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Abstract

An overview of the theoretical and methodological foundations of
an approach to quantifying qualitative data is presented. The two
cornerstones of the approach, known as alternating least squares and
optimal scaling, are explained. It is emphasized that the approach has
two major advantages: a) If a least squares method is known for analyz-
ing quantitative data then a least squares method can be constructed
for analyzing qualitative data; and b) the approach yields algorithms
which are convergent and which have relatively few difficulties with
local minima. A system of programs for quantifying qualitative data
with either the additive, multiple regression, canonical regression,
principal components, common-factor analysis, three mode factor analysis,

or multidimensional scaling model is briefly discussed.
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Quantifying Qualitative Data:
An overview of an approach having alternating

least squares and optimal scaling features.

Perhaps one of the main impediments to rapid progress in the development
of the social, behavioral and biological sciences is the omnipresence of
qualitative data. All too often it is simply impossible to obtain numerical
data: the researcher must either settle for qualitative data or no data at
all. Many times it is only possible to determine the category in which a
particular datum falls. The sociologist, for example, obtains categorical
information about the religious affiliation of his respondents; the botanist
obtains categorical information about the family to which his plants belong;
and the psychologist obtains categorical information about the psychosis of
his patient. Even in the best of circumstances it is often impossible to
obtain anything beyond the order in which the data categories fall. When
the sociologist observes the amount of education of the respondents in his
sample he knows that the observation categories are ordered, but he is unable
to assign precise numerical values to the categories. When the psychologist
obtains rating scale judgments, the judgments may reasonably be viewed as
ordinal, but not always as numerical.

Given the ubiquity of qualitative data one can understand the long and
persistent interest in its quantification. If one could somehow develop &
method for assigning "good" numerical values to the data categories, then the

data would be quantified and would be susceptible to more meaningful analysis.
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Curiosity about the topic is nascent in the classical work by Yule (1910),
and methods for quantification first began to appear around 1940. Probably
the first widely disseminated procedure was Fisher's "appropriate scoring"
technique (Fisher, 1938, pp. 285-298) which was introduced at about the same
time as a method proposed by Guttman (1941). Several authors worked on the
problem in the early 50's (Burt, 1950, 1953; Hayashi, 1950; Guttman, 1953)
with this work being summarized by Torgerson (1958, pp. 338-345). Much
work has occurred recently, with the most important probably being performed
by de Leeuw (1973), Benzicri (1973), and Nishisato (1973).

In this paper we refer to the process of quantifying qualitative data as
"optimal scaling," a term first introduced by Boch (1960). By our definition,
optimal scaling is a data analysis technique which assigns numerical values to
observation categories in a way which maximizes the relation between the obser-—
vations and the data analysis model while respecting the measurement character
of the data. Note that this is a very general definition: There is no precise
specification of the nature of the model, nor is there precise specification of
the measurement character of the data. Working with this definition of opti-
mal scaling, the authors of this paper have developed a system of programs for
quantifying qualitative data (see Table 1). The programs permit the data to
have a variety of measurement characteristics, and permit data analysis with
a variety of models. We refer to this system of programs as the ALSOS system
since it uses the Alternating Least Squares (ALS) approach to Optimal Scaling
(0S).

As we will show in this paper, the ALSOS approach to algorithm construc-—
tion has one very important implication for data analysis: 1If a procedure

is known for obtaining a least squares description of numerical (interval or
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ratio measurement level) data then an ALSOS algorithm can be constructed to
obtain a least squares description of qualitative data (having a variety of
measurement characteristics).

The ALSOS system currently includes several programs (see Table 1)
which quantify qualitative data by applying (a) the simple additive model,
(b) the weighted additive model, (c) the multiple regression model, (d) the
canonical regression model, (e) the principal components model, (f) the
common-factor model, (g) the three-mode factor model, or (h) the multidimensional
scaling model. For these programs the data may be défined at the binary,
nominal, ordinal or interval levels of measurement (and the ratio level
with the multidimensional scaling program), and may be thought of as having
been generated by either a discrete or continuous underlying process. The
ALSOS programs also permit any arbitrary pattern of missing data, permit
boundary or range restrictions on the values assigned to the observation cate-
gories, and permit the use of partial orders with ordinal data. Information
on these programs may be obtained from the first author.

1. Alternating Least Squares

Each of the ALSOS programs optimizes an objective loss function by using
an algorithm based on the alternating least squares and optimal scaling
principles.

The OS principle involves viewing observations as categorical, and then
representing each observation category by a parameter. This parameter is
subject to constraints implied by the measurement characteristics of the
variable (i.e., order constraints for ordinal variables).

The ALS principle involves dividing all of the parameters into two mutually
exclusive and exhaustive subsets: (a) the parameters of the model; and (b) the
optimal scaling parameters. We then proceed to optimize a loss function by

alternately optimizing with respect to one subset, then the other. We do this



Table 1

Programs in the ALSOS System:

PROGRAM ANALYSIS DATA PRIMARY REFERENCE
ADDALS Additivity analysis Two or three way de Leeuw, Young and
(Analysis of Variance) tables. Nonortho- Takane (1976)
gonal and incomplete
designs permitted.
WADDALS Weighted additivity ahalysis Same as ADDALS Takane, Young, and
de Leeuw, (in press)
OVERALS Multiple and Canonical Mixed measurement Young, de Leeuw and
and Regression level Multivariate Takane (1976), de Leeuw
MORALS Data & von de Berg (1978)
HOMALS Principal components and Same as OVERALS Young, Takane and
and Homogeneity analysis " ' de Leeuw (1978),
PRINCIPALS de Leeuw and van
Rijkevorsel (1976)
FACTALS Common-Factor analysis Same as OVERALS Takane, Young and
de Leeuw (1978)
ALSCOMP Three-mode principal Three way mixed Sands (1978)
components analysis measurement level 1978
multivariate data
ALSCAL Two or three way multi- Two or three way Takane, Young and

dimensional scaling

similarities tables
or multivariate data

de Leeuw (1977)
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by obtaining the least squares estimates of the parameters in one subset while
assuming that the parameters in the other are constants. We call this a condi-
tional least squares estimate, since the least squares nature is conditional
on the values of the parameters in the other subset. Once we have obtained
conditional least squares estimates we immediately replace the old estimates

of these parameters by the new estimates. We then switch to the other subset
of parameters and obtain their conditional least squares estimates. We alter-
nately obtain conditional least squares estimates of the parameters in one sub-
set, then the other subsef, until convergence (which is assured under certain
conditions discussed in later portions of this paper) is closely approached.
The flow of an ALSOS procedure is diagrammed in Figure 1. Certain strong
correspondences exist between an ALSOS procedure and the NILES approach to
algorithm construction investigated by Wold & Lyttkens (1969), the CANDECOMP
algorithm of Carroll & Chang (1970), and the class of numerical analysis algo-
rithms known as successive block algorithms (Hageman & Porsching, 1975). The
main difference between these algorithms and an ALSOS algorithm is the optimal
scaling feature of the ALSOS algorithm.

2. Quantification with Unknown Models: Theory

2.1 Introduction

One advantage of combining the ALS principle with the OS5 principle is that
the 0S phase of the algorithm does not need to know the type of model involved
in the analysis. Thus, we can quantify qualitative data without knowing the
gspecific nature of the model.

For the optimal scaling we need a model space and a data space, in the

terminology of Young (1975), to obtain the optimal scaling space (see Figure 2).

We assume that there is a model space represented by a vector whose elements

are measured at the cardinal (interval or higher) level. The model space is not
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the parameter space. We do not know either the nature of the model (the combina-
tion or functional rule by which the model space is computed from the parameters),
nor do we know the actual values of the model parameters. All we know is that
some parameter values exist somewhere, and that somehow they have been combined
together to yield the model space.

We also assume that there is a data space represented by a vector of data.
We further assume that the measurement characteristics of the data (whether it
is discrete or continuous, what the measurement level is) are known.

The goal of 0S is to derive an optimal scaling space which has two charac-

teristics: First, it must perfectly satisfy the measurement characteristics of
the data space; and second, it must have a least squares relationship to the
model space, given that the measurement characteristics are perfectly satisfied.

2.2 Transformations

To fully understand some of the concepts discussed below we must emphasize
a concept which is crucial to our work: It is our view that all observations
are categorical. That is, we view an observation variable as consisting of
observations which fall into a variety of categories, such that all observations
in a particular category are empirically equivalent. Furthermore, we take this
"categorical" view regardless of the variable's measurement characteristics.
Put most simply, it is our view that the observational process delivers observa-
tions which are categorical because of the finite precision of the measurement
and observation process, if for no other reason. For example, if one is measuring
temperature with an ordinary thermometer (which is likely to generate interval
level observations reasonably assumed to reflect a continuous process) it is
doubtful whether the degrees are reported with any more precision than whole
degrees. Thus, the observation is categorical: there are a very large (indecd
infinite) number of uniquely different temperatures which would all be reported

as say, U0°. Therefore, we say that the observation of 40° is categorical.
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At this point we need to define a vector of raw observations. We denote
this observation vector as o, with general element oj. (Underlined lower case
letters refer to vectors, and non-underlined lower case letters to scalars.)

We also define the model vector z, with general element z55 and the optimally
scaled observation vector z*, with general element zi. The vector o is the data
space (we assume that the elements in o are organized so that all observations
in a particular category are contiguous). The vectors z and z* are the model
and optimally scaled observation spaces, respectively (we assume that their
elements are organized in a fashion having a one to one correspondence with

0). The element z% is the parameter representing the observation o,

With these definitions we can formally represent the OS problem as a
transformation problem, as follows. We wish to obtain a transformation £
(script letters indicate transformations) of the raw observations which
generates the optimally scaled observations,

(1) tlo] = [2*] ,

where the precise definition of £ is a function of the measurement character-
istics of the observations, and is such that a least squares relationship will
exist between z and z*, given that the measurement characteristics are strictly
maintained. The numerical value assigned to zi, then, is the optimal parameter
value for the observation o, -

Various types of restrictions are placed on the transformation £, with
the type of restriction depending on the measurement characteristics of the
data. We distinguish two types of measurement restrictions, termed measurement
level and measurement process. The process restrictions concern the relation-
ships among all the observations within a single category, whereas the level

restrictions concern the relationships among all the observations between



different categories. The measurement implications of the restrictions are
summarized in Table 2, and the restrictions are shown in Table 3.

There are two types of process restrictions, one invoked when we assume
that the generating process is discrete, and the other when we assume that it
is continuous. One or the other assumption must always be made. If we be-
lieve that the process is discrete (sex is an example of a discrete underlying
process) then all observations in a particular category (female or male)
should be represented by the same real number after the transformation td
(the superscript indicates discreteness) has been made. On the other hand, if
we adopt the continuous assumption (as we probably should for a weight variable)
then each of the observations within a particular category (97.2 Kg., for
example) should be represented by a real number selected from a closed interval
of real numbers. In the former case the discrete nature of the process is
reflected by the fact that we choose a single (discrete) number to represent
all observations in the category; whereas in the latter case the continuity
of the process is reflected by the fact that we choose real numbers from a
closed {(continuous) interval of real numbers. Formally, we define the two
restrictions as follows: The discrete restriction is
(2) £4. (oi~om)+(z§=z;)‘
where ~ indicates empirical equivalence (i.e., membership in the same category).

The continuous restriction is represented as

z¥
(3) % (o~o )r(zl=z) < Hf (zi=z)

1 m
m

- +
where z; and z, are the lower and upper bounds of the interval of real numbers.
Note that one of the implications of empirical (categorical) equivalence is that
the upper and lower boundaries of all observations in a particular category are

the same for all the observations. Thus, the boundaries are more correctly



Table 2

Measurement characteristics
for six types of measurement

Level

Nominal

Ordinal

Numerical

Process

Discrete

Observation categories
represented by a single
real number

Observation categories are
ordered and tied observa-
tions remain tied

Observation categories are
functionally related and
all observations are
precise

Continuous

Observation categories
represented by a closed
interval of real numbers

Observation categories are
ordered but tied observa-
tions become untied

Observation categories are
functionally related but
all observations are
imprecise




Table 3

Measurement restrictions
for six types of measurement

Level

Nominal

Ordinal

Numerical

Process
Discrete Continuous
d 23
P e ~ >(z¥=g¥* /tc: ~ =07 )< 1 < += +
(oi Om) (Zi Zm) (oi Om)+(zi Zm)— z; —(Zi Zm)
a 2
230, N o R co . . - - i +_ +
(o.~0 )>(z Zm) 77 (o.~0 (= zm)_ % < ( i zm)
m
(RS o ¥ (RS %
(o, Lo )>(z¥<z¥) (0,4 o )>(z¥<z¥)
a 7%
/t P; ~ -> ¥=g ¥ cp ~ —= - < 1 += +
(oi o )z zm) z (oi om)-*(zi zm)_ - _(Zi Zm)
p P
zeie=>:<sqcfil 2% = I8 o
q=0 Yoot




thought of as applying to the categories rather than the observations, but to
denote this would involve a somewhat more complicated notational system. Note
also that for all observations in a particular category the corresponding
optimally scaled observations are required to fall in the interval but need not
be equal.

We now turn to the second set of restraints on the several measurement
transformations, the level restraints. With these restraints we determine the
nature of the allowable transformations £ so that they correspond to the assumed
level of measurement of the observation variables. There are, of course, a
variety of different restraints which might be of interest, but we only mention
three here. With these three, we can satisfy the characteristics of Stevens'
four measurement levels.

For nominal variables, there are no level restraints: The characteristics
of nominal variables are completely specified by the process restraints. ©Since
there are two types of processes, there are two types of nominal variables;
discrete-nominal and continuous-nominal. The discrete nominal variable is
quite common, with the sex of a person being such a variable. It is clear that
this is a nominal variable, and it is reasonable to assume that the two observa-
tion categories (male and female) are generated by a discrete underlying process.
An example of a continuous-nominal measurement variable is that of color words.
The various observation categories may be blue, red, yellow, green, etc.,
which, while nominal, actually represent a continuous underlying process (wave
length).

For ordinal veriables, we require, in addition to the process restraints,
that the real numbers assigned to observations in different categories represent

the order of the empirical observations:



(1) % (o, 4o_)>(z¥<zk)
where the superscript on 1° indicates the order restriction, and where <{
indicates empirical order. The problem of what to do about ties has already
been handled by the process notion. If the variable is discrete-ordinal (Ido)
then tied observations remain tied after transformation, whereas for continuous-
ordinal (ico) variables tied observations may be untied after transformation.
The discrete-ordinal case is well examplified by data obtained from subjects
who order n-1 kinship terms according to their similarity to the n'th term.
A continuous ordinal variabie might be the income level of one's father, as
it is usually obtained in survey data. The observation categories might be
"less than $5,000," "$5,000-10,000," "$10,000-20,000," and "more than $20,000,"
and one can imagine the continuous process by which such ordered categories
are produced.

For numerical (interval or ratio) variables we require that the real
numbers assigned to the observations be functionally related to the observations.
For example (other examples are easily constructed) we might require that the

optimally scaled and raw observations be related by some polynomial rule:

P
(5) £P; z* = I 80}
i q___oq

If p=2, for example, wWe have a guadratic relationship between the optimally
scaled and raw observations. When p=1 we obtain the familiar linear relationship
used with interval level variables (and with ratio level variables when 60=O).

Tt is important to note that with numerical variables the role played by
the discrete-continuous distinction is that of measurement precision. 1f we
think that our observations are perfectly precise then we wish that nll observa-

tions should be related to the optimally senled observations by exactly the

function specified by equation (5). However, if we think that there is some
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lack of precision in the measurement situation, then we may wish to let the
optimally scaled observations "wobble" around the function specified by equation
(5) just a bit. The former case corresponds to the discrete-interval or
discrete-ratio case in which we allow no within observation category variation,
and the latter case corresponds to the continuous-interval or continuous-

ratio case in which we do permit some within category variation. Note that

this notion is sensible even when there is only one observation in a particular
observation category, as is usually the case.

Let us re-emphasize that even though the data are viewed as categorical,
it is just as possible to obtain a categorical datum which is measured at the
interval level of measurement but which was generated by a discrete process,
as it is possible to obtain a categorical datum which is measured at the
nominal level of measurement but which was generated by a continuous process.
There is no necessary relationship between the presumed underlying generating
process and the level of measurement, and in any case the datum is categorical.

2.3 Geometrical interpretation

Figure 3 presents the geometric relations among the model, data and optimal

scaling spaces, as well as the parameter space. Note that the model, data and

"

problem”

optimal scaling spaces are pictured as all being components of a single
space of dimensionality .n, with each observation represented by a dimension of
the space. We refer to this space as the "problem" space because it is in this
space that we characterize and solve the data analysis problem under considera-
tion. Note that the problem space is a space of real numbers, and that the space
has a dimension for each of the missing observations (if there are any) .

We emphasize that the parameter space is not part of the problem space.
The parameter space is of dimensionality p, one dimension for each of the p

parameters. Usually p is much less than n, the reduction in dimensionality
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representing the parsimony of description inherent in the model. As shown in
the figure, the parameter and model spaces are related by a rule for mapping
from one space to the other, a rule which we call the combination rule (Young,
1975). More will be said about this later.

In the problem space we have, geometrically, represented the model and
optimal scaling spaces as vectors and the data space as a cone. Furthermore,
the two vectors and cone all intersect at the origin of the problem space. We
choose the type of representation for each of the three spaces for specific
reasons. We represent the optimal scaling space as a geometric vector run-—
ning through the origin to emphasize the fact that the elements of the alge-
braic vector z* define a point in the problem space, and that if we form the
geometric vector which connects that point to the origin of the problem space
then all of the other points on the geometric vector are equivalent to z* at
the ratio level of measurement. In terms of the restrictions discussed above,
any point in the optimal scaling space in Figure 3 is equivalent to any other
point. We represent the model space as a geometric vector for the same type
of reasons.

On the other hand, we represent the data space as a geometric cone, not a
geometric vector. Although the representation is different, the reasoning un-
derlying the representation is the same: For the data space a cone properly re-
presents the measurement characteristics, whereas for the model and optimal
scaling spaces a geometric vector is the proper representation. If youreflect on
the restrictions given in equations 2 through 5, youwill see they can all be repre-
sented geometrically as cones (some restrictions imply certain degenerate cones, for
example vectors). This point has been discussed by de Leeuw, Young & Takane (1976)
and by de Leeuw (1975, 1977b). You will note that the optimal scaling vector is repre-
sented as being on the surface of the cone. Since the optimal scaling and data spaces

are completely equivalent in terms of the measurement characteristics of the data,
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the optimal scaling vector must be contained in the data cone. Since the model
and optimal scaling spaces are as nearly alike as possible in a least squares
sense, the optimal scaling vector must be "near'" the model vector. Thus it is
usually the case that the optimal scaling vector is on the surface of the cone,
since the surface is the part of the cone which is generally closest to the
model space. (The only time that the optimal scaling vector is inside the
cone is when the model space also happens to be in the cone, which only happens
when the model perfectly fits the data.)

Finally, note the angle a between the model and optimal scaling spaces.
The angle o represents the goodness-of-fit between the two spaces, the smaller
the angle the better the fit. When the angle is zero the fit is perfect (this
usually means that the model and optimal scaling vectors are inside the data
cone, but it may mean that the two are on the surface of the cone). Note that
there is a difficulty associated with a model space consisting entirely of
zeros. In this case the fit between the model and optimal scaling spaces is
perfect (0=0), but only in a trivial and uninteresting sense. Thus we must
ensure that whatever procedures we adopt will not yield a solution at the origin
of the problem space. Generally, such solutions are avoided by normalizing the
length of the model and optimal scaling vectors to some arbitrary non-zero
length.

3. Quantification with Unknown Models: Methods

3.1 Introduction

As stated above, the goal of an optimal scaling algorithm is to derive a
space of optimally scaled data which has two characteristics: First, it must
perfectly satisfy the measurement characteristics of the data space; and second,
it must have a least squares relationship with the model space, given that the
measurement characteristics are perfectly satisfied. In this section we discuss

do, tco

the methods used to obtain the optimal transformations td, fo, s , and P,

)tc




Table k4

Optimal scaling methods for
six types of measurement

Level Process

Discrete Continuous

Nominal Means of model elements Means of model estimates,
‘ followed by primary mono-
tonic transformation

Ordinal Kruskal's secondary mono- Kruskal's primary mono-
tonic transformations tonic transformations

Numerical Simple linear (or non- Simple linear (or non-
linear) regression linear) regression

followed by boundary
estimation
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Fach of these transformation methods satisfies the stated measurement charac-
teristics and is least squares. Thus each method is an example of our expanded
definition of optimal scaling. The methods are summarized in Table L,

3.2 Methods

For the two nominal level transformations td (discrete-nominal) and £°
(continuous-nominal) the estimation process is very simple and, at least for td,
quite well known (Fisher, 1938, pp. 285-298). The e procedure consists, simply
enough, of defining an element zi as the mean of all the Zs which correspond to
observations 0. in a particular category. Since the zi are the mean of their
corresponding z,, we obtain a least squares fit given the restrictions placed
by the measurement characteristics on td (Eq. 2). Formally, z§ is stated,
under the discrete-nominal restriction, as

(6) td: z¥ = U(U'U)—lgfz

where U is a binary matrix with a row for every observation and a column for

every observation category. The elements of U indicate category membership:

(1) u, =

1 iff o, € category c
ic

0 otherwise

The continuous-nominal situation is a bit more complex. The added complexity
is introduced because the continuous-nominal situation, as discussed to this
point, involves no measurement restrictions. For IP (Eq. 3) we just have the
requirement that each optimally scaled observation should reside in some interval,
and we have placed no restrictions on the formation of the intervals. Thus we
could select arbitrarily large upper and lower boundaries which would permit all
optimally scaled observations to be set equal to all raw observations, thus

minimizing the squared differences trivially and totally.
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Naturally, the process proposed in the previous paragraph is meaning-
less. Therefore, we propose an alternative process which involves additional
restrictions on the relationships between the intervals. Specifically, we
propose a procedure which yields non-overlapping contiguous intervals,
thus disallowing the trivial circumstances outlined in the previous paragraph.

The continuous-nominal transformation tc involves the following two-
phase process: In the first phase we treat the data as though they are
discrete-nominal and perform a complete ALSOS analysis based on this
assumption. When this process has terminated we enter the second phase
in which we treat the data as though they are continuous-ordinal (see below)
and perform a second complete ALSOS analysis using Kruskal's primary
least-square monotonic transformation. Note that in neither phase do we
actually assume that the data are continuous-nominal. However, the assump-
tions which are used do not violate the continuous-nominal nature of the data.
In the first phase we use the categorical information to obtain the least
squares quantification of each category. In the second phase the quantifi-
cation from the first phase is used to define an order for the observation
categories. This order is then used to help define interval boundaries.

Two things should be noted: First, the procedure outlined here yields a
least squares quantification which is consistent with, but slightly stricter
than, the continuous-nominal restrictions specified in Eq. 3. Specifically,
the procedure yields non-overlapping intervals, whereas the restrictions
specified by Eq. 3 would permit overlapping intervals. Second, the proce-
dure outlined here is not the same as the pseudo-ordinal procedure discussed

by de Leeuw, Young & Takane (1976), but is a newer procedure which
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avoids the problems mentioned in that paper. Specifically, the new procedure
does not suffer from the oscillations and discontinuities present in the former
procedure.

The two ordinal transformations £3° (discrete-ordinal) and £¢° (continuous-
ordinal) are defined by Kruskal's least squares monotonic transformation. Our
discrete process corresponds to his secondary procedure, and our continuous
process to his primary procedure. Young (1975) has shown that both transforma-
tions may be formally stated as
9) to: z¢ = D@D Uz .

In the continuous-ordinal case U is a binary matrix indicating the z which must
be tied to satisfy the ordinal restrictions, and in the discrete-ordinal case
U is a binary matrix indicating the z which must be tied to satisfy both the
ordinal and categorical restrictions. Kruskal (1964) has shown that the
discrete-ordinal case is least squares, and de Leeuw (1975) has shown that the
continuous-ordinal case is least squares. De Leeuw (1977a) has also developed
a third least squares monotonic transformation.

The least squares solution for z* under the restrictions of the %P trans-
formation is well known. The 1P transformation can be written in matrix nota-

tion as

(10) £P: z*x = US

where U is a matrix with a row for each observation and with pt+l columns, each
column being an integer power of the vector o of observations. The first
column is the zero'th power (i.e., all ones), the second column is the first
power (i.e., is o itself), the third column is the squares 9?, etc. The least

squares estimate of z* is

(11) #: zx=v@w Uz .
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It is important to note that for all of the types of measurement charac-
teristics discussed here, the corresponding transformation £ may be viewed as
though we are regressing the model space z onto the observation space o in a
least squares sense and under the appropriate measurement restrictions. In
particular, each £ can be represented by a projection operator of the form
)—l

UV

(12) E=U(U'U
where the particular definition of U depends on the measurement characteristics,
as noted above. This means that we can make the important point that

(13) z¥ = Bz

When we formally note that the least squares notion is defined (under suitable
normalization conditions) as

(1) $° = (z*-z)' (z%-2)

and when we define F = I-E, then we see that

(15) ¢° = z'Fz

emphasizing the fact that each of the transformations can be viewed as optimizing
a relationship between the model space and some linear combination of the very
same model space, where the linear combination is determined by the measurement
restrictions. This point has been emphasized in a more restricted situation by
Young (1975), and was first noted in the present context by Takane, Young &

de Leeuw (1976). Geometrically, the projection operator projects the model space

z onto the nearest surface of the data space cone (see Figure 3).

3.3 Normalization

As was mentioned at the end of section 2.3, a trivial (and undesireable)
way of minimizing (14) is to set the model space z equal to zero. Then z* is
also equal to zero for all of the transformations, and hence ¢2 is zero. It
is for this reason that the parenthetical remark referring to ''suitable nor-

malization conditions'" is made just prior to Egq. (14).




~17-

Several different normalizations are used in the ALSOS programs. All of
the normalizations are introduced to avoid solutions represented by the origin
of the problem space (see Figure 3) or other types of trivial solutions. The
several normalization conditions have been discussed by Kruskal & Carroll (1969),
de Leeuw (1977b), Sands (1978) and by Young (1972). Two of these conditions

are equivalent to defining either

(2%-2) ' (z%-2)

(16) ¢2 = ,
z'z
or
(zF-z) " (z}-2)
a7 ¢]§ = = - s
%55

where gg and gg are the "normalized" versions of z* which optimize ¢§and¢é ,

respectively. That is,

(18) z% = az* ,
and
(19)  zf = bz* ,

where a and b are non-negative real numbers.
By looking at Figure 4 we may understand the relationships between 62, ¢;

and ¢§, and the relationships between z*, z% and z§. This figure presents, in

Z3

more detail, a portion of the problem space shown in Figure 3. Specifically,
we are looking down at a portion of the surface of the data cone, with the sur-
face represented by the irregularly shaped area. Above the cone's surface is
shown the model vector z. Note that it emanates from the origin of the problem

space and data cone, the origin denoted o.0. The orthogonal projection of

the model vector onto the surface of the cone gives z¥*, the unnormalized opti-

mally scaled data. As we saw in the previous section, this projection is

represented by Eq. (12) which minimizes ¢2 (Eq. 14), the unnormalized index of

fit. Geometrically, the projection minimizes the angle a between z and z*, and



0.0

\
g0l \

| \
\
| \
I AN
b 4 l \
AN
\
I A
\
| \
' \
\
: \\
3 90°y ;
SN~— z¥ ) J
zy ”
Figure 4: Normalization Geometry



-18-

thus the length of the vector of residuals r, and, thus Eq. (14) which is
simply the square of the length of the residuals vector. Furthermore, z* also
minimizes ¢; , since the denominator of ¢g is constant with respect to z*.
Thus, in Eq. (18), a= 1.

However, z* does not minimize ¢§, even though it minimizes ¢? and ¢; , as
we shall now demonstrate. Recall that o, the angle between z and z*, has been
minimized by orthogonally projecting z onto the cone's surface. It is simple

to see that

2 1

(20) ¢2 = sin®> a = I =%,
z° z'z
Furthermore, we can also see that 1
T
T h'T L
(21D Sin2a=-%—= b "b , b

A
and, since

b

we see that

K ! K
(23) Sin? a = (zf2) (252 .

Thus the vector Eg minimizes ¢§ (Eq. 17). Furthermore, when z* is used in

¢g and E; in ¢§ , it is the case (from Eqs. 20 and 23) that

(26) 67 = ¢ .

a

Thus, these two apparently different formulas are in fact equivalent, and it
is arbitrarty which normalization is chosen! However, sometimes the nature
of the model dictates that one of the two normalizations is preferable. 1In
ALSCAL, for example, the model dictates the use of ¢; for certain types of

data. Thus ¢§ is used.
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We have not, however, discovered how to obtain Eg from z*; that is, we
still need to determine the value of b in Eq. (19). The value of b is obtained

by noting that

zklz*%
(25) Cos®? a = ,
z'z
and that
z'z
(26) Cos? o =
xlo%
23z
Thus
: z'z  z*'z¥
(27) = 3
and
(z'z)(z'2)
(28) zxlpgk = ——————
= b (E?IE#)

Noting that the values within parentheses are scalars, we see that

(z'z) (z*'2%)(2'2)

(29)  z}'

&

(Z.*'.Z_*) (E*'E*)

(z'2) (z'2)
___________.Z’k' Z R —
L&*'_Z.*) B ][— (z%'z%) ]

Thus, it follows that

(z'z) 7

Therefore, in Eq. (19) we see that

(z'2)
(31) b =
(z*'z%)

A little study of Figure 4 will reveal that
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(32) o

1]

Cosza
1
1-¢

Thus we also note that

1
(33) ¢ =1-—

b b

Finally, the orthogonality of z* and r allows us to also show that

i (z'z)

(z'z%)

(34) b

These relationships among the various expressions for b were first noted by
Sands (1978). The fact that optimizing the unnormalized loss function by a
projection operator is simply related to the more difficult problem of optimi-
zing a normalized loss function was first discussed by de Leeuw (1975) and de
Leeuw, Young and Takane (1976) and proved by de Leeuw (1977b),
Both Sands (1978) and de Leeuw (1977b) also discuss relations between ¢2,
(z%-2) ' (z%-2)

(35) ¢4 ,
(z-2) ' (2-2)

and
(z4 -2) ' (z}-2)
(25-2%) ' (24-25)

where the bar over a symbol indicates a constant vector of means of the indica-

(36) 63

ted vector. Reasoning like that presented above leads to the conclusion that

A

(37)  z3
and that

(z-2)" (z-2)

(z*-2) +z
(z*-z*) "' (z*-2%)

Il

(38)  z}
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3.4 Partitions

The final point to be made in this section concerns what we term ''measure-
ment partitions."” 1In some sets of data all of the observations are thought of
as having been generated by a single measurement device. Furthermore, with
some of these sets of data the measurement device generates data in such a way
that all of the observations are reasonably assumed to be on the same measurement
scale. For example, when a subject makes similarity judgments concerning pairs
of stimuli, then all of the judgments can reasonably be thought of as having
been generated by a single "device" (the subject) and as having been generated
on a single scale (the rank order of the similarity judgments). However, for
other types of data it is clearly the case that the data are generated by several
measurement devices, or on several scales. For example, when we obtain measure-
ments about sex, age, hair color, income, educational background and political
preference from a set of people, we would probably think of each measurement
variable as being derived from a unique measurement device. In this case we
would wish to partition the data space into a set of mutually exclusive and
exhaustive subspaces (one for each variable) whereas in the first case we
would simply view the entire data space as a single space. While the notion of
partitions most clearly relates to multivariate data, the notion is also useful
for other types of data. For example, Coombs' (1964) notion of conditional simi-
larities data (for which a subject rank orders the similarity of n-1 "comparison"
stimuli with respect to the n'th "standard" stimulus, and then does this n times,
each time with a different stimulus as the "standard") is in our view a situa-
tion in which a single measurement device (the subject) generates n different
measurement scales (the rank orders). For this type of data the notion of
measurement partitions is also of great use.

When the data are partitioned, the OS phase of an ALSOS procedure is slight-

ly more complicated than when they are not partitioned, but only slightly. The
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difference is that we must perform the 0S and normalization for each partition
separately, one partition at a time. Since the partitions are mutually exclu-
sive, and since the 0S is performed for each partition separately, the measurement
characteristics of one partition need bear no special relationship to those of
another partition. This means, for example, that with the procedures oriented
towards multivariate data (OVERALS, HOMALS, PRINCIPALS, FACTALS, ALSCOMP and
MORALS) we can analyze data with any mixture of measurement characteristics.

Note that for partitioned data the overall loss function is defined as the
root-mean-square of the loss functions for each partition. Thus, if ¢; denotes
the normalized loss function for the i'th of p partitions, we define the overall
loss as

P 1/2
(39) ¢ = 5 i ¢i .

There is a very important consideration here, however, which must not be
overlooked. It is sometimes imperative that right after performing the opti-
mal scaling for a particular subset we immediately replace the old optimal scal-
ing with the new optimal scaling. As will become clear from the next portion
of this paper, the immediate replacement is imperative when the subsets are
not independent (where independent will be defined later). Such independence
is, in fact, not generally a characteristic of multivariate data, thus in the
programs which analyze such data the replacement is made immediately. This
point has been emphasized in Young, de Leeuw, & Takane (1976).

If, in fact, the partitions are not independent, then there is one addi-
tional consideration. Tet's say, for the multivariate data case, that we have
completed a cycle of optimal scaling and replacement for each variable. Now
let's say that we repeat the optimal scaling of one of the variables. If we
do this then the second optimal scaling of the variable does not yield the

same quantification as the first optimal scaling. Why is this? Because the
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variables are not independent. The quantification obtained by optimally scaling
one variable depends on the quantification of each of the pther variables., While
this sounds somewhat bothersome, it can be shown (de Leeuw, Young & Takane, 1976)
that were we to perform "inner" iterations ("imner" with respect to the scheme in
Figure 1) of the cycle of optimal scaling and replacement, then this process would
converge to a point where the quantifications would no longer change upon repeated
optimal scaling. In our work we do not perform such inner optimal scaling itera-
tions, however, only performing the process once for each variable (or partition)
before switching to the model estimation phase (see Figure 1). Our experience has
been that such inner iteration only serves to decrease the overall efficiency of the
pfocedure, and we have proven (de Leeuw, 1977b) that the number of inner iterations
has no effect on the eventual convergence point. Since performing only one inner
iteration (instead of iterating to convergence) can be viewed as a type of relaxa-
tion procedure, it may be that the improved overall efficiency is related to the
same factors which often times cause relaxation procedures to be more efficient
than non-relaxation procedures (Hageman & Porsching, 1975).

4, Quantifying Data Having Unknown Measurement Characteristics

It was stated above that one of the chief advantages of combining the ALS and
0S principles is that the OS phase of an ALSOS algorithm does not need to know the
type of model involved in the analysis. A parallel and equally important advan-
tage of combining ALS and 0S is that the model estimation phase of an ALSOS algo-
rithm does not need to know anything about the measurement characteristics of the
data.

The practical effect of this aspect of an ALSOS procedure 1is enormous:

If a least squares procedure exists for fitting a particular model to numerical
(i.e., interval or ratio) data, then we can use that procedure in combination

with the 0S procedures discussed in the previous section to develop an ALSOS
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algorithm for fitting the model to qualitative data. That's all there is to it!
If we can obtain a least squares description of numerical data we can obtain a
least squares description of qualitative data. All we have to do is alternate
the numerical least squares procedure with the OS procedure which is suited to
the measurement characteristics of the data being analyzed.

There is one hooker: The ALSOS procedure does not guarantee convergence on
the globally least squares solution, rather it guarantees convergence on a parti-
cular type of local least squares solution. The particular local optimum upon
which an ALSOS procedure converges is determined by only one thing, the initiali-
zation process. It is possible that two different types of initialization proce-
dures will lead an ALSOS procedure into two different local optima, perhaps giving
radically different results. For this reason, and since each phase in an ALSOS
procedure is a conditional least squares solution (conditional on the current
values of the parameters in the other subset), we refer to the convergence point
of an ALSOS procedure as the conditional global optimum, emphasizing that the
convergence point is more than simply a local optimum, but may not be the overall
global optimum. (The convergence properties of an ALSOS algorithm have been dis-
cussed by de Leeuw, Young and Takane (1976) and de Leeuw (1977b) who prove that such
a procedure is indeed convergent if (a) the function being optimized is continuous;
and (b) if each phase or subphase of the algorithm optimizes the function.)

Since the initialization procedure is of such importance in the overall
process, it is important to employ the "best" initialization that is available.

In all of the programs in the ALSOS system, we define "best initialization" to
mean that we should clearly optimize something relevant to the problem being
solved. We take this something to be the fit of the model to the raw data.
Thus, each of the ALSOS programs is initiated by applying the numerically least

squares procedure to the raw data under the assumptions that the raw data are
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quantitative. At least in the multidimensional scaling situation, this proce-
dure has been found to reduce the frequency of local minima solutions (Null and
Young, 1978).

The procedures for obtaining the conditional least squares estimates of
the model parameters are the familiar procedures used to obtain ordinary least
squares estimates when the data are numerical. The only difference is that the
procedures are applied to the vector z* of optimally scaled data (which is
numerical, after all) instead of to the vector o of raw observations. Since we
are applying the numerical model estimation procedure to the optimally scaled
data and not to the raw data we are not violating the measurement assumptions of
the raw data, whatever they might be. We are not even using the raw data in the
model estimation phase, thus we do not need to know its measurement characteris-
tics. Equally important, we do not have to think up a new way of trying to fit
the model to qualitgtive data, we simply use existing procedures for fitting
it to quantitative data.

The procedure for ADDALS, the algorithm for applying the simple additive
model (i.e., no interaction terms) to qualitative data is an excellent example
of the simplicity of the model estimation process in an ALSOS algorithm (de
Leeuw, Young & Takane, 1976). The procedure for obtaining the best estimates
for the parameters of the additive model
(40)  zijk = a3 + By + Yt M
(where we have reorganized the previous model vector z with element zj into a
three-way table with element Zijk) is very well known: We obtain row means to
estimate aj, column means to estimateij, plane means to estimate y) and the grand
mean to estimate U. The only difference is that we base the means on the opti-
mally scaled datum Zijk instead of the raw datum Oijk (both now represented in

tabular format). It is important to note that with thé additive model we do not
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need to define any type of inner iterations, even when the data are
incomplete.

Most of the rest of the procedures that we have developed on the
ALSOS principle are equally simple in the model estimation phase. The
OVERALS procedure (de Leeuw & van der Berg, 1978) applies the multiple
or canonical regression model to mixed measurement level multivariate
data (Young, Takane, & de Leeuw, 1976). The model estimation phase
is identical to a standard multiple or canonical regression algorithm,
except that it is applied to the optimally scaled data, not the raw
data. The PRINCIPALS and HOMALS procedures apply the principal
components model to mixed measurement level multivariate data (Young,
Takane & de Leeuw, 1978; de Leeuw & van Rijkevorsel, 1976), and
involve nothing more than a standard eigenvalue decomposition of the
optimally scaled data in the model estimation phase.

The only procedure which involves a fairly complicated model
estimation phase is the ALSCAL algorithm (Young, Takane & Lewyckyj,
1978) for performing individual differences multidimensional scaling
(Takane, Young & de Leeuw, 1977). However, the complexity of the
model estimation phase lies in the very nature of the model: There

are several sets of parameters which are not mutually
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independent (as, for example, are the several sets of parameters of the addi-
tive model), and which are not all linearly related to the loss function (as is
also the case in the additive model). These characteristics of the model can be
seen from the equation defining the model:

t
(41) Zijk % L Via""ka(xia'yja)2

a=
where, again, Zijk is a tabular reorganization of the model space vector z, with
subscripts i and j referring to objects or events about which we have some sort
of similarity informationm, and subscript k referring to situations (subjects, ex-
perimental conditions, etc.) under which the similarity information is observed.
The parameters v;, are "stimulus weights" of the asymmetric Euclidean model (Young
1975b), wy, are subject weights of the individual differences model discussed
by Carroll & Chang (1970) and Horan (1969), xj5 are stimulus-object points in a

Euclidean space, and V4 are ideal points for Coombs' unfolding model (1964) or

attribute points for preference data.

When we say that the several sets of parameters are not mutually indepen-
dent we mean that we need to know the values of one of the sets of parameters
in order to derive the best estimate of another set of parameters. When para-
meters are not independent the values of the parameters in one set effect the
values estimated for the parameters in the other set. This way of looking at
the difficulty immediately suggests a solution to the problem, however. All
we have to do is to define an ALS "inner" iteration which estimates paranmeters,
one set at a time. 'Thus, for ALSCAL, which is based on the model in lqg. 41,
the inner iteration has four phases each using the values of the parameters in
three of the sets (and the optimally scaled data) to obtain conditional least
squares estimates for the parameters in the fourth set. Once the parameters

in a set are estimated they are immediately used to replace their old values,
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and the procedure moves on to another one of the four model parameter sets.
This four phase ALS procedure is iterated until convergence is obtained.

Actually, ALSCAL does not use the inner iteration procedure outlined in
the previous paragraph. It would be very slow to require the inner iterations
of the model estimation phase to converge before going on to the optimal scaling
phase. Experience again shows that we should only cycle through the four phases
of the inner iteration once, defining that to be a complete model estimation
phase. Note that the considerations about non-independent data partitions apply
in precisely the same fashion to non-independent model parameter sets.

The second source of complexity in the ALSCAL algorithm is the nonlinear
relationship between the stimulus-object points X0 and yja and the model space
Zijk' We do not go into this problem here except to say that the solution we
use is to apply the ALS principle yet a third time (defining what might be
called "innermost'" iterations) to estimate the conditional least squares value
for a single point's coordinates, one coordinate at a time, under the assumption
that all of the other coordinates are constant. This innermost iteration in-
volves n*t phases, one for each of‘the n points on each of the t dimensions.

We have gone into fairly great detail concerning the ALSCAL algorithm
because it involves an important source of complexity which does not arise in
the other algorithms: The parameters of the model are not mutually independent.
The algorithm, then, serves to illustrate one method for coping with parameter
dependence, namely the use of inner iterations to reapply the ALS principle. The
algorithm also serves to illustrate that we do not have to iterate the inner
iterations until convergence is reached (one "iteration" can suffice).

As mentioned above, the notion of inner iteration is involved in the
ALSOS system in one other critical place: the method for optimally scaling data
which are partitioned into dependent partitions. When we view the observation

categories as parameters and the optimal scale values assigned to each category as
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parameter values, then we see that we need knowledge of some parameter values
in estimating other parameter values. This is precisely the definition of
dependence given above, except that the problem occurs in the optimal scaling
phase of the algorithm instead of in the model estimation phase. Note that
data partitions are not always dependent (for example, the data partitions
discussed by de Leeuw, Young & Takane (1976) for ADDALS, and by Takane, Young
& de Leeuw (1977) for ALSCAL are independent) just as parameters are not always
dependent. However, when dependence exists the ALS inner iteration approach

is a viable approach to déal with the problem.

5, Conclusions

The combination of alternating least squares and optimal scaling which
forms the foundation of the ALSOS approach to algorithm construction has two
primary advantages: (a) If a least squares procedure is known for analyzing
numerical data, then it can be used to analyze qualitative data simply by
alternating the procedure with the optimal scaling procedure appropriate to
the qualitative data; and (b) under certain fairly general circumstances the
resulting ALSOS algorithm is convergent and will have relatively few diffi-
culties with local minima.

We do not mean to imply that an ALSOS algorithm is the be-all and end-all
of algorithms. It is not. It is simply a relatively straight forward approach
to algorithm construction which has certain nice convergence properties. The
resulting algorithm may not be very simple. With ALSCAL, for example, even
though each step is not very complicated, the overall structure is rather com-
plex due to the necessity of inner and innermost iterations. Furthermore, in
some circumstances there are Some indeterminacies of construction which may
have great effect on the overall speed of the algorithm(such as in the number

of inner iterations performed on each outer iteration). Finally, perhaps the
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biggest drawback is that the ALSOS approach does not guarantee convergence on
the global optimum, only on the conditional global optimum. Since the conver-
gence point is conditional on the initialization point, it is sometimes the
case that the initialization procedure can become very complicated, and may be
very crucial. We would conclude, however, that the ALSOS approach to algorithm
construction is both more flexible and equally or more robust than previous

approaches to quantifying qualitative data.

va
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