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KNOT SELECTION IN FUZZY
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This paper studies the effect of different types of discretization on the approximation
of the first eigenvalue of the class of bivariate distributions. Different sample sizes are taken
into account. By areverse process the discretization is corrected for by nonlineartransformation
of the discretized variables. Optimal nonlinear transformations are approximated by zero
andfirst degree B—splines, which can be interpreted as fuzzy coding functions. The sampling
errorand discretization error are evaluated by a Monte Carlo design with three sample sizes,
four different discretizations, using the bootstrap. The main result is that the discretization
effectis smallin relation to the sample effect. This result has a wider bearing on knot selection
in general.
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1. INTRODUCTION

| A SHORT REVIEW OF FUZZY NON LINEAR MULTI-VARIATE ANALYSIS (NLMVA)

Classical multivariate techniques come intwo subclasses. There are multinomal
techniques, intended for continuous multivariables and multinomali techniques for
categorical variables. The assumption of multinormality is almost never true, it
produces low dimensional sufficient stable statistics like covariances. Multinomial
techniques have high dimensional insufficient statistics that are unstable, like cell
counts but their nonparametric assumptions are almost always true. This situation
gave rise to many so called nonlinear techniques. The review of NLMVA by Coppi
and Di Ciaccio in this volume covers approximately the whole spectrum of non
linear techniques assemled under that label. Here we like to refrain of two classes
of techniques that generalize classical MVA by nonlinear transformations with knot
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selection toreduce complexity of relationships and noise: categorical and continuous
NLMVA.

Say the domain of a real valued random variable h, bounded by two values
aand b, a<b, is partitioned into a number of intervals between a and b. Each interval
is bounded by two interval points, t and tq+1, called knots or discretization points.
Assume that the knot sequence {t} consists of an increasing sequence of knots on
[a,b]:

The polynomial spline consists of several polynomial pieces of order v, defined
on intervals between at least two subsequent knots. If v > 2 pieces are connected
e.g. at the knots, such that together they constitute a continuous function on the
domain of the variable. Furthermore when v > 3 connections are such that i-th left
andrightderivation are equal,i=1,.., v—2. As a consequence the functionis smooth.
Piecewise polynomials called spline functions are a flexible set of transformation
functions. Two types of spline functions are important for NLMVA, the regression
spline and the smoothing spline. There exist many more kinds of spline functions,
that we will not discuss.

The regression spline. A very simple spline function is the step function. A
dummy variable consists of a step function that codes data points into a category
of a nominal variable. This creates an immediate link with categorical multivariate
data analysis. A linear transformation, the most elementary of transformations
exclusively linked with multinormal techniques, is equal to a piecewise linear spline
function defined on just one interval (i.e. with two external knots), which creates a
link with linear MVA. Higher degree spline functions are smooth non linear
transformation functions with more degrees of freedom. Spline functions make it
possible to deal with the MVA of categorical, categorized and continuous data in
one framework. Such splines are called regression splines (Ramsay, 1988) and
they invariably have less coefficients than data points. This means that decisions
have to be made about the quantity and placement of the knots.

Categorical NLMVA as advocated by Gifi (1990) and his coworkers quantifies
categorical data in such a way that multinormal criteria like the multiple correlation
or the sum of eigenvalues of the quantified data are maximized. Which means that
canonical correlation, multiple regression and related techniques are made available
for categorical data. The quantification process is called optimal scaling and De
Leeuw (1988) discusses the optimality properties. Optimal scaling is a way of
“transforming” categorical data using stepfunctions with or without additional
restrictions. Van Rijckevorsel (1987, 1988) generalizes the coding by stepfunctions
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inorder to get a system of fuzzy coding thatincludes Basis splines as a special case.
The french analogon is called “codage flou” (Martin, 1988). In categorical data
analysis knot selection is a prior, that is defined in the stages that precede data
analysis. Like the definition of the scale values of a rating scale, or the categories
of anominal variable. As soon as a continuous variable is categorized into classes
or intervals, which is customary to make age intervals or income brackets for
instance, this categorization is not necessarly a prior any more. It has become a
parameter that can be optimized, which bring us to knot selection. The need to slice
a variable is often caused by the desire to expose non linear relationships in the
data. Categorical NLMVA techniques with optimal scaling have however no
provision for smooth transformations; albeit it is conceptually only a small step to
use regression splines as a way of optimal scaling. Exceptions are the PRINQUAL
technique incorporated in SAS (1988) generalizing PCA (=Principal Components
Analysis) and the SPLINALS technique by Van Rijckevorsel (1987) generalizing
MCA (=Multiple Correpondance Analysis) & PCA.

This state of affairs is regrettably so because conceptually as technically, it is
quite feasible to generalize OVERALS (=the canonical analysis of k-sets),
REDUNDALS (=redundancy analysis), SERIALS (=time series), MORALS (=mul-
tiple regression), ...... etc. to analyze continuous data in a non parametric way
using piecewise polynomials as a kind of optimal scaling in their backfitting
algorithm (and thus introducing the problem of knot selection meanwhile).

The smoothing spline. If two objectives are considered simultaneously by
transforming a variable, like maximizing the model fit and penalizing its roughness
meanwhile, we are dealing with another type of spline functions, called the
interpolating or smoothing spline (Ramsay 1988). The smoothing spline has as
many knots as distinct data points and initially no knot selection problem exists.
There is however the problem of balancing the amount of smoothness against the
model fit. This is neatly combined in one transformation function with a single
smoothing parameter called lambda. Here a decision has to be made about the
value of lambda. The model in the smoothing spline is the regression model, or
more generally, an additive model. The smoothing spline is by definition more
appropriate for continuous NLMVA. Continuous NLMVA, advocated by Breiman
and Friedman (1985), Hastie and Tibshirani (1990), and Friedman (1991) uses non
parametric uni— or multivariate transformations of continuous data that optimize
multinormal criteria. Excellent reviews of continuous NLMVA are Hastie and
Tibshirani (1990) and Friedman (1991). For the more or less independent french
approach in PCA see Besse (1989).
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Il THE STATE OF THE ART OF KNOT SELECTION IN NLMVA

Historically the term knot placement is linked with the use of piecewise
polynomials (spline functions). The local functional pieces are defined on intervals
that are bordered by knots. Nowadays the knot selection is to be seen in the much
wider context of window selection with a non linear smoother of any type. (Breiman,
1988).

Knot selection when using regression splines in NLMVA can be solved
automatically. The “optimal” selection of knots is a combinatorial non linear
optimization problem that in general is not (yet) easily combined with popular
statistical methods like least squares estimation or maximum likelihood estimation.
For various methods and their drawbacks see Hastie et al. (1990). There exist a
vivid dispute whether knot placement can be optimized or not. And whether
optimization is worth the effort, because with the signal to noise ratio's one
encounters in NLMVA, the shape of the transformation function does not depend
heavily on the placement or number of knots and knot selection might as well be
solved by rules of the thumb that work satisfactorily. The comments on Ramsay
(1988) are most enlightening. See also Hastie et al. (1990, p.247-254).

Another closely related problem is the automatic setting of the smoothness
parameter when using smoothing splines. This is mostly solved by generalized
cross validation (=GCV). See Gu and Wahba (1991). Conceptually it is a related
problem to knot selection in regression splines because there the smoothness of
the transformation function depends partly on the knot selection. A more complicated
problem is the automatic simultaneous setting of the degree and selecting a
multivariate knot placement when using multivariate regression splines. This
introduces a new knot selection like problem: the transformation function cannot be
defined on combinations of intervals of different variables that are (nearly) empty.
This is called the curse of dimensionality. See Hastie etal. (1990, p.259-) or Friedman
(1991).

Knot selection is such a general problem that it has to be restricted to a
manageable form that can be solved analytically and computationally. The
subproblem that we discuss is the estimation of the true averaged correlation
coefficient, after slicing bivariately distributed variables in different ways. Maximizing
the correlation coefficient is a classical MVA criterion. The influence of various knot
sequences on the estimation of the correlation coefficient for different sample sizes
should tell us ideally something about the error caused by the knot placement. The
transformation function used is a regression spline, based on B—splines of degrees
0,1 with a least squares criterion. (De Boor,1978 p. 249)
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2. THEORY

The optimization problem

The notation used is as follows: E, R and V are expectation, correlation and
variance operators. h is a random variable. R® is the s—th correlation matrix (m x
m), j=1,...,mis the running index for variables and s=1,....c0 is the running index for
the dimensions of the space L of nonlinear transformation functions of variable j.
xisarandomvariable tobe estimated. 3, is Kronecker's deltaandr;® is the correlation
betweenjand/indimensions. o(*,*) = min{o(y;z|y;z)}is the minimum of 5(y;z), while
o(y;z) is the loss depending on y and z.

The optimization problem is to find a nonlinear transformation of a multivariate
random variable, which is a piecewise function on the discretization points and
which maximizes the averaged squared correlation ratio between the transformed
variables. The correlationratio is defined as the variance of the conditional expectation
of x, given nj, divided by the variance of x. Much of the necessary theory can be
found in Gifi, (1990), Van Rijckevorsel et al., (1985).

Say we want to find weights a,,....,a,, and a random variable x such that

1 m
min G(Ea)=;ZV(x—ajhj)
j=1

m
is minimized with normalization V(x)=1 or)_ V(ajbj) =m. For either normalization

thisleadstoo(*,*) =1 -,, while A, is equal t6the dominant eigenvalue of the matrix
R with elements m"R(ajnj,a,n,. This is a fairly trivial result in linear multivariate
analysis. The first eigenvalue of a matrix of correlation coefficients is equal to the

averaged squared correlation.

The nonlinear case
Consider the non linear transformation

bel={0:E[6()=0E[$(h)?]<x)

and instead over the linear weights a,....a _, we minimize c over ¢ = {¢,,...,.¢, .} and
over X
m

o(x)=—> V(x~,(n;))

m j=1
m
with normalization V(x) =1 orzv(q)j(bj)) =m..
j=1

Define a complete orthonormal basis G,

s=1,2, ....... , for Lj such that
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0; (bj) = Zasts(hj ) then minimizing o (x;¢) has the characteristic function
S=1

ZR(St)as =A.a,

t=1
while R is equal to an m by m correlation matrix for dimensions s and t. This
minimization leads to ¢ (*,*) = 1 —A_ and A,is equal to the dominant eigenvalue of
a supermatrix with submatrices R with elements m"R(d)(nj),d)(b_,)). For a space Lj
of non linear transformation functions we are dealing with the eigenvalue of an
infinitely large supermatrix that consists of a infinite number of m x m correlation
matrices. The largest eigenvalue of the correlation matrix of non linearly transformed
variables is equal to the maximum averaged correlation ratio times the number of
variables.

For the multivariate case we restrict the basis of non linear transformations in

such a way that the correlations between dimensions are equal to zero:

R(g;(h),g,(h)) = 81/,

There are many bivariate distributions whose canonical functions (=
eigenvectors) are orthogonal polynomials. For an extensive discussion with
references see Schriever (1986). Schriever (1986, p. 51-52) proves that relevant
mathematical proporties concerning canonical functions, carry over to the discretized
distributions. Meaning that the canonical functions of such discretized bivariate
distributions are also orthogonal functions, providing the discretization is fine
enough. The best known example is the Mehler expansion of the bivariate standard
normal, where we choose Hermite—Chebyshev polynomials as an infinite basis,
approximated by a finite basis of stepfunctions. In this case the nonlinear
transformation of bivariate normal variables that maximizes the first eigenvalue is
a linear transformation. See also Kendall & Stuart (1979, p.600). Other bivariate
distributions whose canonical functions are orthogonal polynomials are the bivariate
binomial, the bivariate Poisson, the bivariate Gamma and many others (Lancaster
1980, Schriever 1986). The eigenproblem is thus:

o(*)=1-%,
while ¢j(ﬂj) = ajnj and %, is equal to the dominant eigenvalue of the correlation matrix

with elements m"R(ajnj,a,n,).

Approximation by a finite basis

Orthogonal polynomials are approximated arbitrarily well by a finite basis of
stepfunctions. Define discretization as the non linear transformation v, (ﬂj)- If g=
7 (h,......h, ) are random bivariate in the above sense and ¢j is a monotone non
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linear transformation then
4(g) = ay;"(e) = ah,

The nonlineartransformation of the discretized bivariately distributed variables
is a linear transformation of the original (non discretized) variables. The usual
discretization into categories is a nonlinear transformation by stepfunctions. This
can be generalized by considering other non—crisp i.e. fuzzy codes on the same
sequence of knots. A smooth and regular way of fuzzy coding consists of using B-
splines. While a step function is equal to a B—spline of degree 0. Higher degree B-

splines are linear combinations of positive quantities starting with the stepfunction.
A B-spline is defined by de Boor (1978, p.131) as

Gq‘v(n) = (n - tq)(tq+v-1 - tq)-1Gq'V.1(n) + (tq+v - h)(tqﬂ/ - tq+1)-1 Gq+v,V-1 (h)
and

Tty <h<ty4

Gq,1(b) = {

A polynomial spline function ¢ is defined as a linear combination of basis
splines:

¢(b) = %aqu,v(h)'

The corresponding notation is: r equals the number of interior knots or
discretization points; vis the order of the basis; tq is the knot g; g is the running index
of the number of dimensions and w = r + v is the dimension of the basis, while the
number of intervals = 0 equals v, so Gq'v(n) is the g-th basis—function of order v
(i.e. degree v+1) for the variable h.

The first eigenvalue of the correlation matrix of non linearly transformed
variables based on stepfunctions is found by multiple correspondence analysis or
homogeneity analysis. Fuzzy homogeneity analysis finds the analogue based on
higher degree B—splines. See De Leeuw et al. (1988). Fuzzy and crisp multiple
correspondence analysis can be interpreted as an approximation of continuous
nonlinear analysis as defined by Dauxois and Pousse (1976) or Mallet (1982).

Let us resume this section. The averaged squared correlation between
bivariately distributed variables is approximated by the averaged squared correlation
between nonlinear transformations of their discretizations, and these transformations
are linear transformations of the original variabies because of distributional
properties. For a fixed knot sequence the approximation of the original variables by
a first degree spline function will be a linear function of these variables and the

0,elsewhere.
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approximation by stepfunctions will be linear in its steps, independent of the knot
placementor number of knots, loosely speaking. The approximation by a stepfunction
with a fixed knot sequence will therefore always be inferior to the polynomial spline
function of degree one in this case.

3. METHOD

Three samples of sizes 100, 1000, 10000 of nine bivariate normal random
variables are drawn with a fixed correlation coefficient equal to .5. We use four
different knot sequences of four knots each: Optimal (1), U-shaped (2), Uniform (3)
and Skew (4). The knot sequences are named after the shape of the histogram of
the proportions by which they partition the surface under the normal curve (see
figure 1). The first knot sequence optimizes a loss function that actually describes
the loss with respect to the normal distribution. This is why we call this knot
sequence optimal. The loss is caused by the discretization using stepfunctions and
minimizing this loss is not equivalent to maximizing the first eigenvalue for further
references see Gifi (1990, p. 405).. Because of the ease of computation and the
familiarity of many results we selected the random bivariate normal distribution as
an example.

The dominant eigenvalue of the continuous distribution with all mutual
correlations equal to .5 is A= 45/81 = .5556. For each knot sequence there exists
an approximation of the first eigenvalue of the continuous distribution, given afinite
approximation with a limited number of stepfunctions. The first eigenvalue of a
correspondence analysis of two discretized variables is proportional to the maximal
correlation between them. The result is due to Hirschfeld in 1935, see Kendall and
Stuart (1979). Due to symmetry we can translate the results to the case of nine
variables. These theoretically maximal values for the respective knot sequences
are .5222 (Optimal), .4938 (U-shaped), .5160 (Uniform) and .4981 (Skew). For
each particular knot sequence the best approximation by stepfunctions should
come near to the corresponding value. The fact that these theoretical values differ
fromthe eigenvalue ofthe continuous variables is caused by the intrinsic discretization
error. Each knot sequence has its own discretization error. For 12 combinations of
knot sequences and sample sizes these correlations are approximated by
stepfunctions.

From each sample and knot sequence 10 bootstrap samples were taken (i.e.
with replacement), resulting in 120 bootstrap samples. 120 analyses using
stepfunctions were executed. The bootstrap study only concerns stepfunctions.

The first eigenvalue of the continuous distribution is approximated directly by
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Fig. 1: The ‘optimal’, ‘U-shaped’, ‘uniform’ and ‘skew’ discretization of the normal distribution
with knots on the x-axis and the proportions of surface under the curve on the y-axis.
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transformations based on first degree splines, because the discretization error is
smoothed away by the global smoothness of the resulting transformation, that
perfectly coincides with a first degree polynomial. This is a property that a
stepfunction only asymptotically can achieve.

The spline approximations are computed for the same sample sizes and knot
sequences. The approximations are computed by fuzzy homogeneity analysis
using zero and first degree B—splines, where only the first eigenvalue is considered.

For the computation of the first degree spline transformations we used the
SAS routine TRANSREG.

4. RESULTS

The result is that the averaged squares correlations between the original
variables are nicely approximated by the averaged squared correlations between
non linear transformations of the discretized variables. Transformations based on
stepfunctions approximate the theoretical eigenvalues for the respective
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log sample size
degree 0: solid
degree 1: dashed

Fig. 2: The log approximation error * 1000 of zero and first degree B—splines versus log sample
size for four different knot sequences
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discretizations, see figure 2.

The approximation is better with increasing sample size irrespective of the
knot sequence for both types of transformation. The variation in bootstrap means
per sample size does hardly vary over the different knot sequences. See table I. It
doesn't matter, so to say, which knot sequence you select, they all approximate
their respective theoretical value just as good. The approximation by first degree
B-splines is superior to the approximation by stepfunctions. This is correct because
a piecewise linear is a better approximation to a linear function for a fixed knot
sequence than a piecewise stepfunction.

5. DISCUSSION

Where you putthe knots is of minorimportance because whatever you do, you
are not far wrong. See tables | & II.

This means that a knot optimizer like Friedman's recursive partitioning on
discretized bivariate distributions with maximally 4 knots would add little to the
absolute information we have already. When using first degree B—splines and/or
larger samples (N > 1000) there is nothing to gain by knot optimization anyhow in
this case. For stepfunctions we would see that the approximation will be near to
.5222 because for the “optimal” knot sequence asymptotic approximations are
already very good for small numbers of discretization points. See Gifi (1990, p. 405).
This means that the actual space for improvement with a fixed number of knots is
approx. 5%. And additionally with a larger number of knots the population value is
approximated, with an absolute gain of maximally 9%. The surprising effect of our
research reported here, is that for such a limited number of knots and for such
“weird” positioning of knots, the approximation of the first eigenvalue is surprisingly
close to the real thing. And because the approximation is based on a kind of optimal
scaling combined with the popular criterion of the first eigenvalue, this has a wider
bearing on other forms of NLMVA. Our results confirm Gifi's conjecture that the
sample error is larger than the discretization error for a fixed number of knots. See
table |. Because this argument has a general character it also refers to the
sometimes hot blooded discussions about optimal knot placement in spline
transformations. A.o. Wold and Ramsay are advocating robust knot placement with
equal numbers of measurements per interval and few knots. For further references
see Van Rijckevorsel (1988) and Ramsay (1988). This study confirms these rules
of the thumb and adds the additional caveat to beware of small samples combined
with stepfunctions. From the point of stability and approximation first degree B—
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splines are to be preferred over stepfunctions in analyzing various discretized
bivariate distributions. The results reported in this paper if restricted to the first
eigenvalue, pertain to the general case because many bivariate distributions are
associated with orthogonal polynomials.

Tab.l: The approximation of the first eigenvalue by the nonlinear transformations based on
step functions for four different knot placements

Theoretical value N Bootstrap Bootstrap
mean variance
Optimal . 100 4762 9.6*10
5222 1000 .5369 9.6*10°5
10000 .5208 1.2*10-5
100 .4582 1.1%103
U—-shaped 14938 1000 .5013 1.6*10+
10000 4964 4.6*10-¢
100 .4359 1.0%10-3
Uniform .5160 1000 .4988 1.0%10+
10000 5174 8.9*10°
100 5327 1.3*10-3
Skew .4981 1000 .5169 1.8*10*
10000 .4984 2.0%0-5
Tab. Il: The approximation of the first eigenvalue of the continuous multinormal distribution

(=.5556) by first degree B—splines.

N =100 N = 1000 N = 10000
Optimal 5857 5592 5560
U-shaped 5793 5590 5559
Uniform 5819 5596 5559
Skew 5846 5595 5560
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RIASSUNTO

Questo articolo studia I'effetto di differenti tipi di discretizzazione sull'approssimazione
del primo autovalore della classe di distribuzioni bivariate. Campioni di diversa ampiezza
sono presiin considerazione. La discretizzazione viene corretta attraverso un procedimento
inverso di trasformazione non lineare di variabili discretizzate. Le trasformazioni non lineari
ottimali sono approssimate per mezzo di B—splines di grado zero e uno, che possono a loro
volta essere interpretate come funzioni di codifica fuzzy. L'errore di campionamento e
l'errore di discretizzazione sono stimati per mezzo di un disegno Monte Carlo con tre
campioni di differente ampiezza e quattro differenti discretizzazioni, usando il metodo
bootstrap. Il risultato pit importante € che I'effetto della discretizzazione é limitato rispetto
all'effetto prodotto dalla differente ampiezza dei campioni. Questo risultato fornisce un
contributo di piti ampia portata al problema della selezione dei nod.



