ml’) = rnP while rn$‘) and rn$*) are conditionally indepen- 
dent, that is, the conditional density f~(rn$~)lrn$‘), m$‘)) = h(m(2*)lm$‘)). 
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The general situation is the following. Let the unconditioned distribution of 
(m,, m,) be asymptotically normal with covariance matrix 

Vll Vl, v=v v. 

[ 1 21 22 

Then the conditional asymptotic distribution of rni2) given rni2) = mf') is the 
normal distribution where 

E( m$2)lm, (2) = ml')) = p2 + V21V;11(mi') - pl), 61) 

TV( m$2)lml (2) = mp)) = V22 - V2,Vl;'V12. (5.2) 

If ml') is a consistent estimator of the population parameter pl, (5.1) will tend 
to p2. However, it is obvious from (5.2) that TV(m(,2)Im{2)= m$')) < V,, if 
V2,Vl~'V12 > 0. For functions iC2) = b(mi2), mi2)) it implies that sC2) is only 
random by virtue of mi2) but not by m p), which is known beforehand to equal 
ml'). 

Eq. (2.1) is still applicable, but the covariance matrix in (2.1) is reduced 
for two reasons. First no derivative is taken with respect to m, as it is non- 
random. Hence the dimension (p xp) of V in (2.1) reduces to ( p2 X p2), 

where p2 is the length of m2. Second V is replaced by (5.2). The matrix (5.2) 
it:elf is estimated by its sample analogue. Hence the covariance matrix of 
(b(i) _ p^(i))7-‘/2 may be written as 

v(P)) = VbV[ Vb]‘, 

where [~b,~l= [vfJ'vfm, [see @I)]. 
The covariance matrix of (hC2) - p^c2))T1/2, given mf2) = ml'), equals 

V(i'2'Im(,2'= ml')) = [VbJ( V2,- V12V~‘V21)[ Vbm,]'. 

This implies for standard deviations that any standard deviation of a 
component of P2) is smaller than that of the corresponding component of 
h(l). This outcome may be quite important for the construction of tests and 
confidence bounds. 

A rather familiar example of this situation is also hidden in the classical 
regression model 

Y = p’x+ E, 

where X is assumed to be non-random (i.e., determined in a, previous wave) 
and hence Z:,, fixed. For the OLS regression estimator b = S;$S,, this 
implies that S,,( = ml) is constant over subsequent samples and that we are 
in the second wave of a panel as just described. This implies then for the usual 
OLS model, that assuming the OLS classical model with S,, constant, while 
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the sample is completely random (i.e., S,, random as well) yields too 
optimistic conclusions for reliability, too small standard deviations, and too 
narrow confidence intervals [see also White (1980), Van Praag (1981) and 
Van Praag, De Leeuw and Kloek (1986)]. 

6. A numerical example 

In this section we illustrate the previous findings for the case of OLS 
regression, where we assess the standard deviations of the regression coeffi- 
cients under various assumptions on the data-generating process. Our data 
base consists of a cross-section of 2206 observations of households, which are 
assumed to be i.i.d. For each household we know family size fs, its after-tax 
household income y,, and an estimate by the head of the household of the 
minimum income y,, ‘he would need to make ends meet for his household’. 
Obviously this amount ymin depends on fs, while it is ‘anchored’ to current 
income y,. So a relation 

lny~~-p,+PllnfS+Pzlnr,, (6.1) 

lies at hand. For the theoretical background, which is evidently psychologi- 
cally flavoured, we refer to Helson (1964), Van Praag (1971) Goedhart et al. 
(1977) and Van Praag (1985).2 

Our regression estimate is 

In ymin = 4.563 + 0.1571n fs + 0.508 In y,, R2 = 0.527, N = 2206. 

The standard deviations of the regression coefficients are evaluated under 
various assumptions. We compare in table 1 the following assumptions: 

(1) ymin, fs, y, are i.i.d. random observations (section 2). 

(2) ymin, fs, y, are drawn from an elliptical parent distribution with 3~ = 
- 1, 0,2,4,6 [this includes the case of a normal parent distribution (K = 0), 

section 41. 

(3) Y,,“? f% YC are the second wave of a panel, where fs and y, are fixed 
(section 5). 

(4) The sample is drawn from a population for which the approximating 
linear equation is the data-generating process, that is, there holds 

In _Ymin = PO + Piln fs + PJn y, + -% 

with E a normal error, not depending on the random regressors fs and y,. 
The regressors fs and y, are random and the joint distribution of fs, y, is 
unknown. 

‘For a description of the data set, see Van Praag, Goedhart and Kapteyn (1980). 
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Table 1 

Standard deviations under various assumptions. 

1. Random sample 

2. Elliptical sample 
K= -1 
K=O 
K=2 
K=4 
~=6 

3. Second wave 

4. Linear model with normal error’ 

5. Classical linear model 

0.330 

0.075 0.007 0.008 
0.129 0.012 0.013 
0.167 0.015 0.017 
0.197 0.018 0.020 
0.223 0.020 0.023 

0.227 0.013 0.023 

0.262 0.017 0.026 

0.129 0.012 0.013 

0.017 0.034 

“This case has not been explicitly considered in the text but it can be straightforwardly derived 
by the reader by similar methods. 

(5) The sample satisfies the traditional OLS assumptions, i.e., a controllable 
experiment (fs and y, non-random) and the linear model holds with 

E - N(0, CT’). 

The first rather striking result emanating from table 1 is that the reliability 
assessment of estimates, as reflected by their standard deviations, varies a 
great deal with the prior assumptions made. For instance, when we consider 
the elliptical assumption with a varying value of K, we find that normality is 
just one parameter choice among many and that the reliability of the same 
estimator on the same sample decreases rapidly if we opt for greater values 
of K. Not by coincidence the classical linear model assumptions yield stand- 
ard deviations identical to that under the normal assumption (K = 0) [cf. 
Goldberger (1964)]. It follows that the reliability estimates of the classical 
linear model (or of the normal parent population) cannot have any special 
claim as being more valid than other estimates presented in the table, except 
those in line 1, corresponding to the random sample assumption. This is 
especially relevant as most standard-deviation estimates presented in table 1 
are much larger than classical OLS estimates, which implies that the OLS 
standard deviations may give a rather optimistic look on the reliability. The 
consequence is that t-statistics used for significance tests may be too high; 

similar considerations hold for other frequently used test-statistics. 

The main conclusion is that all assumptions 2 to 5, also that of OLS, are 
arbitrary choices and consequently that all confidence estimates have an 
arbitrary basis as well. Obviously, there is only one confidence estimate which 
does not suffer from arbitrary assumptions. That is the estimator investigated 
in section 2, of which the corresponding standard deviations are given in line 
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1. It is seen that for this example the standard deviations are larger than for 
most other assumptions. However, this is not always true (cf. K = 6). The only 
fact that always holds is that the assumption of keeping some variables fixed 
reduces standard deviations in an unrealistic way. If one of the specific 
assumptions, on which lines 2 to 5 are based, hold, the general formula will 
yield automatically the special case. So it seems wise and prudent to start with 
the general formula, developed in section 2. 

7. Concluding remarks 

In this paper we consider moment estimators under weaker assumptions 
than usually made. The theory outlined in this paper holds for all method of 
moments estimators. For the special case of the OLS model our result in 
section 2 coincides with that of White (1980). For the special case of a linear 
equation system, Chamberlain (1982) finds the same result. 

In this approach we may also define residual vectors e, as the difference 
between the observation and its best prediction by the approximating func- 
tion. Then we find for linear approximating functions that so-defined residuals 
and explanatory variables are uncorrelated when we use a Euclidean distance 
approximation. It does not follow, however, that the residuals and the ex- 
planatory variables are independent. This additional assumption is usually 
made, but it is not made here. Under these circumstances the ordinary 
least-squares estimator is still consistent, but the standard formula for its 
covariance matrix does not hold. So, if we are not certain that the indepen- 
dence assumption mentioned above is appropriate, it may be advisable not to 
use the traditional formula derived under the independence assumption, but 
the more general result discussed in this paper. 

From this paper it is clear that for all estimators b, that are either explicitly 
or implicitly defined as functions of sample moments, the large-sample sto- 
chastic properties are basically known if we know the covariance matrix of the 
sample moments involved, say V(m). If specific additional assumptions are 
made with respect to the sample design, it affects V(m) but not m or b(m). It 
follows that stochastic properties may be analyzed for classes of estimators 
that involve the same sample moments just by studying v(m). This decom- 
posability is called population-sample decomposability [see also Van Praag, 
de Leeuw and Kloek (1986)]. 

Compared to the established theory of the estimation of linear models and 
structures there seem to be three major methodological advantages inherent in 
this approach. First, it is based on weaker postulates; second, it unifies the 
approach of moment estimators, instead that we have to consider the theory of 
regression, of factor analysis, or of linear models as separate theories. Third, it 
yields more realistic confidence estimates that coincide with those of the 
classical theory if the appropriate assumptions apply to the real situation. 
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There is also a potential disadvantage. This occurs in the case that some of 
the observations are outliers or, more generally, influential observations [see 
Krasker et al. (1983)]. The fact that higher than second-order moments are 
used may have the consequence that the effects of rare influential observations 
may be more serious than in the traditional case. This possibility requires 
further research. 
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